Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(3): 1236-1246, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31867954

RESUMO

The use of C60 as an interfacial layer between TiO2 and methylammonium lead iodide perovskite is probed to reduce the current-voltage hysteresis in perovskite solar cells (PSCs) and, in turn, to impact the interfacial carrier injection and recombination processes that limit solar cell efficiencies. Detailed kinetic analyses across different time scales, that is, from the femtoseconds to the seconds, reveal that the charge carrier lifetimes as well as the charge injection and charge recombination dynamics depend largely on the presence or absence of C60. In addition, we corroborate that C60 is applicable in hot carrier PSCs as it is capable of extracting hot carriers generated throughout the early time scales following photoexcitation.

2.
Phys Chem Chem Phys ; 20(36): 23674-23683, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30191206

RESUMO

Here, brand new ternary hybrid solar cells comprising perovskite nanocrystals (NCs) with a complementary absorption profile of the organic host matrix are reported. In particular, NH2CH[double bond, length as m-dash]NH2PbI3 (FAPbI3) perovskite NCs are implemented in bulk heterojunction organic solar cells based on the pDPP5T-2 electron donating polymer and a [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) acceptor at various loading amounts and the fabricated hybrid photovoltaics are thoroughly studied by employing different optoelectrical characterization methods. Current-voltage measurements and photoinduced charge carrier extraction by linear increasing voltage (photo-CELIV) reveal improved charge generation and charge transport properties upon incorporation of perovskite NCs into the photo-active layer of the hybrid solar cell. The power conversion efficiency (PCE) of the hybrid solar cell comprising 5% perovskite NCs is 10% enhanced compared to the organic reference, mainly due to the enlarged light harvesting and increased short circuit current density (Jsc). However, results suggest that introducing a higher amount of perovskite content induces bimolecular and trap-assisted recombination in the ternary devices. We perform a comprehensive transient absorption study of the charge transfer/transport mechanisms by employing femto-second pump-probe transient absorption spectroscopy (fs-TAS). fs-TAS measurements demonstrate a slower charge carrier recombination rate due to the introduction of perovskite NCs into the photoactive layer. Results reveal that DPP injects electrons from the singlet excited state into the perovskite NCs, which causes the desired cascading charge carrier transfer. In ternary blends, a small amount of FAPbI3 NCs provides an additional pathway in favor of the charge-separated state via the NCs, which, despite accelerating the depopulation of DPP's singlet excited state slightly slows down the charge-separation process between DPP and PC61BM. Interestingly, the loss processes are slowed down; an effect that is more important and, hence, explains the improved solar cell efficiency.

3.
Nanoscale ; 11(48): 23357-23365, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31793597

RESUMO

Metal halide perovskites are known to possess upon photoexcitation long-lived hot carriers. By using femtosecond laser transient absorption spectroscopy, we probed in the current work interfacial charge transfer, that is, hot electrons and holes in methylammonium lead iodide perovskite. The focus was, on the one hand, on titanium dioxide as an electron transporting material and, on the other hand, on several organic semiconducting materials as hole transporting materials in perovskite solar cells. An unexpected carrier loss pathway for hot electrons was found in the form of injection into the low lying LUMOs of several organic semiconducting materials. Of great importance is the fact that the final photocurrents of perovskite solar cells scale with the suppression of this newly discovered loss pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA