Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Tissue Res ; 388(1): 75-88, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35028747

RESUMO

Mesenchymal stem cells (MSCs) have broad-based therapeutic potential in regenerative medicine. However, a major barrier to their clinical utility is that MSCs from different tissues are highly variable in their regenerative properties. In this study, we defined the molecular and phenotypic identities of different MSC populations from different osseous tissue sites of different patients and, additionally, determined their respective regenerative properties. MSCs from 6 patients were isolated from either bone marrow of the iliac crest (BMSCs) or alveolar bone tissue (aBMSCs), and flow cytometry revealed that regardless of the tissue source, MSC immunotypes had the same expression of MSC markers CD73, CD90, and CD105. However, transcriptomic analyses revealed 589 genes differentially expressed (DE) between BMSCs and aBMSCs, including eightfold higher levels of bone morphogenetic protein 4 (BMP-4) in aBMSCs. In striking contrast, gene expression of MSCs derived from the same tissue, but between different patients (i.e., BMSCs to BMSCs, aBMSCs to aBMSCs), showed only 38 DE BMSC genes and 51 DE aBMSC genes. A protein array showed that aBMSC and BMSC produced equivalent levels of angiogenic cytokines; however, when placed in angiogenesis model systems, aBMSCs induced significantly more capillaries in vitro and in vivo. Finally, cell transplantation of MSCS into osseous defects showed that the bone regenerative capacity of aBMSCs was significantly greater than that of BMSCs. This study is the first to link the molecular, phenotypic, and regenerative properties of different MSCs from different patients and provides novel insights toward MSC differences based on the osseous tissue origin.


Assuntos
Células da Medula Óssea , Células-Tronco Mesenquimais , Regeneração Óssea , Osso e Ossos , Diferenciação Celular , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Medicina Regenerativa
2.
Soft Matter ; 16(28): 6501-6513, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32597450

RESUMO

Acoustically-responsive scaffolds (ARSs), which are composite fibrin hydrogels, have been used to deliver regenerative molecules. ARSs respond to ultrasound in an on-demand, spatiotemporally-controlled manner via a mechanism termed acoustic droplet vaporization (ADV). Here, we study the ADV-induced, time-dependent micromechanical and microstructural changes to the fibrin matrix in ARSs using confocal fluorescence microscopy as well as atomic force microscopy. ARSs, containing phase-shift double emulsion (PSDE, mean diameter: 6.3 µm), were exposed to focused ultrasound to generate ADV - the phase transitioning of the PSDE into gas bubbles. As a result of ADV-induced mechanical strain, localized restructuring of fibrin occurred at the bubble-fibrin interface, leading to formation of locally denser regions. ADV-generated bubbles significantly reduced fibrin pore size and quantity within the ARS. Two types of ADV-generated bubble responses were observed in ARSs: super-shelled spherical bubbles, with a growth rate of 31 µm per day in diameter, as well as fluid-filled macropores, possibly as a result of acoustically-driven microjetting. Due to the strain stiffening behavior of fibrin, ADV induced a 4-fold increase in stiffness in regions of the ARS proximal to the ADV-generated bubble versus distal regions. These results highlight that the mechanical and structural microenvironment within an ARS can be spatiotemporally modulated using ultrasound, which could be used to control cellular processes and further the understanding of ADV-triggered drug delivery for regenerative applications.


Assuntos
Acústica , Fibrina , Emulsões , Hidrogéis , Volatilização
3.
Biotechnol Bioeng ; 116(2): 415-426, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30414271

RESUMO

Forming functional blood vessel networks is a major clinical challenge in the fields of tissue engineering and therapeutic angiogenesis. Cell-based strategies to promote neovascularization have been widely explored, but cell sourcing remains a significant limitation. Induced-pluripotent stem cell-derived endothelial cells (iPSC-ECs) are a promising, potentially autologous, alternative cell source. However, it is unclear whether iPSC-ECs form the same robust microvasculature in vivo documented for other EC sources. In this study, we utilized a well-established in vivo model, in which ECs (iPSC-EC or human umbilical vein endothelial cells [HUVEC]) were coinjected with normal human lung fibroblasts (NHLFs) and a fibrin matrix into the dorsal flank of severe combined immunodeficiency mice to assess their ability to form functional microvasculature. Qualitatively, iPSC-ECs were capable of vessel formation and perfusion and demonstrated similar vessel morphologies to HUVECs. However, quantitatively, iPSC-ECs exhibited a two-fold reduction in vessel density and a three-fold reduction in the number of perfused vessels compared with HUVECs. Further analysis revealed the presence of collagen-IV and α-smooth muscle actin were significantly lower around iPSC-EC/NHLF vasculature than in HUVEC/NHLF implants, suggesting reduced vessel maturity. Collectively, these results demonstrate the need for increased iPSC-EC maturation for clinical translation to be realized.


Assuntos
Diferenciação Celular , Células Endoteliais/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Neovascularização Fisiológica , Animais , Células Cultivadas , Fibrina/metabolismo , Fibroblastos/fisiologia , Histocitoquímica , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Camundongos SCID
4.
Soft Matter ; 12(7): 2076-85, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26750719

RESUMO

Tunable properties of multi-arm poly(ethylene glycol) (PEG) hydrogel, crosslinked by Michael-type addition, support diverse applications in tissue engineering. Bioactive modification of PEG is achieved by incorporating integrin binding sequences, like RGD, and crosslinking with tri-functional protease sensitive crosslinking peptide (GCYKNRGCYKNRCG), which compete for the same reactive groups in PEG. This competition leads to a narrow range of conditions that support sufficient crosslinking density to provide structural control. Kinetics of hydrogel formation plays an important role in defining the conditions to form hydrogels with desired mechanical and biological properties, which have not been fully characterized. In this study, we explored how increasing PEG functionality from 4 to 8-arms and the concentration of biological moieties, ranging from 0.5 mM to 3.75 mM, affected the kinetics of hydrogel formation, storage modulus, and swelling after the hydrogels were allowed to form for 15 or 60 minutes. Next, human bone marrow stromal cells were encapsulated and cultured in these modified hydrogels to investigate the combined effect of mechano-biological properties on phenotypes of encapsulated cells. While the molar concentration of the reactive functional groups (-vinyl sulfone) was identical in the conditions comparing 4 and 8-arm PEG, the 8-arm PEG formed faster, allowed a greater degree of modification, and was superior in three-dimensional culture. The degrees of swelling and storage modulus of 8-arm PEG were less affected by the modification compared to 4-arm PEG. These findings suggest that 8-arm PEG allows a more precise control of mechanical properties that could lead to a larger spectrum of tissue engineering applications.


Assuntos
Reagentes de Ligações Cruzadas/química , Hidrogéis/química , Peptídeos/química , Polietilenoglicóis/química , Engenharia Tecidual/métodos , Sequência de Aminoácidos , Ligação Competitiva , Linhagem Celular , Células Imobilizadas , Reação de Cicloadição , Cisteína/farmacologia , Módulo de Elasticidade , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Dados de Sequência Molecular , Ligação Proteica , Temperatura , Fatores de Tempo
5.
Exp Cell Res ; 319(19): 2964-76, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24056178

RESUMO

Bone marrow-derived mesenchymal stem cells (BMSCs) facilitate the angiogenic response of endothelial cells (ECs) within three-dimensional (3D) matrices in vivo and in engineered tissues in vitro in part through paracrine mediators and by acting as stabilizing pericytes. However, the molecular interactions between BMSCs and nascent tubules during the process of angiogenesis are not fully understood. In this study, we have used a tractable 3D co-culture model to explore the functional role of the α6ß1 integrin adhesion receptor on BMSCs in sprouting angiogenesis. We report that knockdown of the α6 integrin subunit in BMSCs significantly reduces capillary sprouting, and causes their failure to associate with the nascent vessels. Furthermore, we demonstrate that the BMSCs with attenuated α6 integrin proliferate at a significantly lower rate relative to either control cells expressing non-targeting shRNA or wild type BMSCs; however, despite adding more cells to compensate for this deficit in proliferation, deficient sprouting persists. Collectively, our findings demonstrate that the α6 integrin subunit in BMSCs is important for their ability to stimulate vessel morphogenesis. This conclusion may have important implications in the optimization of cell-based strategies to promote angiogenesis.


Assuntos
Células da Medula Óssea/citologia , Medula Óssea/metabolismo , Células Endoteliais/citologia , Integrina alfa6beta1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura/métodos , Células Endoteliais/fisiologia , Humanos , Integrina alfa6beta1/genética , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica/fisiologia
6.
Sci Rep ; 14(1): 4036, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369633

RESUMO

Strategies to separately manufacture arterial-scale tissue engineered vascular grafts and microvascular networks have been well-established, but efforts to bridge these two length scales to create hierarchical vasculature capable of supporting parenchymal cell functions or restoring perfusion to ischemic tissues have been limited. This work aimed to create multiscale vascular constructs by assessing the capability of macroscopic vessels isolated from mice to form functional connections to engineered capillary networks ex vivo. Vessels of venous and arterial origins from both thoracic and femoral locations were isolated from mice, and then evaluated for their abilities to sprout endothelial cells (EC) capable of inosculating with surrounding human cell-derived microvasculature within bulk fibrin hydrogels. Comparing aortae, vena cavae, and femoral vessel bundles, we identified the thoracic aorta as the rodent macrovessel that yielded the greatest degree of sprouting and interconnection to surrounding capillaries. The presence of cells undergoing vascular morphogenesis in the surrounding hydrogel attenuated EC sprouting from the macrovessel compared to sprouting into acellular hydrogels, but ultimately sprouted mouse EC interacted with human cell-derived capillary networks in the bulk, yielding chimeric vessels. We then integrated micromolded mesovessels into the constructs to engineer a primitive 3-scale vascular hierarchy comprising capillaries, mesovessels, and macrovessels. Overall, this study yielded a primitive hierarchical vasculature suitable as proof-of-concept for regenerative medicine applications and as an experimental model to better understand the spontaneous formation of host-graft vessel anastomoses.


Assuntos
Células Endoteliais , Engenharia Tecidual , Humanos , Animais , Camundongos , Microvasos , Capilares , Hidrogéis , Neovascularização Fisiológica
7.
J Biomed Mater Res A ; 112(4): 549-561, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37326361

RESUMO

There is a significant clinical need to develop effective vascularization strategies for tissue engineering and the treatment of ischemic pathologies. In patients afflicted with critical limb ischemia, comorbidities may limit common revascularization strategies. Cell-encapsulating modular microbeads possess a variety of advantageous properties, including the ability to support prevascularization in vitro while retaining the ability to be injected in a minimally invasive manner in vivo. Here, fibrin microbeads containing human umbilical vein endothelial cells (HUVEC) and bone marrow-derived mesenchymal stromal cells (MSC) were cultured in suspension for 3 days (D3 PC microbeads) before being implanted within intramuscular pockets in a SCID mouse model of hindlimb ischemia. By 14 days post-surgery, animals treated with D3 PC microbeads showed increased macroscopic reperfusion of ischemic foot pads and improved limb salvage compared to the cellular controls. Delivery of HUVEC and MSC via microbeads led to the formation of extensive microvascular networks throughout the implants. Engineered vessels of human origins showed evidence of inosculation with host vasculature, as indicated by erythrocytes present in hCD31+ vessels. Over time, the total number of human-derived vessels within the implant region decreased as networks remodeled and an increase in mature, pericyte-supported vascular structures was observed. Our findings highlight the potential therapeutic benefit of developing modular, prevascularized microbeads as a minimally invasive therapeutic for treating ischemic tissues.


Assuntos
Fibrina , Neovascularização Fisiológica , Animais , Camundongos , Humanos , Células Cultivadas , Fibrina/farmacologia , Fibrina/química , Microesferas , Camundongos SCID , Células Endoteliais da Veia Umbilical Humana , Engenharia Tecidual , Neovascularização Patológica , Isquemia/terapia
8.
Biomaterials ; 295: 122050, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36812843

RESUMO

The formation of functional capillary blood vessels that can sustain the metabolic demands of transplanted parenchymal cells remains one of the biggest challenges to the clinical realization of engineered tissues for regenerative medicine. As such, there remains a need to better understand the fundamental influences of the microenvironment on vascularization. Poly(ethylene glycol) (PEG) hydrogels have been widely adopted to interrogate the influence of matrix physicochemical properties on cellular phenotypes and morphogenetic programs, including the formation of microvascular networks, in part due to the ease with which their properties can be controlled. In this study, we co-encapsulated endothelial cells and fibroblasts in PEG-norbornene (PEGNB) hydrogels in which stiffness and degradability were tuned to assess their independent and synergistic effects on vessel network formation and cell-mediated matrix remodeling longitudinally. Specifically, we achieved a range of stiffnesses and differing rates of degradation by varying the crosslinking ratio of norbornenes to thiols and incorporating either one (sVPMS) or two (dVPMS) cleavage sites within the matrix metalloproteinase- (MMP-) sensitive crosslinker, respectively. In less degradable sVPMS gels, decreasing the crosslinking ratio (thereby decreasing the initial stiffness) supported enhanced vascularization. When degradability was increased in dVPMS gels, all crosslinking ratios supported robust vascularization regardless of initial mechanical properties. The vascularization in both conditions was coincident with the deposition of extracellular matrix proteins and cell-mediated stiffening, which was greater in dVPMS conditions after a week of culture. Collectively, these results indicate that enhanced cell-mediated remodeling of a PEG hydrogel, achieved either by reduced crosslinking or increased degradability, leads to more rapid vessel formation and higher degrees of cell-mediated stiffening.


Assuntos
Células Endoteliais , Proteínas da Matriz Extracelular , Materiais Biocompatíveis , Microvasos , Hidrogéis/química , Polietilenoglicóis/química
9.
Trends Biotechnol ; 41(11): 1400-1416, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169690

RESUMO

In human vascular anatomy, blood flows from the heart to organs and tissues through a hierarchical vascular tree, comprising large arteries that branch into arterioles and further into capillaries, where gas and nutrient exchange occur. Engineering a complete, integrated vascular hierarchy with vessels large enough to suture, strong enough to withstand hemodynamic forces, and a branching structure to permit immediate perfusion of a fluidic circuit across scales would be transformative for regenerative medicine (RM), enabling the translation of engineered tissues of clinically relevant size, and perhaps whole organs. How close are we to solving this biological plumbing problem? In this review, we highlight advances in engineered vasculature at individual scales and focus on recent strategies to integrate across scales.


Assuntos
Capilares , Engenharia Tecidual , Humanos , Capilares/anatomia & histologia , Capilares/fisiologia , Medicina Regenerativa , Coração
10.
Biomaterials ; 302: 122282, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37672999

RESUMO

Viscoelastic properties of hydrogels are important for their application in science and industry. However, rheological assessment of soft hydrogel biomaterials is challenging due to their complex, rapid, and often time-dependent behaviors. Resonant acoustic rheometry (RAR) is a newly developed technique capable of inducing and measuring resonant surface waves in samples in a non-contact fashion. By applying RAR at high temporal resolution during thrombin-induced fibrin gelation and ultraviolet-initiated polyethylene glycol (PEG) polymerization, we observed distinct changes in both frequency and amplitude of the resonant surface waves as the materials changed over time. RAR detected a series of capillary-elastic, capillary-viscous, and visco-elastic transitions that are uniquely manifested as crossover of different types of surface waves in the temporally evolving materials. These results reveal the dynamic interplay of surface tension, viscosity, and elasticity that is controlled by the kinetics of polymerization and crosslinking during hydrogel formation. RAR overcomes many limitations of conventional rheological approaches by offering a new way to comprehensively and longitudinally characterize soft materials during dynamic processes.


Assuntos
Acústica , Materiais Biocompatíveis , Viscosidade , Elasticidade , Hidrogéis
11.
Acta Biomater ; 164: 195-208, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121372

RESUMO

Microporosity in hydrogels is critical for directing tissue formation and function. We have developed a fibrin-based smart hydrogel, termed an acoustically responsive scaffold (ARS), which responds to focused ultrasound in a spatiotemporally controlled, user-defined manner. ARSs are highly flexible platforms due to the inclusion of phase-shift droplets and their tunable response to ultrasound through a mechanism termed acoustic droplet vaporization (ADV). Here, we demonstrated that ADV enabled consistent generation of micropores in ARSs, throughout the entire thickness (∼5.5 mm), utilizing perfluorooctane phase-shift droplets. Size characteristics of the generated micropores were quantified in response to critical parameters including acoustic properties, droplet size, and shear elastic modulus of fibrin using confocal microscopy. The findings showed that the length of the generated micropores correlated directly with excitation frequency, peak rarefactional pressure, pulse duration, droplet size, and indirectly with the shear elastic modulus of the fibrin matrix. The ADV-generated micropores in ARSs were further compared with cavitation-mediated micropores in fibrin gels without droplets. Additionally, the Keller-Miksis equation was used to predict an upper bound for micropore formation in ARSs at varying driving frequencies and droplet sizes. Finally, our in vivo studies showed that host cell migration following ADV-induced micropore formation was frequency-dependent, with up to 2.6 times higher cell migration at lower frequencies. Overall, these findings demonstrate a new potential application of ADV in hydrogels. STATEMENT OF SIGNIFICANCE: Interconnected micropores within a hydrogel can facilitate many cell-mediated processes. Most techniques for generating micropores are typically not biocompatible or do not enable controlled, in situ micropore formation. We used an ultrasound-based technique, termed acoustic droplet vaporization, to generate microporosity in smart hydrogels termed acoustically responsive scaffolds (ARSs). ARSs contain a fibrin matrix doped with a phase-shift droplet. We demonstrate that unique acoustic properties of phase-shift droplets can be tailored to yield spatiotemporally controlled, on-demand micropore formation. Additionally, the size characteristics of the ultrasound-generated micropores can be modulated by tuning ultrasound parameters, droplet properties, and bulk elastic properties of fibrin. Finally, we demonstrate significant, frequency-dependent host cell migration in subcutaneously implanted ARSs in mice following ultrasound-induced micropore formation in situ.


Assuntos
Acústica , Hidrogéis , Animais , Camundongos , Volatilização , Alicerces Teciduais , Fibrina
12.
Adipocyte ; 12(1): 2268261, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37815174

RESUMO

Alterations of the extracellular matrix contribute to adipose tissue dysfunction in metabolic disease. We studied the role of matrix density in regulating human adipocyte phenotype in a tunable hydrogel culture system. Lipid accumulation was maximal in intermediate hydrogel density of 5 weight %, relative to 3% and 10%. Adipogenesis and lipid and oxidative metabolic gene pathways were enriched in adipocytes in 5% relative to 3% hydrogels, while fibrotic gene pathways were enriched in 3% hydrogels. These data demonstrate that the intermediate density matrix promotes a more adipogenic, less fibrotic adipocyte phenotype geared towards increased lipid and aerobic metabolism. These observations contribute to a growing literature describing the role of matrix density in regulating adipose tissue function.


Assuntos
Adipócitos , Tecido Adiposo , Humanos , Adipócitos/metabolismo , Adipogenia/genética , Hidrogéis/metabolismo , Fenótipo , Lipídeos
13.
J Cell Physiol ; 227(11): 3546-55, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22262018

RESUMO

Bone marrow-derived stromal/stem cells (BMSCs) have recently been characterized as mediators of tissue regeneration after injury. In addition to preventing fibrosis at the wound site, BMSCs elicit an angiogenic response within the fibrin matrix. The mechanistic interactions between BMSCs and invading endothelial cells (ECs) during this process are not fully understood. Using a three-dimensional, fibrin-based angiogenesis model, we sought to investigate the proteolytic mechanisms by which BMSCs promote vessel morphogenesis. We find that BMSC-mediated vessel formation depends on the proteolytic ability of membrane type 1-matrix metalloproteinase (MT1-MMP). Knockdown of the protease results in a small network of vessels with enlarged lumens. Contrastingly, vessel morphogenesis is unaffected by the knockdown of MMP-2 and MMP-9. Furthermore, we find that BMSC-mediated vessel morphogenesis in vivo follows mechanisms similar to what we observe in vitro. Subcutaneous, cellular fibrin implants in C.B-17/SCID mice form aberrant vasculature when MMPs are inhibited with a broad-spectrum chemical inhibitor, and a very minimal amount of vessels when MT1-MMP proteolytic activity is interrupted in ECs. Other studies have debated the necessity of MT1-MMP in the context of vessel invasion in fibrin, but this study clearly demonstrates its requirement in BMSC-mediated angiogenesis.


Assuntos
Metaloproteinase 14 da Matriz/metabolismo , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Comunicação Celular , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Inibidores Enzimáticos/farmacologia , Fibrina , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos SCID , Neovascularização Fisiológica/efeitos dos fármacos
14.
Angiogenesis ; 15(2): 253-64, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22382584

RESUMO

Co-cultures of endothelial cells (EC) and mesenchymal stem cells (MSC) in three-dimensional (3D) protein hydrogels can be used to recapitulate aspects of vasculogenesis in vitro. MSC provide paracrine signals that stimulate EC to form vessel-like structures, which mature as the MSC transition to the role of mural cells. In this study, vessel-like network formation was studied using 3D collagen/fibrin (COL/FIB) matrices seeded with embedded EC and MSC and cultured for 7 days. The EC:MSC ratio was varied from 5:1, 3:2, 1:1, 2:3 and 1:5. The matrix composition was varied at COL/FIB compositions of 100/0 (pure COL), 60/40, 50/50, 40/60 and 0/100 (pure FIB). Vasculogenesis was markedly decreased in the highest EC:MSC ratio, relative to the other cell ratios. Network formation increased with increasing fibrin content in composite materials, although the 40/60 COL/FIB and pure fibrin materials exhibited the same degree of vasculogenesis. EC and MSC were co-localized in vessel-like structures after 7 days and total cell number increased by approximately 70%. Mechanical property measurements showed an inverse correlation between matrix stiffness and network formation. The effect of matrix stiffness was further investigated using gels made with varying total protein content and by crosslinking the matrix using the dialdehyde glyoxal. This systematic series of studies demonstrates that matrix composition regulates vasculogenesis in 3D protein hydrogels, and further suggests that this effect may be caused by matrix mechanical properties. These findings have relevance to the study of neovessel formation and the development of strategies to promote vascularization in transplanted tissues.


Assuntos
Colágeno/química , Células Endoteliais/citologia , Matriz Extracelular/química , Fibrina/química , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Fatores de Tempo
15.
Acta Biomater ; 138: 133-143, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34808418

RESUMO

Hydrogels are often used to study the impact of biomechanical and topographical cues on cell behavior. Conventional hydrogels are designed a priori, with characteristics that cannot be dynamically changed in an externally controlled, user-defined manner. We developed a composite hydrogel, termed an acoustically-responsive scaffold (ARS), that enables non-invasive, spatiotemporally controlled modulation of mechanical and morphological properties using focused ultrasound. An ARS consists of a phase-shift emulsion distributed in a fibrin matrix. Ultrasound non-thermally vaporizes the emulsion into bubbles, which induces localized, radial compaction and stiffening of the fibrin matrix. In this in vitro study, we investigate how this mechanism can control the differentiation of fibroblasts into myofibroblasts, a transition correlated with substrate stiffness on 2D substrates. Matrix compaction and stiffening was shown to be highly localized using confocal and atomic force microscopies, respectively. Myofibroblast phenotype, evaluated by α-smooth muscle actin (α-SMA) immunocytochemistry, significantly increased in matrix regions proximal to bubbles compared to distal regions, irrespective of the addition of exogenous transforming growth factor-ß1 (TGF-ß1). Introduction of the TGF-ß1 receptor inhibitor SB431542 abrogated the proximal enhancement. This approach providing spatiotemporal control over biophysical signals and resulting cell behavior could aid in better understanding fibrotic disease progression and the development of therapeutic interventions for chronic wounds. STATEMENT OF SIGNIFICANCE: Hydrogels are used in cell culture to recapitulate both biochemical and biophysical aspects of the native extracellular matrix. Biophysical cues like stiffness can impact cell behavior. However, with conventional hydrogels, there is a limited ability to actively modulate stiffness after polymerization. We have developed an ultrasound-based method of spatiotemporally-controlling mechanical and morphological properties within a composite hydrogel, termed an acoustically-responsive scaffold (ARS). Upon exposure to ultrasound, bubbles are non-thermally generated within the fibrin matrix of an ARS, thereby locally compacting and stiffening the matrix. We demonstrate how ARSs control the differentiation of fibroblasts into myofibroblasts in 2D. This approach could assist with the study of fibrosis and the development of therapies for chronic wounds.


Assuntos
Fibrina , Miofibroblastos , Diferenciação Celular , Matriz Extracelular , Fibroblastos , Hidrogéis/farmacologia , Fator de Crescimento Transformador beta1
16.
Bioprinting ; 252022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35087958

RESUMO

Acoustically-responsive scaffolds (ARSs) are composite hydrogels that respond to ultrasound in an on-demand, spatiotemporally-controlled manner due to the presence of a phase-shift emulsion. When exposed to ultrasound, a gas bubble is formed within each emulsion droplet via a mechanism termed acoustic droplet vaporization (ADV). In previous in vitro and in vivo studies, we demonstrated that ADV can control regenerative processes by releasing growth factors and/or modulating micromechanics in ARSs. Precise, spatial patterning of emulsion within an ARS could be beneficial for ADV-induced modulation of biochemical and biophysical cues. However, precise patterning is limited using conventional bulk polymerization techniques. Here, we developed an extrusion-based method for bioprinting ARSs with micropatterned structures. Emulsions were loaded within bioink formulations containing fibrin, hyaluronic acid and/or alginate. Experimental as well as theoretical studies elucidated the interrelations between printing parameters, needle geometry, rheological properties of the bioink, and the process-induced mechanical stresses during bioprinting. The shear thinning properties of the bioinks enabled use of lower extrusion pressures resulting in decreased shear stresses and shorter residence times, thereby facilitating high viability for cell-loaded bioinks. Bioprinting yielded greater alignment of fibrin fibers in ARSs compared to conventionally polymerized ARSs. Bioprinted ARSs also enabled generation of ADV at high spatial resolutions, which were otherwise not achievable in conventional ARSs, and acoustically-driven collapse of ADV-induced bubbles. Overall, bioprinting could aid in optimizing ARSs for therapeutic applications.

17.
Angiogenesis ; 14(1): 47-59, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21104120

RESUMO

Using a fibrin-based angiogenesis model, we have established that there is no canonical mechanism used by endothelial cells (ECs) to degrade the surrounding extracellular matrix (ECM), but rather the set of proteases used is dependent on the mural cells providing the angiogenic cues. Mesenchymal stem cells (MSCs) originating from different tissues, which are thought to be phenotypically similar, promote angiogenesis through distinct mechanisms. Specifically, adipose-derived stem cells (ASCs) promote utilization of the plasminogen activator-plasmin axis by ECs as the primary means of vessel invasion and elongation in fibrin. Matrix metalloproteinases (MMPs) serve a purpose in regulating capillary diameter and possibly in stabilizing the nascent vessels. These proteolytic mechanisms are more akin to those involved in fibroblast-mediated angiogenesis than to those in bone marrow-derived stem cell (BMSC)-mediated angiogenesis. In addition, expression patterns of angiogenic factors such as urokinase plasminogen activator (uPA), hepatocyte growth factor (HGF), and tumor necrosis factor alpha (TNFα) were similar for ASC and fibroblast-mediated angiogenesis, and in direct contrast to BMSC-mediated angiogenesis. The present study illustrates that the nature of the heterotypic interactions between mural cells and endothelial cells depend on the identity of the mural cell used. Even MSCs which are shown to behave phenotypically similar do not stimulate angiogenesis via the same mechanisms.


Assuntos
Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Citocinas/metabolismo , Metaloproteinases da Matriz/metabolismo , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/crescimento & desenvolvimento , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Citocinas/genética , Dipeptídeos/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibrinolisina/antagonistas & inibidores , Fibrinolisina/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores de Metaloproteinases de Matriz , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Neovascularização Fisiológica/efeitos dos fármacos , Fenótipo
18.
Exp Cell Res ; 316(5): 813-25, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20067788

RESUMO

During angiogenesis, endothelial cells (ECs) degrade their surrounding extracellular matrix (ECM) to facilitate invasion. How interactions between ECs and other cells within their microenvironment facilitate this process is only partially understood. We have utilized a tractable 3D co-culture model to investigate the proteolytic mechanisms by which pre-committed or more highly committed mesenchymal cells stimulate capillary formation. On their own, ECs invade their surrounding matrix, but do not form capillaries. However, in the presence of either mesenchymal stem cells (MSCs) or fibroblasts, ECs form polarized, tubular structures that are intimately associated with mesenchymal cells. Further, ECs up-regulate gene expression of several extracellular proteases upon co-culture with either mesenchymal cell type. The administration of both broad spectrum and specific protease inhibitors demonstrated that MSC-stimulated capillary formation relied solely on membrane-type matrix metalloproteinases (MT-MMPs) while fibroblast-mediated sprouting proceeded independent of MMP inhibition unless the plasminogen activator/plasmin axis was inhibited in concert. While other studies have established a role for the ECM itself in dictating proteolysis and matrix degradation during capillary morphogenesis, the present study illustrates that heterotypic cellular interactions within the microenvironment can direct the proteolytic mechanisms required for capillary formation.


Assuntos
Capilares/crescimento & desenvolvimento , Mesoderma/citologia , Morfogênese/fisiologia , Neovascularização Fisiológica/fisiologia , Capilares/anatomia & histologia , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Hidrólise , Inibidores de Proteases/metabolismo , RNA/genética , RNA/metabolismo
19.
Biomaterials ; 269: 120676, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33485213

RESUMO

Resonant Acoustic Rheometry (RAR) is a new, non-contact technique to characterize the mechanical properties of soft and viscoelastic biomaterials, such as hydrogels, that are used to mimic the extracellular matrix in tissue engineering. RAR uses a focused ultrasound pulse to generate a microscale perturbation at the sample surface and tracks the ensuing surface wave using pulse-echo ultrasound. The frequency spectrum of the resonant surface waves is analyzed to extract viscoelastic material properties. In this study, RAR was used to characterize fibrin, gelatin, and agarose hydrogels. Single time point measurements of gelled samples with static mechanical properties showed that RAR provided consistent quantitative data and measured intrinsic material characteristics independent of ultrasound parameters. RAR was also used to longitudinally track dynamic changes in viscoelastic properties over the course of fibrin gelation, revealing distinct phase and material property transitions. Application of RAR was verified using finite element modeling and the results were validated against rotational shear rheometry. Importantly, RAR circumvents some limitations of conventional rheology methods and can be performed in a high-throughput manner using conventional labware. Overall, these studies demonstrate that RAR can be a valuable tool to noninvasively quantify the viscoelastic mechanical properties of soft hydrogel biomaterials.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Acústica , Reologia , Sefarose , Viscosidade
20.
Lab Chip ; 21(6): 1150-1163, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33538719

RESUMO

Supportive stromal cells of mesenchymal origins regulate vascular morphogenesis in developmental, pathological, and regenerative contexts, contributing to vessel formation, maturation, and long-term stability, in part via the secretion of bioactive molecules. In this work, we adapted a microfluidic lab-on-a-chip system that enables the formation and perfusion of microvascular capillary beds with connections to arteriole-scale endothelialized channels to explore how stromal cell (SC) identity influences endothelial cell (EC) morphogenesis. We compared and contrasted lung fibroblasts (LFs), dermal fibroblasts (DFs), and bone marrow-derived mesenchymal stem cells (MSCs) for their abilities to support endothelial morphogenesis and subsequent perfusion of microvascular networks formed in fibrin hydrogels within the microfluidic device. We demonstrated that while all 3 SC types supported EC morphogenesis, LFs in particular resulted in microvascular morphologies with the highest total network length, vessel diameter, and vessel interconnectivity across a range of SC-EC ratio and density conditions. Not only did LFs support robust vascular morphology, but also, they were the only SC type to support functional perfusion of the resultant capillary beds. Lastly, we identified heightened traction stress produced by LFs as a possible mechanism by which LFs enhance endothelial morphogenesis in 3D compared to other SC types examined. This study provides a unique comparison of three different SC types and their role in supporting the formation of microvasculature that could provide insights for the choice of cells for vascular cell-based therapies and the regulation of tissue-specific vasculature.


Assuntos
Dispositivos Lab-On-A-Chip , Microvasos , Diferenciação Celular , Morfogênese , Neovascularização Fisiológica , Células Estromais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA