Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Liver Int ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888238

RESUMO

Heme is a primordial macrocycle upon which most aerobic life on Earth depends. It is essential to the survival and health of nearly all cells, functioning as a prosthetic group for oxygen-carrying proteins and enzymes involved in oxidation/reduction and electron transport reactions. Heme is essential for the function of numerous hemoproteins and has numerous other roles in the biochemistry of life. In mammals, heme is synthesised from glycine, succinyl-CoA, and ferrous iron in a series of eight steps. The first and normally rate-controlling step is catalysed by 5-aminolevulinate synthase (ALAS), which has two forms: ALAS1 is the housekeeping form with highly variable expression, depending upon the supply of the end-product heme, which acts to repress its activity; ALAS2 is the erythroid form, which is regulated chiefly by the adequacy of iron for erythroid haemoglobin synthesis. Abnormalities in the several enzymes of the heme synthetic pathway, most of which are inherited partial enzyme deficiencies, give rise to rare diseases called porphyrias. The existence and role of heme importers and exporters in mammals have been debated. Recent evidence established the presence of heme transporters. Such transporters are important for the transfer of heme from mitochondria, where the penultimate and ultimate steps of heme synthesis occur, and for the transfer of heme from cytoplasm to other cellular organelles. Several chaperones of heme and iron are known and important for cell health. Heme and iron, although promoters of oxidative stress and potentially toxic, are essential cofactors for cellular energy production and oxygenation.

2.
Clin Chem ; 69(10): 1186-1196, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37608428

RESUMO

BACKGROUND: The quantification of delta-aminolevulinic acid (ALA) and porphobilinogen (PBG) in urine are the first-line tests for diagnosis and monitoring of acute hepatic porphyrias (AHP). Ion-exchange chromatography (IEC), which is time- and staff-consuming and limited to urine, is still the preferred method in many specialized laboratories, despite the development of mass spectrometry-based methods. METHODS: We describe a new LC-MS method that allows for rapid and simple quantification of ALA and PBG in urine and plasma with an affordable instrument that was used to analyze 2260 urine samples and 309 blood samples collected in 2 years of routine activity. The results were compared to those obtained with IEC, and urine reference ranges and concentrations in asymptomatic carriers were determined. Plasma concentrations were measured in healthy subjects and subgroups of symptomatic and asymptomatic AHP carriers. RESULTS: In urine, the clinical decision limits were not impacted by the change of method despite discrepancies in low absolute concentrations, leading to lower normal values. Two-thirds of asymptomatic AHP carriers (with the exception of coproporphyria carriers) showed an increased urine PBG concentration. Urine and plasma levels showed a good correlation except in patients with kidney disease in whom the urine/plasma ratio was relatively low. CONCLUSION: We described an LC-MS based method for the routine diagnosis and monitoring of AHP that allows for the detection of more asymptomatic carriers than the historical method. Blood analysis appears to be particularly relevant for patients with kidney disease, where urine measurement underestimates the increase in ALA and PBG levels.


Assuntos
Porfirias Hepáticas , Porfirias , Porfirinas , Insuficiência Renal , Humanos , Cromatografia Líquida/métodos , Ácido Aminolevulínico/urina , Espectrometria de Massas em Tandem/métodos , Porfobilinogênio/urina , Porfirias/diagnóstico
3.
J Biol Chem ; 297(2): 100972, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34280433

RESUMO

Heme plays a critical role in catalyzing life-essential redox reactions in all cells, and its synthesis must be tightly balanced with cellular requirements. Heme synthesis in eukaryotes is tightly regulated by the mitochondrial AAA+ unfoldase CLPX (caseinolytic mitochondrial matrix peptidase chaperone subunit X), which promotes heme synthesis by activation of δ-aminolevulinate synthase (ALAS/Hem1) in yeast and regulates turnover of ALAS1 in human cells. However, the specific mechanisms by which CLPX regulates heme synthesis are unclear. In this study, we interrogated the mechanisms by which CLPX regulates heme synthesis in erythroid cells. Quantitation of enzyme activity and protein degradation showed that ALAS2 stability and activity were both increased in the absence of CLPX, suggesting that CLPX primarily regulates ALAS2 by control of its turnover, rather than its activation. However, we also showed that CLPX is required for PPOX (protoporphyrinogen IX oxidase) activity and maintenance of FECH (ferrochelatase) levels, which are the terminal enzymes in heme synthesis, likely accounting for the heme deficiency and porphyrin accumulation observed in Clpx-/- cells. Lastly, CLPX is required for iron utilization for hemoglobin synthesis during erythroid differentiation. Collectively, our data show that the role of CLPX in yeast ALAS/Hem1 activation is not conserved in vertebrates as vertebrates rely on CLPX to regulate ALAS turnover as well as PPOX and FECH activity. Our studies reveal that CLPX mutations may cause anemia and porphyria via dysregulation of ALAS, FECH, and PPOX activities, as well as of iron metabolism.


Assuntos
5-Aminolevulinato Sintetase/metabolismo , Endopeptidase Clp/metabolismo , Ferroquelatase/metabolismo , Heme/biossíntese , Ferro/metabolismo , Leucemia Eritroblástica Aguda/patologia , Mitocôndrias/metabolismo , Animais , Linhagem Celular Tumoral , Endopeptidase Clp/genética , Ativação Enzimática , Técnicas de Inativação de Genes/métodos , Leucemia Eritroblástica Aguda/enzimologia , Leucemia Eritroblástica Aguda/genética , Camundongos , Modelos Animais , Proteólise , Peixe-Zebra
4.
Am J Hum Genet ; 104(2): 341-347, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30712775

RESUMO

Erythropoietic protoporphyria (EPP) is a hereditary disease characterized by a deficiency in ferrochelatase (FECH) activity. FECH activity is responsible for the accumulation of protoporphyrin IX (PPIX). Without etiopathogenic treatment, EPP manifests as severe photosensitivity. 95% of affected individuals present a hypomorphic FECH allele trans to a loss-of-function (LOF) FECH mutation, resulting in a reduction in FECH activity in erythroblasts below a critical threshold. The hypomorphic allele promotes the use of a cryptic acceptor splice site, generating an aberrant FECH mRNA, which is responsible for the reduced level of wild-type FECH mRNA and, ultimately, FECH activity. We have previously identified an antisense oligonucleotide (AON), AON-V1 (V1), that redirects splicing to the physiological acceptor site and reduces the accumulation of PPIX. Here, we developed a specific strategy that uses transferrin receptor 1 (TRF1) as a Trojan horse to deliver V1 to erythroid progenitors. We designed a bifunctional peptide (P1-9R) including a TFR1-targeting peptide coupled to a nine-arginine cell-penetrating peptide (CPP) that facilitates the release of the AON from TFR1 in endosomal vesicles. We demonstrated that the P1-9R/V1 nanocomplex promotes the efficient and prolonged redirection of splicing towards the physiological splice site and subsequent normalization of WT FECH mRNA and protein levels. Finally, the P1-9R/V1 nanocomplex increases WT FECH mRNA production and significantly decreases PPIX accumulation in primary cultures of differentiating erythroid progenitors from an overt EPP-affected individual. P1-9R is a method designed to target erythroid progenitors and represents a potentially powerful tool for the in vivo delivery of therapeutic DNA in many erythroid disorders.


Assuntos
Antígenos CD/metabolismo , Peptídeos Penetradores de Células/metabolismo , Células Precursoras Eritroides/metabolismo , Terapia Genética/métodos , Protoporfiria Eritropoética/genética , Protoporfiria Eritropoética/terapia , Receptores da Transferrina/metabolismo , Antígenos CD/administração & dosagem , Antígenos CD34/metabolismo , Linhagem Celular , Peptídeos Penetradores de Células/administração & dosagem , Eritroblastos/citologia , Eritroblastos/metabolismo , Ferroquelatase/genética , Ferroquelatase/metabolismo , Humanos , Ligantes , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Protoporfirinas/metabolismo , RNA Mensageiro , Receptores da Transferrina/administração & dosagem
5.
J Intern Med ; 292(4): 542-556, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35466452

RESUMO

Iron deficiency is frequent in patients with chronic inflammatory conditions (e.g., chronic heart failure, chronic kidney disease, cancers, and bowel inflammatory diseases). Indeed, high concentrations of inflammatory cytokines increase hepcidin concentrations that lead to the sequestration of iron in cells of the reticuloendothelial system (functional iron deficiency). Iron parameters are often assessed only in the context of anemia, but iron deficiency, even without anemia, is present in about half of patients with inflammatory conditions. Iron deficiency worsens underlying chronic diseases and is an independent factor of morbidity and mortality. In daily practice, the most effective biomarkers of iron status are serum ferritin, which reflects iron storage, and transferrin saturation, which reflects the transport of iron. Serum ferritin is increased in an inflammatory context, and there is still no consensus on the threshold to be used in chronic inflammatory conditions. Nevertheless, recent recommendations of international guidelines agreed to define iron deficiency by serum ferritin <100 µg/L and/or transferrin saturation <20%. Iron parameters remain, however, insufficiently assessed in patients with chronic inflammatory conditions. Indeed, clinical symptoms of iron deficiency, such as fatigue, are not specific and often confused with those of the primary disease. Iron repletion, preferably by the intravenous route to bypass tissue sequestration, improves clinical signs and quality of life. Because of the negative impact of iron deficiency on chronic inflammatory diseases and the efficacy of intravenous iron repletion, screening of iron parameters should be part of the routine examination of all patients with chronic inflammatory diseases.


Assuntos
Anemia Ferropriva , Anemia , Deficiências de Ferro , Anemia Ferropriva/diagnóstico , Anemia Ferropriva/etiologia , Biomarcadores , Doença Crônica , Citocinas , Ferritinas , Hepcidinas/uso terapêutico , Humanos , Ferro/uso terapêutico , Qualidade de Vida , Transferrinas/uso terapêutico
6.
Mol Genet Metab ; 135(3): 206-214, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35058124

RESUMO

BACKGROUND: In patients with acute intermittent porphyria (AIP), induction of delta aminolevulinic acid synthase 1 (ALAS1) leads to haem precursor accumulation that may cause recurring acute attacks. In a recent phase III trial, givosiran significantly reduced the attack rate in severe AIP patients. Frequent adverse events were injection-site reaction, fatigue, nausea, chronic kidney disease and increased alanine aminotransferase. OBJECTIVES: To describe the efficacy and safety of givosiran based on a personalized medical approach. METHODS: We conducted a retrospective patient file study in 25 severe AIP patients treated with givosiran in France. We collected data on clinical and biochemical efficacy along with reports of adverse events. RESULTS: Givosiran drastically reduced the attack rate in our cohort, as 96% were attack-free at the time of the study. The sustained efficacy of givosiran in most patients allowed us to personalize dosing frequency. In 42%, givosiran was only given when haem precursor levels were increasing. Our data suggest that givosiran is most effective when given early in the disease course. We confirmed a high prevalence of adverse events. One patient discontinued treatment due to acute pancreatitis. All patients had hyperhomocysteinemia, and all patients with initial homocysteine levels available showed an increase under treatment. In this context, one patient was diagnosed with pulmonary embolism. CONCLUSION: The sustained effect of givosiran allowed a decrease in dosing frequency without compromising treatment efficacy. The high prevalence of adverse events emphasizes the importance of restricting the treatment to severe AIP and administering the minimum effective dose for each patient.


Assuntos
Pancreatite , Porfiria Aguda Intermitente , Acetilgalactosamina/análogos & derivados , Doença Aguda , Heme , Humanos , Pancreatite/tratamento farmacológico , Porfiria Aguda Intermitente/tratamento farmacológico , Medicina de Precisão , Pirrolidinas , Estudos Retrospectivos
7.
Blood ; 136(21): 2457-2468, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32678895

RESUMO

Congenital erythropoietic porphyria (CEP) is an inborn error of heme synthesis resulting from uroporphyrinogen III synthase (UROS) deficiency and the accumulation of nonphysiological porphyrin isomer I metabolites. Clinical features are heterogeneous among patients with CEP but usually combine skin photosensitivity and chronic hemolytic anemia, the severity of which is related to porphyrin overload. Therapeutic options include symptomatic strategies only and are unsatisfactory. One promising approach to treating CEP is to reduce the erythroid production of porphyrins through substrate reduction therapy by inhibiting 5-aminolevulinate synthase 2 (ALAS2), the first and rate-limiting enzyme in the heme biosynthetic pathway. We efficiently reduced porphyrin accumulation after RNA interference-mediated downregulation of ALAS2 in human erythroid cellular models of CEP disease. Taking advantage of the physiological iron-dependent posttranscriptional regulation of ALAS2, we evaluated whether iron chelation with deferiprone could decrease ALAS2 expression and subsequent porphyrin production in vitro and in vivo in a CEP murine model. Treatment with deferiprone of UROS-deficient erythroid cell lines and peripheral blood CD34+-derived erythroid cultures from a patient with CEP inhibited iron-dependent protein ALAS2 and iron-responsive element-binding protein 2 expression and reduced porphyrin production. Furthermore, porphyrin accumulation progressively decreased in red blood cells and urine, and skin photosensitivity in CEP mice treated with deferiprone (1 or 3 mg/mL in drinking water) for 26 weeks was reversed. Hemolysis and iron overload improved upon iron chelation with full correction of anemia in CEP mice treated at the highest dose of deferiprone. Our findings highlight, in both mouse and human models, the therapeutic potential of iron restriction to modulate the phenotype in CEP.


Assuntos
Anemia Hemolítica/tratamento farmacológico , Deferiprona/uso terapêutico , Quelantes de Ferro/uso terapêutico , Sobrecarga de Ferro/tratamento farmacológico , Transtornos de Fotossensibilidade/tratamento farmacológico , Porfiria Eritropoética/tratamento farmacológico , 5-Aminolevulinato Sintetase/antagonistas & inibidores , 5-Aminolevulinato Sintetase/biossíntese , 5-Aminolevulinato Sintetase/genética , Adulto , Anemia Hemolítica/etiologia , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Eritroides/efeitos dos fármacos , Células Eritroides/metabolismo , Feminino , Técnicas de Introdução de Genes , Humanos , Ferro/metabolismo , Sobrecarga de Ferro/etiologia , Leucemia Eritroblástica Aguda/patologia , Camundongos , Células-Tronco de Sangue Periférico/efeitos dos fármacos , Células-Tronco de Sangue Periférico/metabolismo , Transtornos de Fotossensibilidade/etiologia , Porfiria Aguda Intermitente/metabolismo , Porfiria Eritropoética/complicações , Porfirinas/biossíntese , Interferência de RNA , RNA Interferente Pequeno/farmacologia
8.
Eur Radiol ; 32(4): 2481-2491, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34694452

RESUMO

OBJECTIVES: To assess the performance of 405 nm-induced autofluorescence for the characterization of primary liver nodules on ex vivo resected specimens. MATERIALS AND METHODS: Forty resected liver specimens bearing 53 primary liver nodules were included in this IRB-approved prospective study. Intratissular spectroscopic measurements were performed using a 25-G fibered-needle on all ex vivo specimens: 5 autofluorescence measurements were performed in both nodules and adjacent parenchyma. The spectra derivatives of the 635 and 670 nm autofluorescence peaks observed in nodules and in adjacent liver parenchyma were compared (Kruskal-Wallis and Mann-Whitney when appropriate). RESULTS: A total of 42 potentially evolutive primary liver nodules-34 hepatocellular carcinomas, 4 intrahepatic cholangiocarcinomas, 4 hepatocellular adenomas-and 11 benign nodules-5 focal nodular hyperplasias, 6 regenerative nodules-were included. Both 635 and 670 nm Δderivatives were significantly higher in benign as compared to potentially evolutive (PEV) nodules (respectively 32.9 ± 4.5 vs 15.3 ± 1.4; p < 0.0001 and 5.7 ± 0.6 vs 2.5 ± 0.1; p < 0.0001) with respective sensitivity and specificity of 78% and 91% for distinguishing PEV from benign nodules. CONCLUSION: 405 nm-induced autofluorescence enables the discrimination of benign from PEV primary liver nodules, suggesting that autofluorescence imaging could be used to optimize US targeted liver biopsies. KEY POINTS: • 405 nm-induced autofluorescence can distinguish liver tumors from the adjacent liver parenchyma. • The analysis of autofluorescence imaging observed within primary liver tumors can discriminate benign tumors from those requiring follow-up or targeted liver biopsy. • In current practice, autofluorescence imaging could be embedded within biopsy needle, to enable, in addition to ultrasound guidance, optimal targeting of liver nodules which could optimize tissue sampling.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Neoplasias Hepáticas , Ductos Biliares Intra-Hepáticos/patologia , Carcinoma Hepatocelular/patologia , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Neoplasias Hepáticas/patologia , Imagem Óptica , Estudos Prospectivos , Sensibilidade e Especificidade
9.
N Engl J Med ; 378(16): 1479-1493, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29669226

RESUMO

BACKGROUND: Donor availability and transplantation-related risks limit the broad use of allogeneic hematopoietic-cell transplantation in patients with transfusion-dependent ß-thalassemia. After previously establishing that lentiviral transfer of a marked ß-globin (ßA-T87Q) gene could substitute for long-term red-cell transfusions in a patient with ß-thalassemia, we wanted to evaluate the safety and efficacy of such gene therapy in patients with transfusion-dependent ß-thalassemia. METHODS: In two phase 1-2 studies, we obtained mobilized autologous CD34+ cells from 22 patients (12 to 35 years of age) with transfusion-dependent ß-thalassemia and transduced the cells ex vivo with LentiGlobin BB305 vector, which encodes adult hemoglobin (HbA) with a T87Q amino acid substitution (HbAT87Q). The cells were then reinfused after the patients had undergone myeloablative busulfan conditioning. We subsequently monitored adverse events, vector integration, and levels of replication-competent lentivirus. Efficacy assessments included levels of total hemoglobin and HbAT87Q, transfusion requirements, and average vector copy number. RESULTS: At a median of 26 months (range, 15 to 42) after infusion of the gene-modified cells, all but 1 of the 13 patients who had a non-ß0/ß0 genotype had stopped receiving red-cell transfusions; the levels of HbAT87Q ranged from 3.4 to 10.0 g per deciliter, and the levels of total hemoglobin ranged from 8.2 to 13.7 g per deciliter. Correction of biologic markers of dyserythropoiesis was achieved in evaluated patients with hemoglobin levels near normal ranges. In 9 patients with a ß0/ß0 genotype or two copies of the IVS1-110 mutation, the median annualized transfusion volume was decreased by 73%, and red-cell transfusions were discontinued in 3 patients. Treatment-related adverse events were typical of those associated with autologous stem-cell transplantation. No clonal dominance related to vector integration was observed. CONCLUSIONS: Gene therapy with autologous CD34+ cells transduced with the BB305 vector reduced or eliminated the need for long-term red-cell transfusions in 22 patients with severe ß-thalassemia without serious adverse events related to the drug product. (Funded by Bluebird Bio and others; HGB-204 and HGB-205 ClinicalTrials.gov numbers, NCT01745120 and NCT02151526 .).


Assuntos
Terapia Genética , Globinas beta/genética , Talassemia beta/terapia , Adolescente , Adulto , Antígenos CD34 , Criança , Transfusão de Eritrócitos/estatística & dados numéricos , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos , Hemoglobinas/análise , Hemoglobinas/genética , Humanos , Lentivirus/genética , Masculino , Mutação , Transplante Autólogo , Adulto Jovem , Talassemia beta/genética
10.
Blood ; 133(12): 1358-1370, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30700418

RESUMO

Diamond-Blackfan anemia (DBA) is a congenital erythroblastopenia that is characterized by a blockade in erythroid differentiation related to impaired ribosome biogenesis. DBA phenotype and genotype are highly heterogeneous. We have previously identified 2 in vitro erythroid cell growth phenotypes for primary CD34+ cells from DBA patients and following short hairpin RNA knockdown of RPS19, RPL5, and RPL11 expression in normal human CD34+ cells. The haploinsufficient RPS19 in vitro phenotype is less severe than that of 2 other ribosomal protein (RP) mutant genes. We further documented that proteasomal degradation of HSP70, the chaperone of GATA1, is a major contributor to the defect in erythroid proliferation, delayed erythroid differentiation, increased apoptosis, and decreased globin expression, which are all features of the RPL5 or RPL11 DBA phenotype. In the present study, we explored the hypothesis that an imbalance between globin and heme synthesis may be involved in pure red cell aplasia of DBA. We identified disequilibrium between the globin chain and the heme synthesis in erythroid cells of DBA patients. This imbalance led to accumulation of excess free heme and increased reactive oxygen species production that was more pronounced in cells of the RPL5 or RPL11 phenotype. Strikingly, rescue experiments with wild-type HSP70 restored GATA1 expression levels, increased globin synthesis thereby reducing free heme excess and resulting in decreased apoptosis of DBA erythroid cells. These results demonstrate the involvement of heme in DBA pathophysiology and a major role of HSP70 in the control of balanced heme/globin synthesis.


Assuntos
Anemia de Diamond-Blackfan/patologia , Diferenciação Celular , Células Eritroides/patologia , Fator de Transcrição GATA1/metabolismo , Globinas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Heme/metabolismo , Anemia de Diamond-Blackfan/metabolismo , Proliferação de Células , Células Cultivadas , Células Eritroides/metabolismo , Feminino , Seguimentos , Haploinsuficiência , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Fenótipo , Prognóstico , RNA Interferente Pequeno , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
11.
Biol Cell ; 112(4): 113-126, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31989647

RESUMO

BACKGROUND: 5-Aminolevulinic acid (ALA) is the first precursor of heme biosynthesis pathway. The exogenous addition of ALA to cells leads to protoporphyrin IX (PPIX) accumulation that has been exploited in photodynamic diagnostic and photodynamic therapy. Several types of ALA transporters have been described depending on the cell type, but there was no clear entry pathway for erythroid cells. The 18 kDa translocator protein (TSPO) has been proposed to be involved in the transport of porphyrins and heme analogs. RESULTS: ALA-induced PPIX accumulation in erythroleukemia cells (UT-7 and K562) was impaired by PK 11195, a competitive inhibitor of both transmembrane proteins TSPO (1 and 2). PK 11195 did not modify the activity of the enzymes of heme biosynthesis, suggesting that ALA entry at the plasma membrane was the limiting factor. In contrast, porphobilinogen (PBG)-induced PPIX accumulation was not affected by PK 11195, suggesting that plasma membrane TSPO2 is a selective transporter of ALA. Overexpression of TSPO2 at the plasma membrane of erythroleukemia cells increased ALA-induced PPIX accumulation, confirming the role of TSPO2 in the import of ALA into the cells. CONCLUSIONS: ALA-induced PPIX accumulation in erythroid cells involves TSPO2 as a selective translocator through the plasma membrane. SIGNIFICANCE: This is the first characterisation of molecular mechanisms involving a new actor in ALA transport in ALA-induced PPIX accumulation in erythroleukemia cells, which could be inhibited by specific drug ligands.


Assuntos
Membrana Celular/metabolismo , Leucemia Eritroblástica Aguda/metabolismo , Ácidos Levulínicos/farmacocinética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transporte Biológico , Proteínas de Fluorescência Verde/genética , Humanos , Isoquinolinas/farmacologia , Células K562 , Leucemia Eritroblástica Aguda/patologia , Protoporfirinas/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/genética , Transfecção , Ácido Aminolevulínico
12.
Hum Mol Genet ; 27(7): 1164-1173, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29360981

RESUMO

Acute intermittent porphyria (AIP) is a disease affecting the heme biosynthesis pathway caused by mutations of the hydroxymethylbilane synthase (HMBS) gene. AIP is thought to display autosomal dominant inheritance with incomplete penetrance. We evaluated the prevalence, penetrance and heritability of AIP, in families with the disease from the French reference center for porphyria (CFP) (602 overt patients; 1968 relatives) and the general population, using Exome Variant Server (EVS; 12 990 alleles) data. The pathogenicity of the 42 missense variants identified was assessed in silico, and in vitro, by measuring residual HMBS activity of the recombinant protein. The minimal estimated prevalence of AIP in the general population was 1/1299. Thus, 50 000 subjects would be expected to carry the AIP genetic trait in France. Penetrance was estimated at 22.9% in families with AIP, but at only 0.5-1% in the general population. Intrafamily correlation studies showed correlations to be strong overall and modulated by kinship and the area in which the person was living, demonstrating strong influences of genetic and environmental modifiers on inheritance. Null alleles were associated with a more severe phenotype and a higher penetrance than for other mutant alleles. In conclusion, the striking difference in the penetrance of HMBS mutations between the general population and the French AIP families suggests that AIP inheritance does not follow the classical autosomal dominant model, instead of being modulated by strong environmental and genetic factors independent from HMBS. An oligogenic inheritance model with environmental modifiers might better explain AIP penetrance and heritability.


Assuntos
Bases de Dados de Ácidos Nucleicos , Interação Gene-Ambiente , Hidroximetilbilano Sintase/genética , Mutação de Sentido Incorreto , Penetrância , Porfiria Aguda Intermitente/genética , Feminino , França/epidemiologia , Humanos , Masculino , Porfiria Aguda Intermitente/enzimologia , Porfiria Aguda Intermitente/epidemiologia , Prevalência
13.
N Engl J Med ; 376(9): 848-855, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28249145

RESUMO

Sickle cell disease results from a homozygous missense mutation in the ß-globin gene that causes polymerization of hemoglobin S. Gene therapy for patients with this disorder is complicated by the complex cellular abnormalities and challenges in achieving effective, persistent inhibition of polymerization of hemoglobin S. We describe our first patient treated with lentiviral vector-mediated addition of an antisickling ß-globin gene into autologous hematopoietic stem cells. Adverse events were consistent with busulfan conditioning. Fifteen months after treatment, the level of therapeutic antisickling ß-globin remained high (approximately 50% of ß-like-globin chains) without recurrence of sickle crises and with correction of the biologic hallmarks of the disease. (Funded by Bluebird Bio and others; HGB-205 ClinicalTrials.gov number, NCT02151526 .).


Assuntos
Anemia Falciforme/terapia , Terapia Genética , Globinas beta/genética , Adolescente , Anemia Falciforme/sangue , Ensaios Clínicos como Assunto , Expressão Gênica , Terapia Genética/efeitos adversos , Vetores Genéticos , Hemoglobina A/metabolismo , Humanos , Lentivirus , Masculino
14.
Mol Genet Metab ; 131(1-2): 259-266, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32893121

RESUMO

BACKGROUND: Acute Intermittent Porphyria (AIP) is a rare inherited autosomal dominant disorder of heme biosynthesis. Porphyria-associated kidney disease occurs in more than 50% of the patients with AIP, and end stage renal disease (ESRD) can be a devastating complication for AIP patients. The outcomes of AIP patients after kidney transplantation are poorly known. METHODS: We examined the outcomes of 11 individuals with AIP, identified as kidney transplant recipients in the French Porphyria Center Registry. RESULTS: AIP had been diagnosed on average 19 years before the diagnosis of ESRD except for one patient in whom the diagnosis of AIP had been made 5 years after the initiation of dialysis. Median follow-up after transplantation was 9 years. A patient died 2 months after transplantation from a cardiac arrest and a patient who received a donation after cardiac death experienced a primary non-function. No rejection episode and no noticeable adverse event occurred after transplantation. Serum creatinine was on average 117 µmol/l, and proteinuria <0.5 g/l in all patients at last follow up. All usually prescribed drugs after transplantation are authorized except for trimethoprim/sulfamethoxazole. Critically, acute porphyria attacks almost disappeared after kidney transplantation, and skin lesions resolved in all patients. CONCLUSION: Kidney transplantation is the treatment of choice for AIP patients with ESRD and dramatically reduces the disease activity.


Assuntos
Falência Renal Crônica/terapia , Transplante de Rim , Rim/patologia , Porfiria Aguda Intermitente/terapia , Adulto , Feminino , Heme/biossíntese , Heme/genética , Humanos , Falência Renal Crônica/complicações , Falência Renal Crônica/genética , Falência Renal Crônica/patologia , Masculino , Pessoa de Meia-Idade , Porfiria Aguda Intermitente/complicações , Porfiria Aguda Intermitente/genética , Porfiria Aguda Intermitente/patologia , Resultado do Tratamento , Adulto Jovem
15.
Proc Natl Acad Sci U S A ; 114(38): E8045-E8052, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874591

RESUMO

Loss-of-function mutations in genes for heme biosynthetic enzymes can give rise to congenital porphyrias, eight forms of which have been described. The genetic penetrance of the porphyrias is clinically variable, underscoring the role of additional causative, contributing, and modifier genes. We previously discovered that the mitochondrial AAA+ unfoldase ClpX promotes heme biosynthesis by activation of δ-aminolevulinate synthase (ALAS), which catalyzes the first step of heme synthesis. CLPX has also been reported to mediate heme-induced turnover of ALAS. Here we report a dominant mutation in the ATPase active site of human CLPX, p.Gly298Asp, that results in pathological accumulation of the heme biosynthesis intermediate protoporphyrin IX (PPIX). Amassing of PPIX in erythroid cells promotes erythropoietic protoporphyria (EPP) in the affected family. The mutation in CLPX inactivates its ATPase activity, resulting in coassembly of mutant and WT protomers to form an enzyme with reduced activity. The presence of low-activity CLPX increases the posttranslational stability of ALAS, causing increased ALAS protein and ALA levels, leading to abnormal accumulation of PPIX. Our results thus identify an additional molecular mechanism underlying the development of EPP and further our understanding of the multiple mechanisms by which CLPX controls heme metabolism.


Assuntos
5-Aminolevulinato Sintetase/metabolismo , Endopeptidase Clp , Mutação de Sentido Incorreto , Porfiria Eritropoética , Protoporfirinas/biossíntese , 5-Aminolevulinato Sintetase/genética , Adolescente , Substituição de Aminoácidos , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Estabilidade Enzimática/genética , Feminino , Humanos , Masculino , Porfiria Eritropoética/genética , Porfiria Eritropoética/metabolismo , Porfiria Eritropoética/patologia , Protoporfirinas/genética
16.
Int J Mol Sci ; 21(14)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664576

RESUMO

Ferroptosis is an iron-dependent form of cell death characterized by intracellular lipid peroxide accumulation and redox imbalance. Ferroptosis shows specific biological and morphological features when compared to the other cell death patterns. The loss of lipid peroxide repair activity by glutathione peroxidase 4 (GPX4), the presence of redox-active iron and the oxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids are considered as distinct fingerprints of ferroptosis. Several pathways, including amino acid and iron metabolism, ferritinophagy, cell adhesion, p53, Keap1/Nrf2 and phospholipid biosynthesis, can modify susceptibility to ferroptosis. Through the decades, various diseases, including acute kidney injury; cancer; ischemia-reperfusion injury; and cardiovascular, neurodegenerative and hepatic disorders, have been associated with ferroptosis. In this review, we provide a comprehensive analysis of the main biological and biochemical mechanisms of ferroptosis and an overview of chemicals used as inducers and inhibitors. Then, we report the contribution of ferroptosis to the spectrum of liver diseases, acute or chronic. Finally, we discuss the use of ferroptosis as a therapeutic approach against hepatocellular carcinoma, the most common form of primary liver cancer.


Assuntos
Ferroptose , Hepatopatias/patologia , Animais , Autofagia/fisiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cicloexilaminas/farmacologia , Cisteína/metabolismo , Ferroptose/efeitos dos fármacos , Glutationa/biossíntese , Heme/metabolismo , Humanos , Ferro/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lipoxigenase/fisiologia , Neoplasias Hepáticas/patologia , Estresse Oxidativo , Fenilenodiaminas/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/fisiologia , Piperazinas/farmacologia , Quinoxalinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Sorafenibe/farmacologia , Compostos de Espiro/farmacologia , Sulfassalazina/farmacologia , Proteína Supressora de Tumor p53/metabolismo , alfa-Tocoferol/farmacologia
17.
Biochem Biophys Res Commun ; 520(2): 297-303, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31601421

RESUMO

Clinical severity is heterogeneous among patients suffering from congenital erythropoietic porphyria (CEP) suggesting a modulation of the disease (UROS deficiency) by environmental factors and modifier genes. A KI model of CEP due to a missense mutation of UROS gene present in human has been developed on 3 congenic mouse strains (BALB/c, C57BL/6, and 129/Sv) in order to study the impact of genetic background on disease severity. To detect putative modifiers of disease expression in congenic mice, hematologic data, iron parameters, porphyrin content and tissue samples were collected. Regenerative hemolytic anemia, a consequence of porphyrin excess in RBCs, had various expressions: 129/Sv mice were more hemolytic, BALB/c had more regenerative response to anemia, C57BL/6 were less affected. Iron status and hemolysis level were directly related: C57BL/6 and BALB/c had moderate hemolysis and active erythropoiesis able to reduce iron overload in the liver, while, 129/Sv showed an imbalance between iron release due to hemolysis and erythroid use. The negative control of hepcidin on the ferroportin iron exporter appeared strain specific in the CEP mice models tested. Full repression of hepcidin was observed in BALB/c and 129/Sv mice, favoring parenchymal iron overload in the liver. Unchanged hepcidin levels in C57BL/6 resulted in retention of iron predominantly in reticuloendothelial tissues. These findings open the field for potential therapeutic applications in the human disease, of hepcidin agonists and iron depletion in chronic hemolytic anemia.


Assuntos
Hepcidinas/metabolismo , Ferro/metabolismo , Porfiria Eritropoética/genética , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Modelos Animais de Doenças , Feminino , Hemólise , Hepcidinas/genética , Sobrecarga de Ferro/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Porfiria Eritropoética/etiologia , Porfiria Eritropoética/metabolismo , Porfirinas/metabolismo , Uroporfirinogênio III Sintetase/genética
18.
Genet Med ; 21(11): 2605-2613, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31073229

RESUMO

With the advent of precision and genomic medicine, a critical issue is whether a disease gene variant is pathogenic or benign. Such is the case for the three autosomal dominant acute hepatic porphyrias (AHPs), including acute intermittent porphyria, hereditary coproporphyria, and variegate porphyria, each resulting from the half-normal enzymatic activities of hydroxymethylbilane synthase, coproporphyrinogen oxidase, and protoporphyrinogen oxidase, respectively. To date, there is no public database that documents the likely pathogenicity of variants causing the porphyrias, and more specifically, the AHPs with biochemically and clinically verified information. Therefore, an international collaborative with the European Porphyria Network and the National Institutes of Health/National Center for Advancing Translational Sciences/National Institute of Diabetes and Digestive and Kidney Diseases (NIH/NCATS/NIDDK)-sponsored Porphyrias Consortium of porphyria diagnostic experts is establishing an online database that will collate biochemical and clinical evidence verifying the pathogenicity of the published and newly identified variants in the AHP-causing genes. The overall goal of the International Porphyria Molecular Diagnostic Collaborative is to determine the pathogenic and benign variants for all eight porphyrias. Here we describe the overall objectives and the initial efforts to validate pathogenic and benign variants in the respective heme biosynthetic genes causing the AHPs.


Assuntos
Porfirias/genética , Porfirias/fisiopatologia , Virulência/genética , Curadoria de Dados/métodos , Bases de Dados Factuais , Feminino , Humanos , Masculino , Patologia Molecular , Sintase do Porfobilinogênio/deficiência , Sintase do Porfobilinogênio/genética , Porfiria Aguda Intermitente/genética , Porfiria Aguda Intermitente/fisiopatologia , Porfirias Hepáticas/genética , Porfirias Hepáticas/fisiopatologia , Estados Unidos
19.
Mol Genet Metab ; 128(3): 236-241, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30413387

RESUMO

Porphyrias are inherited diseases with low penetrance affecting the heme biosynthesis pathway. Acute intermittent porphyria (AIP), variegate porphyria (VP) and hereditary coproporphyria (HCP) together constitute the acute hepatic porphyrias (AHP). These diseases have been identified as risk factors for primary liver cancers (PLC), mainly hepatocellular carcinoma (HCC: range 87-100%) but also cholangiocarcinoma, alone or combination with HCC. In AHP, HCC annual incidence rates range from 0.16 to 0.35% according to the populations studied. Annual incidence rates are higher in Swedish and Norwegian patients, due to a founder effect. It increases above age 50. The pathophysiology could include both direct toxic effects of heme precursors, particularly δ-aminolevulinic acid (ALA), compound heterozygosity for genes implied in heme biosynthesis pathway or the loss of oxidative stress homeostasis due to a relative lack of heme. The high HCC incidence justifies radiological surveillance in AHP patients above age 50. Efforts are made to find new biological non-invasive markers. In this respect, we describe here the first report of PIVKA-II clinical utility in the follow-up of an AIP patient that develop an HCC. In this manuscript we reviewed the epidemiology, the physiopathology, and the screening strategy of HCC in AHP.


Assuntos
Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/fisiopatologia , Neoplasias Hepáticas/etiologia , Sintase do Porfobilinogênio/deficiência , Porfirias Hepáticas/complicações , Biomarcadores , Feminino , Heme/biossíntese , Humanos , Incidência , Neoplasias Hepáticas/fisiopatologia , Masculino , Pessoa de Meia-Idade , Noruega/epidemiologia , Porfiria Aguda Intermitente/complicações , Porfirias Hepáticas/diagnóstico , Porfirias Hepáticas/epidemiologia , Fatores de Risco , Suécia/epidemiologia
20.
Mol Genet Metab ; 128(3): 190-197, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30737140

RESUMO

Recently, new genes and molecular mechanisms have been identified in patients with porphyrias and sideroblastic anemias (SA). They all modulate either directly or indirectly the δ-aminolevulinic acid synthase (ALAS) activity. ALAS, is encoded by two genes: the erythroid-specific (ALAS2), and the ubiquitously expressed (ALAS1). In the liver, ALAS1 controls the rate-limiting step in the production of heme and hemoproteins that are rapidly turned over in response to metabolic needs. Several heme regulatory targets have been identified as regulators of ALAS1 activity: 1) transcriptional repression via a heme-responsive element, 2) post-transcriptional destabilization of ALAS1 mRNA, 3) post-translational inhibition via a heme regulatory motif, 4) direct inhibition of the activity of the enzyme and 5) breakdown of ALAS1 protein via heme-mediated induction of the protease Lon peptidase 1. In erythroid cells, ALAS2 is a gatekeeper of production of very large amounts of heme necessary for hemoglobin synthesis. The rate of ALAS2 synthesis is transiently increased during the period of active heme synthesis. Its gene expression is determined by trans-activation of nuclear factor GATA1, CACC box and NF-E2-binding sites in the promoter areas. ALAS2 mRNA translation is also regulated by the iron-responsive element (IRE)/iron regulatory proteins (IRP) binding system. In patients, ALAS enzyme activity is affected in most of the mutations causing non-syndromic SA and in several porphyrias. Decreased ALAS2 activity results either directly from loss-of-function ALAS2 mutations as seen in X-linked sideroblastic anemia (XLSA) or from defect in the availability of one of its two mitochondrial substrates: glycine in SLC25A38 mutations and succinyl CoA in GLRX5 mutations. Moreover, ALAS2 gain of function mutations is responsible for X-linked protoporphyria and increased ALAS1 activity lead to acute attacks of hepatic porphyrias. A missense dominant mutation in the Walker A motif of the ATPase binding site in the gene coding for the mitochondrial protein unfoldase CLPX also contributes to increasing ALAS and subsequently protoporphyrinemia. Altogether, these recent data on human ALAS have informed our understanding of porphyrias and sideroblastic anemias pathogeneses and may contribute to new therapeutic strategies.


Assuntos
5-Aminolevulinato Sintetase/genética , Ácido Aminolevulínico/metabolismo , Anemia Sideroblástica/genética , Regulação da Expressão Gênica , Porfirias/genética , 5-Aminolevulinato Sintetase/metabolismo , Anemia Sideroblástica/enzimologia , Animais , Sítios de Ligação , Fator de Transcrição GATA1/genética , Heme/biossíntese , Humanos , Fígado/metabolismo , Camundongos , Mutação de Sentido Incorreto , Porfirias/enzimologia , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA