Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144527

RESUMO

Globally, cancer is the second leading cause of mortality and morbidity. The growth and development of cancer are extremely complex. It is caused by a variety of pathways and involves various types of enzymes. Pyruvate kinase M2 (PKM2) is an isoform of pyruvate kinase, that catalyses the last steps of glycolysis to produce energy. PKM2 is relatively more expressed in tumour cells where it tends to exist in a dimer form. Various medicinal plants are available that contain a variety of micronutrients to combat against different cancers. The phytocompounds of the olive tree (Olea europaea) leaves play an important role in inhibiting the proliferation of several cancers. In this study, the phytocompounds of olive leaf extract (OLE) were studied using various in silico tools, such as pkCSM software to predict ADMET properties and PASS Online software to predict anticancer activity. However, the molecular docking study provided the binding energies and inhibition constant and confirmed the interaction between PKM2 and the ligands. The dynamic behaviour, conformational changes, and stability between PKM2 and the top three hit compounds (Verbascoside (Ver), Rutin (Rut), and Luteolin_7_O_glucoside (Lut)) are studied by MD simulations.


Assuntos
Antineoplásicos , Neoplasias , Olea , Antineoplásicos/farmacologia , Glucosídeos/farmacologia , Humanos , Luteolina , Micronutrientes , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Olea/química , Extratos Vegetais , Piruvato Quinase/metabolismo , Ácido Pirúvico , Rutina
2.
Molecules ; 27(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35807227

RESUMO

Both members of the aldo-keto reductases (AKRs) family, AKR1B1 and AKR1B10, are over-expressed in various type of cancer, making them potential targets for inflammation-mediated cancers such as colon, lung, breast, and prostate cancers. This is the first comprehensive study which focused on the identification of phenylcarbamoylazinane-1, 2,4-triazole amides (7a−o) as the inhibitors of aldo-keto reductases (AKR1B1, AKR1B10) via detailed computational analysis. Firstly, the stability and reactivity of compounds were determined by using the Guassian09 programme in which the density functional theory (DFT) calculations were performed by using the B3LYP/SVP level. Among all the derivatives, the 7d, 7e, 7f, 7h, 7j, 7k, and 7m were found chemically reactive. Then the binding interactions of the optimized compounds within the active pocket of the selected targets were carried out by using molecular docking software: AutoDock tools and Molecular operation environment (MOE) software, and during analysis, the Autodock (academic software) results were found to be reproducible, suggesting this software is best over the MOE (commercial software). The results were found in correlation with the DFT results, suggesting 7d as the best inhibitor of AKR1B1 with the energy value of −49.40 kJ/mol and 7f as the best inhibitor of AKR1B10 with the energy value of −52.84 kJ/mol. The other potent compounds also showed comparable binding energies. The best inhibitors of both targets were validated by the molecular dynamics simulation studies where the root mean square value of <2 along with the other physicochemical properties, hydrogen bond interactions, and binding energies were observed. Furthermore, the anticancer potential of the potent compounds was confirmed by cell viability (MTT) assay. The studied compounds fall into the category of drug-like properties and also supported by physicochemical and pharmacological ADMET properties. It can be suggested that the further synthesis of derivatives of 7d and 7f may lead to the potential drug-like molecules for the treatment of colon cancer associated with the aberrant expression of either AKR1B1 or AKR1B10 and other associated malignancies.


Assuntos
Aldo-Ceto Redutases , Amidas , Neoplasias do Colo , Triazóis , Aldo-Ceto Redutases/antagonistas & inibidores , Aldo-Ceto Redutases/metabolismo , Amidas/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/enzimologia , Humanos , Simulação de Acoplamento Molecular , Triazóis/farmacologia
3.
Biofouling ; 37(7): 724-739, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34396840

RESUMO

The global rise in antimicrobial resistance and lack of discovery of new antimicrobials have created serious concerns. Targeting quorum sensing (QS) and biofilms of pathogenic bacteria is considered a promising approach in antimicrobial drug discovery. This study explored the inhibitory effect of plumbagin against biofilms and QS of Chromobacterium violaceum, Serratia marcescens and Pseudomonas aeruginosa. Violacein production in C. violaceum 12472 was reduced by >80%. The virulent traits of P. aeruginosa PAO1 such as pyocyanin, rhamnolipid and proteases were also inhibited at sub-minimum inhibitory concentrations. Moreover, the biofilms of the test bacteria were reduced by 56-70%. Plumbagin reduced the bacterial adherence and colonization on solid surface. Computational studies gave closer insights regarding the possible modes of action. Molecular dynamics simulations revealed that the protein complexes were quite stable under physiological conditions. This study provides both experimental and computational evidence regarding the efficacy of plumbagin against biofilms and the QS-controlled virulence factors of Gram-negative bacteria.


Assuntos
Chromobacterium , Percepção de Quorum , Antibacterianos/farmacologia , Biofilmes , Simulação por Computador , Bactérias Gram-Negativas , Naftoquinonas , Pseudomonas aeruginosa , Virulência , Fatores de Virulência
4.
Microb Pathog ; 144: 104172, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32224208

RESUMO

Antimicrobial resistance among pathogenic bacteria has become a global threat to human health. Due to poor progress in development of new antimicrobial drugs, there is a need for the development of novel alternative strategies to combat the problem of multidrug resistance. Moreover, there is focus on ecofriendly approach for the synthesis nanoparticles having efficient medicinal properties including antivirulence properties to tackle the emergence of multi-drug resistance. Targeting quorum sensing controlled virulence factors and biofilms has come out to be a novel anti-infective drug target. The silver nanoparticles (Ag@CC-NPs) were synthesized from aqueous extract of Carum copticum and characterized using UV-vis absorption spectroscopy, fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Ag@CC-NPs were checked for its ability to inhibit quorum sensing-mediated virulence factors and biofilms against three test pathogens at sub-MIC values. There was ~75% inhibition of violacein production by Ag@CC-NPs against C. violaceum. The P. aeruginosa virulence factors such as pyocyanin production, pyoverdin production, exoprotease activity, elastase activity, swimming motility and rhamnolipid production were inhibited by 76.9, 49.0, 71.1, 53.3, 89.5, and 60.0% at sub-MIC. Moreover, virulence factors of S. marcescens viz. prodigiosin production, exoprotease activity, and swarming motility was reduced by 78.4, 67.8, and 90.7%. Ag@CC-NPs also exhibited broad-spectrum antibiofilm activity with 77.6, 86.3, and 75.1% inhibition of biofilms of P. aeruginosa, S. marcescens, and C. violaceum respectively. The biofilm formation on glass coverslip was reduced remarkably as evident from SEM and CLSM analysis. The findings revealed the in vitro efficacy of Ag@CC-NPs against bacterial pathogens and can be exploited in the development of alternative therapeutic agent in management of bacterial infections for topical application, mainly wound infection, or coating of surfaces to prevent bacterial adherence on medical devices.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Nanopartículas Metálicas/química , Percepção de Quorum/efeitos dos fármacos , Prata/farmacologia , Fatores de Virulência/antagonistas & inibidores , Carum/metabolismo , Chromobacterium/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/fisiologia , Indóis/metabolismo , Locomoção/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prodigiosina/biossíntese , Pseudomonas aeruginosa/efeitos dos fármacos , Piocianina/biossíntese , Serratia marcescens/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
5.
Microb Pathog ; 126: 379-392, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30476580

RESUMO

The emerging prevalence of multidrug-resistance in Gram-negative pathogens, due to conventional antimicrobial therapeutics, has led the researchers to emphasize on development of alternative novel strategies to suppress the bacterial virulence and pathogenicity through inhibition of quorum sensing (QS) and biofilms. QS is a bacterial communication system to produce density-dependent response via chemical signalling that controls pathogenesis and biofilms formation. Leaves of green tea are used worldwide as beverage which is also known for its broad-spectrum therapeutic efficacy. In this work, we have identified and characterized the most bioactive faction of green tea extract and evaluated the anti-QS and antibiofilm activity of green tea ethyl acetate fraction (GTEF) i.e. most active fraction, on three different Gram-negative bacterial pathogens. GTEF inhibited the violacein production by >75% in C. violaceum 12472. Many virulence factors of P. aeruginosa PAO1 viz. pyocyanin, pyoverdin, exoprotease, elastase, rhamnolipid production, and swimming motility were remarkably reduced in presence of sub-MICs of GTEF. Moreover, prodigiosin, protease activity, cell surface hydrophobicity, and swimming of S. marcescens MTCC 97 were also decreased significantly by the supplementation of GTEF in culture media. GTEF exhibited broad-spectrum antibiofilm action with >80% reduction in biofilm formation of test pathogens. In silico studies gave a mechanistic insight of action of GTEF. Molecular modelling revealed that phytoconstituents detected by GC/MS exhibited affinity (in order of 104 M-1) towards AHL synthases (LasI and EsaI). The molecular binding between phytocompounds and receptor proteins (LasR, RhlR, and PqsR) of QS circuit was also energetically favourable (ΔG°≥ 5.0 kcal mol-1) and supported by hydrogen bonds and hydrophobic interactions. These compounds were found to be docked in ligand binding domain of CviR and occupied same cavity as that of its antagonist. Squalene and thunbergol interacted with LasA at tartaric acid binding pocket and the complex was strengthened with binding energy -5.9 kcal mol-1. Moreover, interaction of thunbergol with biofilm-associated proteins viz. PilT and PilY1, might be disabling the pilus assembly and consequently inhibiting biofilm formation. In vivo validation of results suggested the protective role GTEF against QS-mediated pathogenicity and it might become a novel non-antibiotic QS inhibitor to control bacterial infection.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Modelos Moleculares , Extratos Vegetais/farmacologia , Percepção de Quorum/efeitos dos fármacos , Chá/química , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Relação Dose-Resposta a Droga , Exopeptidases/metabolismo , Glicolipídeos/metabolismo , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Indóis/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Oligopeptídeos/metabolismo , Peptídeo Hidrolases/efeitos dos fármacos , Extratos Vegetais/química , Folhas de Planta/química , Prodigiosina/metabolismo , Piocianina/metabolismo , Fatores de Virulência/metabolismo
6.
J Biol Inorg Chem ; 23(3): 447-458, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29619544

RESUMO

Zinc deficiency is common in diabetes. However, the cause of this phenomenon is largely unknown. 80% of the absorbed zinc is transported through the blood in association with human serum albumin (HSA). Under persistent hyperglycemia, HSA frequently undergoes non-enzymatic glycation which can affect its structure and metal-binding function. Hence, in this study, we have examined the interaction of zinc with native and glycated HSA. The protein samples were incubated either in the presence or in the absence of physiologically elevated glucose concentration for 21 days. The samples were then analyzed for structural changes and zinc-binding ability using various spectrometric and calorimetric approaches. The study reveals changes in the three-dimensional structure of the protein upon glycation that cause local unfolding of the molecule. Most such regions are localized in subdomain IIA of HSA which plays a key role in zinc binding. This affects zinc interaction with HSA and could in part explain the perturbed zinc distribution in patients with hyperglycemia. The varying degree of HSA glycation in blood could explain the observed heterogeneity pertaining to zinc deficiency among people suffering from diabetes.


Assuntos
Fenômenos Biofísicos , Glucose/química , Albumina Sérica Humana/química , Calorimetria , Glicosilação , Humanos , Espectrometria de Fluorescência
7.
Foodborne Pathog Dis ; 15(4): 218-225, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29377719

RESUMO

Campylobacteriosis is the common gastrointestinal disease worldwide. However, in many parts of the world, including India, the impact of campylobacteriosis is less commonly investigated. This study aimed to determine the prevalence and antibiotic susceptibility profiles of Campylobacter jejuni in raw poultry meat and poultry-related samples at retail shops in a region of Northern India. A total of 400 samples of chicken meat (150), chicken intestine (150), feathers (50), and chopping boards and knives (50) samples were screened for the presence of C. jejuni by selective enrichment culture followed by selective plating on mCCDA and also by polymerase chain reaction (PCR) after selective enrichment. The highest prevalence of Campylobacter contamination (38.6%) was observed in chicken meat followed by chicken intestine (24.0%). C. jejuni was detected in 14.0% of chopping boards, knives, and feather samples by culturing method. The hipO gene based PCR detection yielded 36.0% C. jejuni from chicken meat samples; in other samples, however, the prevalence of C. jejuni was observed similar to that of cultural method. The antibiotic susceptibility profiles confirmed drug resistance among 97% of C. jejuni isolates, with 84.1% of C. jejuni isolates resistant to co-trimoxazole followed by cephalothin (81.1%) and tetracycline (59.4%). Low incidence of resistance (6.9-8.9%) was observed against nalidixic acid, ciprofloxacin, erythromycin, gentamicin, and azithromycin. Resistance to multiple drugs (≥4) was recorded in 31.6% of the strains. The findings of this study demonstrated high prevalence of drug-resistant C. jejuni in raw chicken meat and intestinal isolates. The high occurrence of C. jejuni in chicken meat might be due to cross contamination as a result of slaughtering and poor hygienic conditions. Implementation of monitoring/surveillance programs to monitor the prevalence of multidrug-resistant Campylobacter spp. in food production animals, particularly, poultry in semiurban regions, as well as main cities in India, is highly required for better public health protection.


Assuntos
Campylobacter jejuni/isolamento & purificação , Farmacorresistência Bacteriana Múltipla , Carne/microbiologia , Aves Domésticas/microbiologia , Animais , Antibacterianos/farmacologia , Azitromicina/farmacologia , Cefalotina/farmacologia , Ciprofloxacina/farmacologia , DNA Bacteriano/isolamento & purificação , Eritromicina/farmacologia , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Índia , Testes de Sensibilidade Microbiana , Ácido Nalidíxico/farmacologia , Saúde Pública , Tetraciclina/farmacologia
8.
Arch Biochem Biophys ; 627: 21-29, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28624351

RESUMO

Hyperglycaemia is a key factor for the formation of advanced glycated endproducts (AGEs). Inhibition of glycation may play key role in minimizing the diabetes related complications. We have tried to explore the glucose and methyl glyoxal mediated glycation and antiglycation activity of niacin using human serum albumin as model protein. Protein was incubated with glucose for 28 days at physiological temperature to achieve glycation. Antiglycation activity was evaluated by assessing free lysine, carbonyl content, AGE specific fluorescence. Molecular docking and isothermal titration calorimetry was deployed to study the interaction of niacin with HSA and get a detailed insight of binding site and thermodynamics of interaction. Niacin reduced the glycation significantly which was evident from the estimation of free lysine and carbonyl content. Niacin binds with HSA in a spontaneous manner with the binding constant in the range of 104 M-1. Niacin also prevented the loss in secondary structure induced by glycation. Reactive oxygen species were also effectively quenched by niacin leading to protection from DNA damage. Niacin was found to be located at Sudlow's site I with binding energy of 5.3 kcal/mol. These results clearly highlight the antiglycation activity of niacin and its potential in preventing disease progression in diabetes.


Assuntos
Produtos Finais de Glicação Avançada/antagonistas & inibidores , Niacina/farmacologia , Niacinamida/farmacologia , Aldeído Pirúvico/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Albumina Sérica/metabolismo , Complexo Vitamínico B/farmacologia , Glucose/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação/efeitos dos fármacos , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Simulação de Acoplamento Molecular , Estrutura Secundária de Proteína/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
9.
Int J Biol Macromol ; 258(Pt 2): 128900, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128802

RESUMO

Neurological disorders (NDs) have become a major cause of both cognitive and physical disabilities worldwide. In NDs, misfolded proteins tend to adopt a ß-sheet-rich fibrillar structure called amyloid. Amyloid beta (Aß) plays a crucial role in the nervous system. The misfolding and aggregation of Aß are primary factors in the progression of Alzheimer's disease (AD). Inhibiting the oligomerization and aggregation of Aß is considered as an effective strategy against NDs. While it is known that berberine analogs exhibit anti-Aß aggregation properties, the precise mechanism of action remains unclear. In this study, we have employed computational approaches to unravel the possible mechanism by which berberine combats Aß aggregation. The introduction of berberine was observed to delay the equilibrium of Aß16-21 oligomerization. Initially, within the first 10 ns of simulation, ß-sheets content was 12.89 % and gradually increased to 22.19 % within the first 20 ns. This upward trend continued, reaching 32.80 %. However, berberine substantially reduced the formation of ß-sheets to 1.36 %. These findings decipher the potency of berberine against Aß16-21 oligomerization, a crucial step for ß-sheet formation. Additionally, a remarkable decrease in total number of hydrogen bonds was found in the presence of berberine. Berberine also led to a slight reduction in the flexibility of Aß16-21, which may be due to the formation of a more stable structures. This study offers valuable insights at the mechanistic level, which could prove beneficial in the development of new drugs to combat NDs.


Assuntos
Doença de Alzheimer , Berberina , Humanos , Peptídeos beta-Amiloides/metabolismo , Berberina/farmacologia , Amiloide/química , Simulação por Computador , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química
10.
Int J Biol Macromol ; 267(Pt 1): 131573, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614188

RESUMO

DNA, vital for biological processes, encodes hereditary data for protein synthesis, shaping cell structure and function. Since revealing its structure, DNA has become a target for various therapeutically vital molecules, spanning antidiabetic to anticancer drugs. These agents engage with DNA-associated proteins, DNA-RNA hybrids, or bind directly to the DNA helix, triggering diverse downstream effects. These interactions disrupt vital enzymes and proteins essential for maintaining cell structure and function. Analysing drug-DNA interactions has significantly advanced our understanding of drug mechanisms. Glipizide, an antidiabetic drug, is known to cause DNA damage in adipocytes. However, its extract mechanism of DNA interaction is unknown. This study delves into the interaction between glipizide and DNA utilizing various biophysical tools and computational technique to gain insights into the interaction mechanism. Analysis of UV-visible and fluorescence data reveals the formation of complex between DNA and glipizide. The binding affinity of glipizide to DNA was of moderate strength. Examination of thermodynamic parameters at different temperatures suggests that the binding was entropically spontaneous and energetically favourable. Various experiments such as thermal melting assays, viscosity measurement, and dye displacement assays confirmed the minor grove nature of binding of glipizide with DNA. Molecular dynamics studies confirmed the glipizide forms stable complex with DNA when simulated by mimicking the physiological conditions. The binding was mainly favoured by hydrogen bonds and glipizide slightly reduced nucleotide fluctuations of DNA. The study deciphers the mechanism of interaction of glipizide with DNA at molecular levels.


Assuntos
DNA , Glipizida , Simulação de Dinâmica Molecular , Termodinâmica , Glipizida/química , Glipizida/farmacologia , DNA/química , DNA/metabolismo , Biologia Computacional/métodos , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia
11.
Microsc Res Tech ; 87(1): 42-52, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37660303

RESUMO

The development of antibiotic resistant microbial pathogens has become a global health threat and a major concern in modern medicine. The problem of antimicrobial resistance (AMR) has majorly arisen due to sub-judicious use of antibiotics in health care and livestock industry. A slow progress has been made in last two decades in discovery of new antibiotics. A new strategy in combatting AMR is to modulate or disarm the microbes for their virulence and pathogenicity. Plants are considered as promising source for new drugs against AMR pathogens. In this study, fraction-based screening of the Cinnamomum zeylanicum extract was performed followed by detailed investigation of antiquorum sensing and antibiofilm activities of the most active fraction that is, C. zeylanicum hexane fraction (CZHF). More than 75% reduction in violacein pigment of C. violaceum 12472 was overserved. CZHF successfully modulated the virulence of Pseudomonas aeruginosa PAO1 by 60.46%-78.35%. A similar effect was recorded against Serratia marcescens MTCC 97. A broad-spectrum inhibition of biofilm development was found in presence of sub-MICs of CZHF. The colonization of bacteria onto the glass coverslips was remarkably reduced apart from the reduction in exopolymeric substances. Alkaloids and terpenoids were found in CZHF. GC/MS analysis revealed the presence of cinnamaldehyde dimethyl acetal, 2-propenal, coumarin, and α-copaene as major phytocompounds. This study provides enough evidence to support potency of C. zeylanicum extract in targeting the virulence of Gram -ve pathogenic bacteria. The plant extract or active compounds can be developed as successful drugs after careful in vivo examination to target microbial infections. RESEARCH HIGHLIGHTS: Hexane fraction of Cinnamomum zeylanicum is active against QS and biofilms. The broad-spectrum antibiofilm activity was further confirmed by microscopic analysis. Dimethyl acetal, 2-propenal, coumarin, α-copaene, and so forth are major phytocompounds.


Assuntos
Cinnamomum zeylanicum , Percepção de Quorum , Hexanos/farmacologia , Acroleína/farmacologia , Biofilmes , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Bactérias , Cumarínicos/farmacologia
12.
Heliyon ; 10(5): e27361, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495183

RESUMO

PKM2 (Pyruvate kinase M2) is the isoform of pyruvate kinase which is known to catalyse the last step of glycolysis that is responsible for energy production. This specific isoform is known to be highly expressed in certain cancerous conditions. Considering the role of this protein in various cancer conditions, we used PKM2 as a target protein to identify the potential compounds against this target. In this study, we have examined 96 compounds of Zanthoxylum armatum using an array of computational and in silico tools. The compounds were assessed for toxicity then their anticancer potential was predicted. The virtual screening was done with molecular docking followed by a detailed examination using molecular dynamics simulation. The majority of the compounds showed a higher probability of being antineoplastic. Based on toxicity, predicted anticancer potential, binding affinity, and binding site, three compounds (nevadensin, asarinin, and kaempferol) were selected as hit compounds. The binding energy of these compounds with PKM2 ranged from -7.7 to -8.3 kcal/mol and all hit compounds interact at the active site of the protein. The selected hit compounds formed a stable complex with PKM2 when simulated under physiological conditions. The dynamic analysis showed that these compounds remained attached to the active site till the completion of molecular simulation. MM-PBSA analysis showed that nevadensin exhibited a higher affinity towards PKM2 compared to asarinin and kaempferol. These compounds need to be assessed properties in vivo and in vitro to validate their efficacy.

13.
Int J Biol Macromol ; 266(Pt 1): 130912, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513896

RESUMO

Patients with advanced prostate cancer (PCa) are more likely to develop bone metastases. Tumor cells thrive in the bone microenvironment, interacting with osteoblasts and osteoclasts. Given the PI3K/AKT pathway's metastatic potential and signal integration's ability to modulate cell fates in PCa development, drugs targeting this system have great therapeutic promise. Hydroxychloroquine (HCQ) is an anti-malarial medication commonly used to treat clinical conditions such as rheumatology and infectious disorders. We explored the anti-neoplastic effect of HCQ on PC3 and C4-2B cell lines in the bone microenvironment. Interestingly, HCQ treatment substantially decreases the viability, proliferation, and migration potential of PCa cells in the bone microenvironment. HCQ induces apoptosis and cell cycle arrest, even in the presence of osteoblast-secreted factors. Mechanistically, HCQ inhibited the activity of the PI3K/AKT signaling pathway, which ultimately regulates the proliferation and migration of PCa cells in the bone. The binding energy for docking HCQ with PI3K was -6.7 kcal/mol, and the complex was stabilized by hydrogen bonds, hydrophobic forces, and van der Waals forces. Molecular simulations further validated the structural integrity of the HCQ-PI3K complex without altering PI3K's secondary structure. Our findings underscore the efficacy of HCQ as a potential therapeutic agent in treating PCa.


Assuntos
Proliferação de Células , Hidroxicloroquina , Simulação de Dinâmica Molecular , Fosfatidilinositol 3-Quinases , Neoplasias da Próstata , Microambiente Tumoral , Humanos , Masculino , Hidroxicloroquina/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Movimento Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia
14.
J Biomol Struct Dyn ; 41(6): 2189-2201, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35067192

RESUMO

Multiple drug resistance (MDR) in bacteria has increased globally in recent times. This has reduced the efficacy of antibiotics and increasing the rate of therapeutic failure. Targeting efflux pump by natural and synthetic compounds is one of the strategies to develop an ideal broad-spectrum resistance-modifying agent. Very few inhibitors of AcrB from natural sources have been reported till date. In the current study, 19 phytocompounds were screened for efflux pump inhibitory activity against AcrB protein of E. coli TG1 using molecular docking studies. The molecular dynamics simulation provided stability the protein (AcrB) and its complex with chlorogenic acid under physiological conditions. Moreover, the detailed molecular insights of the binding were also explored. The Lipinski rule of 5 and the drug-likeness prediction was determined using Swiss ADME server, while toxicity prediction was done using admetSAR and PROTOX-II webservers. Chlorogenic acid showed the highest binding affinity (-9.1 kcal mol-1) with AcrB protein among all screened phytocompounds. Consequently, all the phytocompounds that accede to Lipinski's rule, demonstrated a high LD50 value indicating that they are non-toxic except the phytocompound reserpine. Chlorogenic acid and capsaicin are filtered out based on the synergy with tetracycline having FIC index of 0.25 and 0.28. The percentage increase of EtBr fluorescence by chlorogenic acid was 36.6% followed by piperine (24.2%). Chlorogenic acid may be a promising efflux pump inhibitor that might be employed in combination therapy with tetracycline against E. coli, based on the above relationship between in silico screening and in vitro positive efflux inhibitory activity.Communicated by Ramaswamy H. Sarma.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Escherichia coli/química , Ácido Clorogênico/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Antibacterianos/química , Tetraciclinas
15.
RSC Adv ; 13(51): 35841-35852, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38090073

RESUMO

Antimicrobial resistance (AMR), a condition in which the efficacy of antimicrobial drugs in fighting microorganisms is reduced, has become a global challenge. Multidrug resistance (MDR) has been developing in microorganisms, where they can resist multiple medications. In particular, there has been a rise in MDR as well as extensively drug-resistant (XDR) strains of Pseudomonas aeruginosa in some regions, with prevalence rates ranging from 15% to 30%. The application of nanotechnology ranges from diagnostics to drug-delivery systems, revolutionizing healthcare, and improving disease treatment. We aimed to investigate the efficacy of titanium dioxide nanoparticles (TiO2-NPs) against various virulent traits of P. aeruginosa and S. marcescens. More than 50% reduction in the production of virulent pigments of P. aeruginosa was recorded following the treatment of TiO2-NPs. Additionally, elastases and exoproteases were inhibited by 58.21 and 74.36%, respectively. A similar result was observed against the rhamnolipid production and swimming motility of P. aeruginosa. The effect of TiO2-NPs was also validated against another opportunistic pathogen, S. marcescens, where the production of prodigiosin was reduced by 64.78%. Also, a roughly 75% attenuation of proteolytic activity and more than 50% reduction in swarming motility were found. In the control group, the cell surface hydrophobicity was 77.72%, which decreased to 24.67% with the addition of 64 µg ml-1 TiO2-NPs in culture media. The hydrophobicity index of microorganisms is crucial for their initial attachment and the formation of biofilms. In conclusion, TiO2-NPs demonstrated potential in a multi-target approach against P. aeruginosa and S. marcescens, suggesting their advantages in the prevention and treatment of infections. These nanomaterials could have vital importance in the development of novel antibacterial agents to combat drug-resistant bacteria.

16.
J Biomol Struct Dyn ; : 1-14, 2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37394824

RESUMO

In last two decades, the world has seen an exponential increase in the antimicrobial resistance (AMR), making the issue a serious threat to human health. The mortality caused by AMR is one of the leading causes of human death worldwide. Till the end of the twentieth century, a tremendous success in the discovery of new antibiotics was seen, but in last two decades, there is negligible progress in this direction. The increase in AMR combined with slow progress of antibiotic drug discovery has created an urgent demand to search for newer methods of intervention to combat infectious diseases. One of such approach is to look for biofilm and quorum sensing (QS) inhibitors. Plants are excellent source of wide class compounds that can be harnessed to look for the compounds with such properties. This study proves a broad-spectrum biofilm and QS inhibitory potential of umbelliferone. More than 85% reduction in violacein production Chromobacterium violaceum 12472 was found. All tested virulent traits of Pseudomonas aeruginosa PAO1 and Serratia marcescens MTCC 97 were remarkably inhibited that ranged from 56.62% to 86.24%. Umbelliferone also successfully prevented the biofilm of test bacteria at least by 67.68%. Umbelliferone interacted at the active site of many proteins of QS circuit, which led to the mitigation of virulent traits. The stable nature of complexes of umbelliferone with proteins further strengthens in vitro results. After examining the toxicological profile and other drug-like properties, umbelliferone could be potentially developed as new drug to target the infections caused by Gram - ve bacteria.Communicated by Ramaswamy H. Sarma.

17.
J Biomol Struct Dyn ; : 1-19, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904338

RESUMO

Antimicrobial resistance poses a significant challenge to public health, especially in developing countries, due to a substantial rise in bacterial resistance. This situation has become so concerning that we are now at risk of losing the effectiveness of antibiotics altogether. Recent research has firmly established that bacteria engage in a process called quorum sensing (QS). QS regulates various functions, including nutrient scavenging, immune response suppression, increased virulence, biofilm formation and mobility. Pseudomonas aeruginosa, an opportunistic bacterial pathogen, plays a significant role in various medical conditions such as chronic wounds, corneal infections, burn wounds and cystic fibrosis. While antibiotics are effective in killing bacteria, only a few antibiotics, particularly those from the ß-lactam group, have been studied for their impact on the quorum sensing of P. aeruginosa. Given the lack of concentrated efforts in this area, we have investigated the role of ß-lactam antibiotics on various potential targets of P. aeruginosa. Based on their toxicological profiles and the average binding energy obtained through molecular docking, azlocillin and moxalactam have emerged as lead antibiotics. The binding energy for the docking of azlocillin and moxalactam with LasA was determined to be -8.2 and -8.6 kcal/mol, respectively. Molecular simulation analysis has confirmed the stable interaction of both these ligands with all three target proteins (LasI, LasA and PqsR) under physiological conditions. The results of this research underscore the effectiveness of azlocillin and moxalactam. These two antibiotics may be repurposed to target the quorum sensing of P. aeruginosa.Communicated by Ramaswamy H. Sarma.

18.
Sci Rep ; 13(1): 15262, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709787

RESUMO

Sorcin (Sri), a member of penta EF-hand protein family plays a diverse role in maintaining calcium homeostasis, cell cycle and vesicular trafficking. Sri is highly conserved amongst mammals and consists of N-terminal glycine rich domain and C-terminal calcium binding domain that mediates its dimerization and interacts with different compounds. In the present study, with the help of combination of computational and molecular biology techniques, we have identified a novel isoform (Sri-N) in mouse which differs only in the C-terminal domain with that of Sri reported earlier. The novel isoform contains a new last exon that is different from the one present in the reported transcript (Sri). The presence of the novel isoform was further validated in different tissues by RT-PCR and DNA sequencing. The transcript was conceptually translated and subjected to in-silico analysis using different bioinformatics tools. The novel transcript variant encodes for a longer protein isoform without any change in the sub-cellular localization as predicted by PSORT-II online tool. Molecular modelling was performed to compare the structural changes in Sri-N and Sri isoforms. The structural characterization of the novel isoform using MD simulation depicted its overall stability under the physiological conditions. The molecular docking of proteins with various chemotherapeutic drugs revealed that their binding affinity is more for Sri-N as compared to that for the previously reported transcript Sri.


Assuntos
Conservadores da Densidade Óssea , Cálcio , Animais , Camundongos , Dimerização , Simulação de Acoplamento Molecular , Isoformas de Proteínas/genética , Mamíferos
19.
Front Mol Biosci ; 10: 1292509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965379

RESUMO

Infectious diseases remain among the most pressing concerns for human health. This issue has grown even more complex with the emergence of multidrug-resistant (MDR) bacteria. To address bacterial infections, nanoparticles have emerged as a promising avenue, offering the potential to target bacteria at multiple levels and effectively eliminate them. In this study, silver nanoparticles (AA-AgNPs) were synthesized using the leaf extract of a medicinal plant, Abroma augusta. The synthesis method is straightforward, safe, cost-effective, and environment friendly, utilizing the leaf extract of this Ayurvedic herb. The UV-vis absorbance peak at 424 nm indicated the formation of AA-AgNPs, with the involvement of numerous functional groups in the synthesis and stabilization of the particles. AA-AgNPs exhibited robust antibacterial and antibiofilm activities against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). The MIC values of AA-AgNPs ranged from 8 to 32 µg/mL. Electron microscopic examination of the interaction of AA-AgNPs with the test bacterial pathogens showed a deleterious impact on bacterial morphology, resulting from membrane rupture and leakage of intracellular components. AA-AgNPs also demonstrated a dose-dependent effect in curtailing biofilm formation below inhibitory doses. Overall, this study highlights the potential of AA-AgNPs in the successful inhibition of both the growth and biofilms of MRSA and VRE bacteria. Following studies on toxicity and dose optimization, such AgNPs could be developed into effective medical remedies against infections.

20.
Heliyon ; 8(10): e11113, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36311355

RESUMO

Multidrug resistance (MDR) in pathogenic bacteria have become a major clinical issue. Quorum sensing regulated bacterial virulence is a promising key drug target for MDR infections. Therefore, the aim of the present work was to assess the anti-quorum sensing properties of selected medicinal plants against bacterial pathogens as well in silico interaction of selected bioactive phytocompounds with QS and biofilm-associated proteins. Based on the ethnopharmacological usage, 18 plants were selected using methanolic extract against Chromobacterium violaceum 12472. The most active extract (Acacia nilotica) was fractionated in increasing polarity solvents (n-hexane, chloroform and ethyl acetate) and tested for anti-QS activity. The most active fraction i.e. ethyl acetate fraction was evaluated for their activity at sub-MICs against QS-associated virulence factors of Pseudomonas aeruginosa PAO1 and Serretia marcescens MTCC 97. Microtiter plate assay and light microscopy was used to determine inhibition of biofilm. Phytochemicals of the ethyl acetate fraction were analysed by GC/MS and LC/MS. Phytocompounds were docked with QS (LasI, LasR, CviR, and rhlR) and biofilm proteins (PilY1 and PilT) using Auto dock vina. The MIC of ethyl acetate fraction determined was 250, 500, and 1000 µg/ml against C. violaceum 12472, P. aeruginosa PAO1, and S. marcescens MTCC97 respectively. At sub-MICs QS regulated virulence factors production and inhibited biofilms broadly (more than 50 percent). GC/MS detected the major bioactive compound benzoic acid, 3,4,5-trihydroxy-, methyl ester (61.24 %) and LC-MS detected Retronecine for the first time in A. nilotica pods. In silico, dehydroabietic acid occupied the same cavity as its antagonist in the CviR ligand binding domain. Also, betulin and epicatechin gallate interact with biofilm proteins PilY1 and PilT, preventing biofilm formation. The findings suggest that the phytochemicals of A. nilotica pod could be exploited as an anti-QS agent against Gram-negative pathogens. To discover therapeutic efficacy of standardised bioactive extract/phytochemicals must be tested under in vivo condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA