Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biosci Rep ; 44(6)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38747277

RESUMO

Endothelin (ET) receptor antagonists are being investigated in combination with sodium-glucose co-transporter-2 inhibitors (SGLT-2i). These drugs primarily inhibit the SGLT-2 transporter that, in humans, is thought to be mainly restricted to the renal proximal convoluted tubule, resulting in increased glucose excretion favouring improved glycaemic control and diuresis. This action reduces fluid retention with ET receptor antagonists. Studies have suggested SGLT-2 may also be expressed in cardiomyocytes of human heart. To understand the potential of combining the two classes of drugs, our aim was to compare the distribution of ET receptor sub-types in human kidney, with SGLT-2. Secondly, using the same experimental conditions, we determined if SGLT-2 expression could be detected in human heart and whether the transporter co-localised with ET receptors. METHODS: Immunocytochemistry localised SGLT-2, ETA and ETB receptors in sections of histologically normal kidney, left ventricle from patients undergoing heart transplantation or controls. Primary antisera were visualised using fluorescent microscopy. Image analysis was used to measure intensity compared with background in adjacent control sections. RESULTS: As expected, SGLT-2 localised to epithelial cells of the proximal convoluted tubules, and co-localised with both ET receptor sub-types. Similarly, ETA receptors predominated in cardiomyocytes; low (compared with kidney but above background) positive staining was also detected for SGLT-2. DISCUSSION: Whether low levels of SGLT-2 have a (patho)physiological role in cardiomyocytes is not known but results suggest the effect of direct blockade of sodium (and glucose) influx via SGLT-2 inhibition in cardiomyocytes should be explored, with potential for additive effects with ETA antagonists.


Assuntos
Receptor de Endotelina A , Receptor de Endotelina B , Transportador 2 de Glucose-Sódio , Humanos , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Miocárdio/metabolismo , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/genética , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
2.
Cardiovasc Res ; 119(2): 587-598, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36239923

RESUMO

AIMS: The apelin receptor, a G protein-coupled receptor, has emerged as a key regulator of cardiovascular development, physiology, and disease. However, there is a lack of suitable human in vitro models to investigate the apelinergic system in cardiovascular cell types. For the first time we have used human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and a novel inducible knockdown system to examine the role of the apelin receptor in both cardiomyocyte development and to determine the consequences of loss of apelin receptor function as a model of disease. METHODS AND RESULTS: Expression of the apelin receptor and its ligands in hESCs and hESC-CMs was determined. hESCs carrying a tetracycline-inducible short hairpin RNA targeting the apelin receptor were generated using the sOPTiKD system. Phenotypic assays characterized the consequences of either apelin receptor knockdown before hESC-CM differentiation (early knockdown) or in 3D engineered heart tissues as a disease model (late knockdown). hESC-CMs expressed the apelin signalling system at a similar level to the adult heart. Early apelin receptor knockdown decreased cardiomyocyte differentiation efficiency and prolonged voltage sensing, associated with asynchronous contraction. Late apelin receptor knockdown had detrimental consequences on 3D engineered heart tissue contractile properties, decreasing contractility and increasing stiffness. CONCLUSIONS: We have successfully knocked down the apelin receptor, using an inducible system, to demonstrate a key role in hESC-CM differentiation. Knockdown in 3D engineered heart tissues recapitulated the phenotype of apelin receptor down-regulation in a failing heart, providing a potential platform for modelling heart failure and testing novel therapeutic strategies.


Assuntos
Células-Tronco Embrionárias Humanas , Miócitos Cardíacos , Adulto , Humanos , Miócitos Cardíacos/metabolismo , Apelina/genética , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular
3.
Commun Biol ; 6(1): 459, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100852

RESUMO

The origin of embryo implantation in mammals ~148 million years ago was a dramatic shift in reproductive strategy, yet the molecular changes that established mammal implantation are largely unknown. Although progesterone receptor signalling predates the origin of mammals and is highly conserved in, and critical for, successful mammal pregnancy, it alone cannot explain the origin and subsequent diversity of implantation strategies throughout the placental mammal radiation. MiRNAs are known to be flexible and dynamic regulators with a well-established role in the pathophysiology of mammal placenta. We propose that a dynamic core microRNA (miRNA) network originated early in placental mammal evolution, responds to conserved mammal pregnancy cues (e.g. progesterone), and facilitates species-specific responses. Here we identify 13 miRNA gene families that arose at the origin of placental mammals and were subsequently retained in all descendent lineages. The expression of these miRNAs in response to early pregnancy molecules is regulated in a species-specific manner in endometrial epithelia of species with extreme implantation strategies (i.e. bovine and human). Furthermore, this set of miRNAs preferentially target proteins under positive selective pressure on the ancestral eutherian lineage. Discovery of this core embryo implantation toolkit and specifically adapted proteins helps explain the origin and evolution of implantation in mammals.


Assuntos
MicroRNAs , Placenta , Gravidez , Humanos , Bovinos , Animais , Feminino , Placenta/metabolismo , Eutérios/genética , Implantação do Embrião/genética , Mamíferos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA