Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473772

RESUMO

Thrombosis is a multifaceted process involving various molecular components, including the coagulation cascade, platelet activation, platelet-endothelial interaction, anticoagulant signaling pathways, inflammatory mediators, genetic factors and the involvement of various cells such as endothelial cells, platelets and leukocytes. A comprehensive understanding of the molecular signaling pathways and cell interactions that play a role in thrombosis is essential for the development of precise therapeutic strategies for the treatment and prevention of thrombotic diseases. Ongoing research in this field is constantly uncovering new molecular players and pathways that offer opportunities for more precise interventions in the clinical setting. These molecular insights into thrombosis form the basis for the development of targeted therapeutic approaches for the treatment and prevention of thrombotic disease. The aim of this review is to provide an overview of the pathogenesis of thrombosis and to explore new therapeutic options.


Assuntos
Células Endoteliais , Trombose , Humanos , Coagulação Sanguínea , Anticoagulantes , Plaquetas
2.
Int J Mol Sci ; 24(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36901997

RESUMO

Platelets, traditionally known for their roles in hemostasis and coagulation, are the most prevalent blood component after erythrocytes (150,000-400,000 platelets/µL in healthy humans). However, only 10,000 platelets/µL are needed for vessel wall repair and wound healing. Increased knowledge of the platelet's role in hemostasis has led to many advances in understanding that they are crucial mediators in many other physiological processes, such as innate and adaptive immunity. Due to their multiple functions, platelet dysfunction is involved not only in thrombosis, mediating myocardial infarction, stroke, and venous thromboembolism, but also in several other disorders, such as tumors, autoimmune diseases, and neurodegenerative diseases. On the other hand, thanks to their multiple functions, nowadays platelets are therapeutic targets in different pathologies, in addition to atherothrombotic diseases; they can be used as an innovative drug delivery system, and their derivatives, such as platelet lysates and platelet extracellular vesicles (pEVs), can be useful in regenerative medicine and many other fields. The protean role of platelets, from the name of Proteus, a Greek mythological divinity who could take on different shapes or aspects, is precisely the focus of this review.


Assuntos
Plaquetas , Trombose , Humanos , Plaquetas/fisiologia , Hemostasia/fisiologia , Coagulação Sanguínea , Imunidade Adaptativa
3.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769276

RESUMO

Activated T cells express the inducible T-cell co-stimulator (ICOS) that, upon binding to its ubiquitously expressed ligand (ICOSL), regulates the immune response and tissue repair. We sought to determine the effect of ICOS:ICOSL interaction on human M1 and M2 macrophages. M1 and M2 macrophages were polarized from monocyte-derived macrophages, and the effect of a soluble recombinant form of ICOS (ICOS-CH3) was assessed on cytokine production and cell migration. We show that ICOS-CH3 treatment increased the secretion of CCL3 and CCL4 in resting M1 and M2 cells. In LPS-treated M1 cells, ICOS-CH3 inhibited the secretion of TNF-α, IL-6, IL-10 and CCL4, while it increased that of IL-23. In contrast, M2 cells treated with LPS + IL4 displayed enhanced secretion of IL-6, IL-10, CCL3 and CCL4. In CCL7- or osteopontin-treated M1 cells, ICOS-CH3 boosted the migration rate of M1 cells while it decreased that of M2 cells. Finally, ß-Pix expression was upregulated in M1 cells and downregulated in M2 cells by treatment with ICOS-CH3. These findings suggest that ICOSL activation modulates the activity of human M1 and M2 cells, thereby eliciting an overall anti-inflammatory effect consistent with its role in promoting tissue repair.


Assuntos
Interleucina-10 , Interleucina-6 , Humanos , Proteína Coestimuladora de Linfócitos T Induzíveis , Lipopolissacarídeos/farmacologia , Macrófagos
4.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35806368

RESUMO

BACKGROUND: ICOS and its ligand ICOSL are immune receptors whose interaction triggers bidirectional signals that modulate the immune response and tissue repair. AIM: The aim of this study was to assess the in vivo effects of ICOSL triggering by ICOS-Fc, a recombinant soluble form of ICOS, on skin wound healing. METHODS: The effect of human ICOS-Fc on wound healing was assessed, in vitro, and, in vivo, by skin wound healing assay using ICOS-/- and ICOSL-/- knockout (KO) mice and NOD-SCID-IL2R null (NSG) mice. RESULTS: We show that, in wild type mice, treatment with ICOS-Fc improves wound healing, promotes angiogenesis, preceded by upregulation of IL-6 and VEGF expression; increases the number of fibroblasts and T cells, whereas it reduces that of neutrophils; and increases the number of M2 vs. M1 macrophages. Fittingly, ICOS-Fc enhanced M2 macrophage migration, while it hampered that of M1 macrophages. ICOS-/- and ICOSL-/- KO, and NSG mice showed delayed wound healing, and treatment with ICOS-Fc improved wound closure in ICOS-/- and NSG mice. CONCLUSION: These data show that the ICOS/ICOSL network cooperates in tissue repair, and that triggering of ICOSL by ICOS-Fc improves cutaneous wound healing by increasing angiogenesis and recruitment of reparative macrophages.


Assuntos
Fragmentos Fc das Imunoglobulinas , Ligante Coestimulador de Linfócitos T Induzíveis , Proteína Coestimuladora de Linfócitos T Induzíveis , Cicatrização , Animais , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Ligante Coestimulador de Linfócitos T Induzíveis/imunologia , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Proteínas Recombinantes/farmacologia , Cicatrização/efeitos dos fármacos
5.
Clin Chem Lab Med ; 59(8): 1400-1408, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-33831978

RESUMO

OBJECTIVES: Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial disease with limited therapeutic options. The measurement of Krebs von den Lungen-6 (KL-6) glycoprotein has been proposed for evaluating the risk of IPF progression and predicting patient prognosis, but the robustness of available evidence is unclear. METHODS: We searched Medline and Embase databases for peer-reviewed literature from inception to April 2020. Original articles investigating KL-6 as prognostic marker for IPF were retrieved. Considered outcomes were the risk of developing acute exacerbation (AE) and patient survival. Meta-analysis of selected studies was conducted, and quantitative data were uniformed as odds ratio (OR) or hazard ratio (HR) estimates, with corresponding 95% confidence intervals (CI). RESULTS: Twenty-six studies were included in the systematic review and 14 were finally meta-analysed. For AE development, the pooled OR (seven studies) for KL-6 was 2.72 (CI 1.22-6.06; p=0.015). However, a high degree of heterogeneity (I2=85.6%) was found among selected studies. Using data from three studies reporting binary data, a pooled sensitivity of 72% (CI 60-82%) and a specificity of 60% (CI 52-68%) were found for KL-6 measurement in detecting insurgence of AE in IPF patients. Pooled HR (seven studies) for mortality prediction was 1.009 (CI 0.983-1.036; p=0.505). CONCLUSIONS: Although our meta-analysis suggested that IPF patients with increased KL-6 concentrations had a significant increased risk of developing AE, the detection power of the evaluated biomarker is limited. Furthermore, no relationship between biomarker concentrations and mortality was found. Caution is also needed when extending obtained results to non-Asian populations.


Assuntos
Fibrose Pulmonar Idiopática , Biomarcadores , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Mucina-1 , Razão de Chances , Prognóstico , Modelos de Riscos Proporcionais
6.
Int J Mol Sci ; 21(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207699

RESUMO

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to nearly every continent, registering over 1,250,000 deaths worldwide. The effects of SARS-CoV-2 on host targets remains largely limited, hampering our understanding of Coronavirus Disease 2019 (COVID-19) pathogenesis and the development of therapeutic strategies. The present study used a comprehensive untargeted metabolomic and lipidomic approach to capture the host response to SARS-CoV-2 infection. We found that several circulating lipids acted as potential biomarkers, such as phosphatidylcholine 14:0_22:6 (area under the curve (AUC) = 0.96), phosphatidylcholine 16:1_22:6 (AUC = 0.97), and phosphatidylethanolamine 18:1_20:4 (AUC = 0.94). Furthermore, triglycerides and free fatty acids, especially arachidonic acid (AUC = 0.99) and oleic acid (AUC = 0.98), were well correlated to the severity of the disease. An untargeted analysis of non-critical COVID-19 patients identified a strong alteration of lipids and a perturbation of phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, aminoacyl-tRNA degradation, arachidonic acid metabolism, and the tricarboxylic acid (TCA) cycle. The severity of the disease was characterized by the activation of gluconeogenesis and the metabolism of porphyrins, which play a crucial role in the progress of the infection. In addition, our study provided further evidence for considering phospholipase A2 (PLA2) activity as a potential key factor in the pathogenesis of COVID-19 and a possible therapeutic target. To date, the present study provides the largest untargeted metabolomics and lipidomics analysis of plasma from COVID-19 patients and control groups, identifying new mechanisms associated with the host response to COVID-19, potential plasma biomarkers, and therapeutic targets.


Assuntos
Infecções por Coronavirus/metabolismo , Metaboloma , Pneumonia Viral/metabolismo , Idoso , Idoso de 80 Anos ou mais , Aminoácidos/sangue , Ácido Araquidônico/sangue , Biomarcadores/sangue , COVID-19 , Ciclo do Ácido Cítrico , Infecções por Coronavirus/sangue , Infecções por Coronavirus/patologia , Feminino , Gluconeogênese , Humanos , Masculino , Pessoa de Meia-Idade , Ácido Oleico/sangue , Pandemias , Fosfatidilcolinas/sangue , Fosfatidiletanolaminas/sangue , Fosfolipases A2/sangue , Pneumonia Viral/sangue , Pneumonia Viral/patologia , Triglicerídeos/sangue
7.
Front Immunol ; 15: 1362960, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745659

RESUMO

Introduction: The protein growth arrest-specific 6 (Gas6) and its tyrosine kinase receptors Tyro-3, Axl, and Mer (TAM) are ubiquitous proteins involved in regulating inflammation and apoptotic body clearance. Multiple sclerosis (MS) is the most common inflammatory demyelinating disease of the central nervous system leading to progressive and irreversible disability if not diagnosed and treated promptly. Gas6 and TAM receptors have been associated with neuronal remyelination and stimulation of oligodendrocyte survival. However, few data are available regarding clinical correlation in MS patients. We aimed to evaluate soluble levels of these molecules in the cerebrospinal fluid (CSF) and serum at MS diagnosis and correlate them with short-term disease severity. Methods: In a prospective cohort study, we enrolled 64 patients with a diagnosis of clinical isolated syndrome (CIS), radiological isolated syndrome (RIS) and relapsing-remitting (RR) MS according to the McDonald 2017 Criteria. Before any treatment initiation, we sampled the serum and CSF, and collected clinical data: disease course, presence of gadolinium-enhancing lesions, and expanded disability status score (EDSS). At the last clinical follow-up, we assessed EDSS and calculated MS severity score (MSSS) and age-related MS severity (ARMSS). Gas6 and TAM receptors were determined using an ELISA kit (R&D Systems) and compared to neurofilament (NFLs) levels evaluated with SimplePlex™ fluorescence-based immunoassay. Results: At diagnosis, serum sAxl was higher in patients receiving none or low-efficacy disease-modifying treatments (DMTs) versus patients with high-efficacy DMTs (p = 0.04). Higher CSF Gas6 and serum sAXL were associated with an EDSS <3 at diagnosis (p = 0.04; p = 0.037). Serum Gas6 correlates to a lower MSSS (r2 = -0.32, p = 0.01). Serum and CSF NFLs were confirmed as disability biomarkers in our cohort according to EDSS (p = 0.005; p = 0.002) and MSSS (r2 = 0.27, p = 0.03; r2 = 0.39, p = 0.001). Results were corroborated using multivariate analysis. Conclusions: Our data suggest a protective role of Gas6 and its receptors in patients with MS and suitable severity disease biomarkers.


Assuntos
Receptor Tirosina Quinase Axl , Biomarcadores , Peptídeos e Proteínas de Sinalização Intercelular , Esclerose Múltipla , Receptores Proteína Tirosina Quinases , c-Mer Tirosina Quinase , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Peptídeos e Proteínas de Sinalização Intercelular/líquido cefalorraquidiano , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/sangue , Prognóstico , Estudos Prospectivos , Proteínas Proto-Oncogênicas/sangue , Proteínas Proto-Oncogênicas/líquido cefalorraquidiano , Receptores Proteína Tirosina Quinases/sangue , Receptores Proteína Tirosina Quinases/líquido cefalorraquidiano , Índice de Gravidade de Doença
8.
Pharmaceutics ; 15(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37376219

RESUMO

Chronic inflammation contributes to the pathogenesis of many diseases, including apparently unrelated conditions such as metabolic disorders, cardiovascular diseases, neurodegenerative diseases, osteoporosis, and tumors, but the use of conventional anti-inflammatory drugs to treat these diseases is generally not very effective given their adverse effects. In addition, some alternative anti-inflammatory medications, such as many natural compounds, have scarce solubility and stability, which are associated with low bioavailability. Therefore, encapsulation within nanoparticles (NPs) may represent an effective strategy to enhance the pharmacological properties of these bioactive molecules, and poly lactic-co-glycolic acid (PLGA) NPs have been widely used because of their high biocompatibility and biodegradability and possibility to finely tune erosion time, hydrophilic/hydrophobic nature, and mechanical properties by acting on the polymer's composition and preparation technique. Many studies have been focused on the use of PLGA-NPs to deliver immunosuppressive treatments for autoimmune and allergic diseases or to elicit protective immune responses, such as in vaccination and cancer immunotherapy. By contrast, this review is focused on the use of PLGA NPs in preclinical in vivo models of other diseases in which a key role is played by chronic inflammation or unbalance between the protective and reparative phases of inflammation, with a particular focus on intestinal bowel disease; cardiovascular, neurodegenerative, osteoarticular, and ocular diseases; and wound healing.

9.
Pharmaceutics ; 14(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36145531

RESUMO

Conventional therapies for immune-mediated diseases, including autoimmune disorders, transplant reactions, and allergies, have undergone a radical evolution in the last few decades; however, they are still not specific enough to avoid widespread immunosuppression. The idea that vaccine usage could be extended beyond its traditional immunogenic function by encompassing the ability of vaccines to induce antigen-specific tolerance may revolutionize preventive and therapeutic strategies in several clinical fields that deal with immune-mediated disorders. This approach has been supported by improved data relating to the several mechanisms involved in controlling unwanted immune responses and allowing peripheral tolerance. Given these premises, several approaches have been developed to induce peripheral tolerance against the antigens that are involved in the pathological immune response, including allergens, autoantigens, and alloantigens. Technological innovations, such as nucleic acid manipulation and the advent of micro- and nanoparticles, have further supported these novel preventive and therapeutic approaches. This review focuses on the main strategies used in the development of tolerogenic vaccines, including the technological issues used in their design and the role of "inverse adjuvants". Even though most studies are still limited to the preclinical field, the enthusiasm generated by their results has prompted some initial clinical trials, and they show great promise for the future management of immune-mediated pathological conditions.

10.
J Neurol ; 269(6): 3249-3257, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35088141

RESUMO

Cognitive impairment (CI) is a frequent and disabling symptom in Multiple Sclerosis (MS). Axonal damage may contribute to CI development from early stages. Nevertheless, no biomarkers are at the moment available to track CI in MS patients. We aimed to explore the correlation of cerebrospinal fluid (CSF) axonal biomarkers, in particular: light-chain neurofilaments (NFL), Tau, and Beta-amyloid protein (Abeta) in MS patients with CI at the diagnosis. 62 newly diagnosed MS patients were enrolled, and cognition was evaluated using the Brief International Cognitive Assessment for MS (BICAMS) battery. CSF NFL, Abeta, and Tau levels were determined with commercial ELISA. Patients with CI (45.1%) did not differ for demographic, clinical, and MRI characteristics (except for lower educational level), but they displayed greater neurodegeneration, exhibiting higher mean CSF Tau protein (162.1 ± 52.96 pg/ml versus 132.2 ± 63.86 pg/ml p:0.03). No differences were observed for Abeta and NFL. The number of impaired tests and Tau were significantly correlated (r:0.32 p:0.01). Tau was higher in particular in patients with slowed information processing speed (IPS) (p:0.006) and a linear regression analysis accounting for EDSS, MRI, and MS subtype confirmed Tau as a weak predictor of IPS and cognitive impairment. In conclusion, CI has an important burden on the quality of life of MS patients and should be looked for even at diagnosis. Axonal damage biomarkers, and in particular Tau, seem to reflect cognition impairment in the early stages.


Assuntos
Disfunção Cognitiva , Esclerose Múltipla , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Cognição , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/diagnóstico por imagem , Qualidade de Vida , Proteínas tau/líquido cefalorraquidiano
11.
Front Genet ; 13: 875182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035117

RESUMO

Background: Neurodevelopmental disorders comprise a clinically and genetically heterogeneous group of conditions that affect 2%-5% of children and represents a public health challenge due to complexity of the etiology. Only few patients with unexplained syndromic and non-syndromic NDDs receive a diagnosis through first-tier genetic tests as array-CGH and the search for FMR1 CGG expansion. The aim of this study was to evaluate the clinical performance of a targeted next-generation sequencing (NGS) gene panel as a second-tier test in a group of undiagnosed patients with NDDs. Method: A 221-gene next-generation sequencing custom panel was designed and used to analyze a cohort of 338 patients with a broad spectrum of NDDs (202 males and 136 females) including Intellectual Disability (ID), Autism Spectrum Disorders (ASD), Epilepsy, language and motor disorders. Results: A molecular diagnosis was established in 71 patients (21%) and a de novo origin was present in 38 (64.4%) of the available trios. The diagnostic yield was significantly higher in females than in males (29.4% vs. 15.3%; p = 0.0019) in particular in ASD (36.8% vs. 7.6%; p = 0.0026) and Epilepsy (38.9% vs. 14.4% p = 0.001). The most involved genes were SLC2A1, SCN1A, ANKRD11, ATP1A2, CACNA1A, FOXP1, and GNAS altered in more than two patients and accounting for the 19.7% of the diagnosis. Conclusion: Our findings showed that this NGS panel represents a powerful and affordable clinical tool, significantly increasing the diagnostic yield in patients with different form of NDDs in a cost- and time-effective manner without the need of large investments in data storage and bioinformatic analysis.

12.
Front Immunol ; 13: 1038227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601115

RESUMO

Rationale: Factors associated with long-term sequelae emerging after the acute phase of COVID-19 (so called "long COVID") are unclear. Here, we aimed to identify risk factors for the development of COVID-19 sequelae in a prospective cohort of subjects hospitalized for SARS-CoV-2 infection and followed up one year after discharge. Methods: A total of 324 subjects underwent a comprehensive and multidisciplinary evaluation one year after hospital discharge for COVID-19. A subgroup of 247/324 who consented to donate a blood sample were tested for a panel of circulating cytokines. Results: In 122 patients (37.8%) there was evidence of at least one persisting physical symptom. After correcting for comorbidities and COVID-19 severity, the risk of developing long COVID was lower in the 109 subjects admitted to the hospital in the third wave of the pandemic than in the 215 admitted during the first wave, (OR 0.69, 95%CI 0.51-0.93, p=0.01). Univariable analysis revealed female sex, diffusing capacity of the lungs for carbon monoxide (DLCO) value, body mass index, anxiety and depressive symptoms to be positively associated with COVID-19 sequelae at 1 year. Following logistic regression analysis, DLCO was the only independent predictor of residual symptoms (OR 0.98 CI 95% (0.96-0.99), p=0.01). In the subgroup of subjects with normal DLCO (> 80%), for whom residual lung damage was an unlikely explanation for long COVID, the presence of anxiety and depressive symptoms was significantly associated to persistent symptoms, together with increased levels of a set of pro-inflammatory cytokines: interferon-gamma, tumor necrosis factor-alpha, interleukin (IL)-2, IL-12, IL-1ß, IL-17. In logistic regression analysis, depressive symptoms (p=0.02, OR 4.57 [1.21-17.21]) and IL-12 levels (p=0.03, OR 1.06 [1.00-1.11]) 1-year after hospital discharge were independently associated with persistence of symptoms. Conclusions: Long COVID appears mainly related to respiratory sequelae, prevalently observed during the first pandemic wave. Among patients with little or no residual lung damage, a cytokine pattern consistent with systemic inflammation is in place.


Assuntos
COVID-19 , Humanos , Adulto , Feminino , Estudos Prospectivos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Interleucina-12 , Citocinas , Progressão da Doença
13.
Front Psychiatry ; 12: 755171, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185631

RESUMO

The interest elicited by the large microbial population colonizing the human gut has ancient origins and has gone through a long evolution during history. However, it is only in the last decades that the introduction of high-throughput technologies has allowed to broaden this research field and to disentangle the numerous implications that gut microbiota has in health and disease. This comprehensive ecosystem, constituted mainly by bacteria but also by fungi, parasites, and viruses, is proven to be involved in several physiological and pathological processes that transcend the intestinal homeostasis and are deeply intertwined with apparently unrelated body systems, such as the immune and the nervous ones. In this regard, a novel speculation is the relationship between the intestinal microbial flora and the pathogenesis of some neurological and neurodevelopmental disorders, including the clinical entities defined under the umbrella term of autism spectrum disorders. The bidirectional interplay has led researchers to coin the term gut-brain-immune system axis, subverting the theory of the brain as an immune-privileged site and underscoring the importance of this reciprocal influence already from fetal life and especially during the pre- and post-natal neurodevelopmental process. This revolutionary theory has also unveiled the possibility to modify the gut microbiota as a way to treat and even to prevent different kinds of pathologies. In this sense, some attempts have been made, ranging from probiotic administration to fecal microbiota transplantation, with promising results that need further elaboration. This state-of-art report will describe the main aspects regarding the human gut microbiome and its specific role in the pathogenesis of autism and its related disorders, with a final discussion on the therapeutic and preventive strategies aiming at creating a healthy intestinal microbial environment, as well as their safety and ethical implications.

14.
Int J Lab Hematol ; 43(5): 895-906, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33749995

RESUMO

Although platelets are traditionally recognized for their central role in hemostasis, the presence of chemotactic factors, chemokines, adhesion molecules, and costimulatory molecules in their granules and membranes indicates that they may play an immunomodulatory role in the immune response, flanking their capacity to trigger blood coagulation and inflammation. Indeed, platelets play a role not only in the innate immune response, through the expression of Toll-like receptors (TLRs) and release of inflammatory cytokines, but also in the adaptive immune response, through expression of key costimulatory molecules and major histocompatibility complex (MHC) molecules capable to activate T cells. Moreover, platelets release huge amounts of extracellular vesicles capable to interact with multiple immune players. The function of platelets thus extends beyond aggregation and implies a multifaceted interplay between hemostasis, inflammation, and the immune response, leading to the amplification of the body's defense processes on one hand, but also potentially degenerating into life-threatening pathological processes on the other. This narrative review summarizes the current knowledge and the most recent updates on platelet immune functions and interactions with infectious agents, with a particular focus on their involvement in COVID-19, whose pathogenesis involves a dysregulation of hemostatic and immune processes in which platelets may be determinant causative agents.


Assuntos
Plaquetas/patologia , COVID-19/patologia , Inflamação/patologia , Trombose/patologia , Animais , Plaquetas/imunologia , COVID-19/sangue , COVID-19/complicações , COVID-19/imunologia , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/patologia , Hemostasia , Humanos , Imunidade Inata , Inflamação/sangue , Inflamação/etiologia , Inflamação/imunologia , Ativação Plaquetária , SARS-CoV-2/imunologia , Trombocitopenia/sangue , Trombocitopenia/etiologia , Trombocitopenia/imunologia , Trombocitopenia/patologia , Trombose/sangue , Trombose/etiologia , Trombose/imunologia
15.
Biomed Res Int ; 2021: 3508281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901269

RESUMO

BACKGROUND AND AIMS: Inflammatory, oxidative stress, and endothelial dysfunction play a key role in the pathogenesis of long-term cardiovascular complications in patients with diabetes. The present observational prospective study is aimed at evaluating the effects of micronutrients and phytochemicals contained in the dietary supplement Flebotrofine® (AMNOL Chimica Biologica) on biochemical markers of inflammation, endothelial dysfunction, and glycemic control in patients with diabetes. METHODS: 105 type 1 or type 2 diabetes patients regularly took a daily dose of the dietary supplement Flebotrofine® for three consecutive months, and haematological and biochemical parameters were checked at baseline, after three months of treatment, and one month after its suspension. Statistical comparison of the laboratory parameters was performed using the two-tailed ANOVA test for repeated samples with a statistical significance level set at p < 0.05. RESULTS: The daily use of Flebotrofine® did not change the glycemic metabolic compensation of enrolled patients. After three months of regular Flebotrofine® intake, the plasma levels of the antioxidant ß-carotene and of arginine were significantly higher compared with the baseline values, with a decrease in the ADMA/arginine ratio. In contrast, apolipoprotein B, ApoB/ApoA1 ratio, and platelet and leukocyte counts significantly dropped. CONCLUSION: The daily use of Flebotrofine® might be a valid supplement of arginine, the precursor of NO, and essential in the prevention of endothelial dysfunction. The regular intake of arginine and phytochemicals also improved the antioxidant and antithrombotic profile of enrolled patients. Therefore, Flebotrofine® could be a useful dietary supplement to prevent long-term complications in patients with diabetes.


Assuntos
Arginina/administração & dosagem , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diosmina/administração & dosagem , Hesperidina/administração & dosagem , Hidroxietilrutosídeo/análogos & derivados , Antioxidantes/metabolismo , Apolipoproteína A-I/metabolismo , Apolipoproteína B-100/metabolismo , Biomarcadores/metabolismo , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Suplementos Nutricionais , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Feminino , Humanos , Hidroxietilrutosídeo/administração & dosagem , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Projetos Piloto , Estudos Prospectivos
16.
Cells ; 10(1)2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430260

RESUMO

Sars-Cov-2 infection causes fever and cough that may rapidly lead to acute respiratory distress syndrome (ARDS). Few biomarkers have been identified but, unfortunately, these are individually poorly specific, and novel biomarkers are needed to better predict patient outcome. The aim of this study was to evaluate the diagnostic performance of circulating platelets (PLT)-derived extracellular vesicles (EVs) as biomarkers for Sars-Cov-2 infection, by setting a rapid and reliable test on unmanipulated blood samples. PLT-EVs were quantified by flow cytometry on two independent cohorts of Sars-CoV-2+ (n = 69), Sars-Cov-2- (n = 62) hospitalized patients, and healthy controls. Diagnostic performance of PLT-EVs was evaluated by receiver operating characteristic (ROC) curve. PLT-EVs count were higher in Sars-Cov-2+ compared to Sars-Cov-2- patients or HC. ROC analysis of the combined cohorts showed an AUC = 0.79 and an optimal cut-off value of 1472 EVs/µL, with 75% sensitivity and 74% specificity. These data suggest that PLT-EVs might be an interesting biomarker deserving further investigations to test their predictive power.


Assuntos
Plaquetas/metabolismo , COVID-19/sangue , Vesículas Extracelulares/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Plaquetas/patologia , COVID-19/epidemiologia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes
17.
Front Mol Biosci ; 8: 632290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33693030

RESUMO

Knowledge of the host response to the novel coronavirus SARS-CoV-2 remains limited, hindering the understanding of COVID-19 pathogenesis and the development of therapeutic strategies. During the course of a viral infection, host cells release exosomes and other extracellular vesicles carrying viral and host components that can modulate the immune response. The present study used a shotgun proteomic approach to map the host circulating exosomes' response to SARS-CoV-2 infection. We investigated how SARS-CoV-2 infection modulates exosome content, exosomes' involvement in disease progression, and the potential use of plasma exosomes as biomarkers of disease severity. A proteomic analysis of patient-derived exosomes identified several molecules involved in the immune response, inflammation, and activation of the coagulation and complement pathways, which are the main mechanisms of COVID-19-associated tissue damage and multiple organ dysfunctions. In addition, several potential biomarkers-such as fibrinogen, fibronectin, complement C1r subcomponent and serum amyloid P-component-were shown to have a diagnostic feature presenting an area under the curve (AUC) of almost 1. Proteins correlating with disease severity were also detected. Moreover, for the first time, we identified the presence of SARS-CoV-2 RNA in the exosomal cargo, which suggests that the virus might use the endocytosis route to spread infection. Our findings indicate circulating exosomes' significant contribution to several processes-such as inflammation, coagulation, and immunomodulation-during SARS-CoV-2 infection. The study's data are available via ProteomeXchange with the identifier PXD021144.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA