RESUMO
Higher-order sensory thalamic nuclei are densely connected with multiple cortical and subcortical areas, yet the role of these nuclei remains elusive. The posteromedial thalamic nucleus (POm), the higher-order thalamic nucleus in the rodent somatosensory system, is an anatomical hub broadly connected with multiple sensory and motor brain areas yet weakly responds to passive sensory stimulation and whisker movements. To understand the role of POm in sensory perception, we developed a self-initiated, two-alternative forced-choice task in freely moving mice during active sensing. Using optogenetic and chemogenetic manipulation, we show that POm plays a significant role in sensory perception and the projection from the primary somatosensory cortex to POm is critical for the contribution of POm in sensory perception during active sensing.
Assuntos
Núcleos Talâmicos , Animais , CamundongosRESUMO
BACKGROUND & AIMS: Gastric cancer (GC) is a major cancer type characterized by high heterogeneity in both tumor cells and the tumor immune microenvironment (TIME). One intractable GC subtype is gastric signet-ring cell carcinoma (GSRCC), which is associated with poor prognosis. However, it remains unclear what the GSRCC TIME characteristics are and how these characteristics may contribute to clinical outcomes. METHODS: We enrolled 32 patients with advanced GC of diverse subtypes and profiled their TIME using an immune-targeted single-cell profiling strategy, including (1) immune-targeted single-cell RNA sequencing (n = 20 patients) and (2) protein expression profiling by a targeted antibody panel for mass cytometry (n = 12 patients). We also generated matched V(D)J (variable, diversity, and joining gene segments) sequencing of T and B cells along CD45+ immunocytes. RESULTS: We found that compared to non-GSRCC, the GSRCC TIME appears to be quiescent, where both CD4+ and CD8+ T cells are difficult to be mobilized, which further impairs the proper functions of B cells. CXCL13, mainly produced by follicular helper T cells, T helper type 17, and exhausted CD8+ T cells, is a central coordinator of this transformation. We show that CXCL13 expression can predict the response to immune checkpoint blockade in GC patients, which may be related to its effects on tertiary lymphoid structures. CONCLUSIONS: Our study provides a comprehensive molecular portrait of immune cell compositions and cell states in advanced GC patients, highlighting adaptive immune irresponsiveness in GSRCC and a mediator role of CXCL13 in TIME. Our targeted single-cell transcriptomic and proteomic profiling represents a powerful approach for TIME-oriented translational research.
Assuntos
Carcinoma de Células em Anel de Sinete , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Linfócitos T CD8-Positivos , Proteômica , Carcinoma de Células em Anel de Sinete/genética , Microambiente TumoralRESUMO
Lead halide perovskite nanocrystals with excellent photophysical properties are promising electrochemiluminescence (ECL) candidates, but their poor stability greatly restricts ECL applications. Herein, hydrogen-bonded cocrystal-encapsulated CsPbBr3 perovskite nanocrystals (PeNCs@NHS-M) were synthesized by using PeNCs as nuclei for inducing the crystallization of melamine (M) and N-hydroxysuccinimide (NHS). The as-synthesized composite exhibits multiplicative ECL efficiencies (up to 24-fold that of PeNCs) without exogenous coreactants and with excellent stability in the aqueous phase. The enhanced stability can be attributed to the well-designed heterostructure of the PeNCs@NHS-M composite, which benefits from both moiety passivation and protection of the peripheral cocrystal matrix. Moreover, the heterostructure with covalent linkage facilitates charge transfer between PeNCs and NHS-M cocrystals, realizing effective ECL emission. Meanwhile, the NHS and M components act as coreactants for PeNCs, shortening the electron-transport distance and resulting in a significant increase in the ECL signal. Furthermore, by taking advantage of the specific binding effect between NHS-M and uranyl (UO22+), an ECL system with both a low detection limit (1 nM) and high selectivity for monitoring UO22+ in mining wastewater is established. The presence of UO22+ disrupted the charge-transfer effect within PeNCs@NHS-M, weakening the ECL signals. This work provides an efficient design strategy for obtaining stable and efficient ECLs from perovskite nanocrystals, offering a new perspective for the discovery and application of perovskite-based ECL systems.
RESUMO
At present, poor stability and carrier transfer efficiency are the main problems that limit the development of perovskite-based photoelectric technologies. In this work, hydrogen-bonded cocrystal-coated perovskite composite (PeNCs@NHS-M) is easily obtained by inducing rapid crystallization of melamine (M) and N-hydroxysuccinimide (NHS) with PeNCs as the nuclei. The outer NHS-M cocrystal passivates the undercoordinated lead atoms by forming covalent bonds, thereby greatly reducing the trap density while maintaining good structure stability for perovskite nanocrystals. Moreover, benefiting from the interfacial covalent band linkage and long-range ordered structures of cocrystals, the charge transfer efficiency is effectively enhanced and PeNCs@NHS-M displays superior photoelectric performance. Based on the excellent photoelectric performance and abundant active sites of PeNCs@NHS-M, photocatalytic reduction of uranium is realized. PeNCs@NHS-M exhibits U(VI) reduction removal capability of up to 810.1 mg g-1 in the presence of light. The strategy of cocrystals trapping perovskite nanocrystals provides a simple synthesis method for composites and opens up a new idea for simultaneously improving the stability and photovoltaic performance of perovskite.
RESUMO
STUDY QUESTION: Do obstetric and perinatal complications vary according to different blastocyst developmental parameters after frozen-thawed single-blastocyst transfer (SBT) cycles? SUMMARY ANSWER: Pregnancies following the transfer of a blastocyst with a grade C trophectoderm (TE) were associated with an increased risk of placenta previa compared to those with a blastocyst of grade A TE. WHAT IS KNOWN ALREADY: Existing studies investigating the effect of blastocyst morphology grades on birth outcomes have mostly focused on fetal growth and have produced conflicting results, while the risk of obstetric complications has rarely been reported. Additionally, growing evidence has suggested that the appearance of TE cells could serve as the most important parameter for predicting implantation and live birth. Given that the TE ultimately develops into the placenta, it is plausible that this independent predictor may also impact placentation. STUDY DESIGN, SIZE, DURATION: This retrospective cohort study at a tertiary-care academic medical center included 6018 singleton deliveries after frozen-thawed SBT cycles between January 2017 and December 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS: Singleton pregnancies were grouped into two groups according to blastocyst developmental stage (Days 5 and 6), four groups according to embryo expansion (Stages 3, 4, 5, and 6), three groups according to inner cell mass (ICM) quality (A, B, and C), and three groups according to TE quality (A, B, and C). The main outcomes included pregnancy-induced hypertension, preeclampsia, gestational diabetes mellitus, preterm premature rupture of membrane, placenta previa, placental abruption, placenta accreta, postpartum hemorrhage, preterm birth, low birth weight, small for gestational age, and birth defects. Multivariate logistic regressions were performed to evaluate the effect of blastocyst developmental stage, embryo expansion stage, ICM grade, and TE grade on measured outcomes adjusting for potential confounders. MAIN RESULTS AND THE ROLE OF CHANCE: No association was found between blastocyst developmental stage and obstetric or perinatal outcomes both before and after adjusting for potential confounders, and similar results were found with regard to embryo expansion stage and ICM grade. Meanwhile, the incidence of placenta previa derived from a blastocyst with TE of grade C was higher compared with those derived from a blastocyst with TE of grade A (1.7%, 2.4%, and 4.0% for A, B, and C, respectively, P = 0.001 for all comparisons). After adjusting for potential covariates, TE grade C blastocysts had 2.81 times the likelihood of resulting in placenta previa compared to TE grade A blastocysts (adjusted odds ratio 2.81, 95% CI 1.11-7.09). No statistically significant differences were detected between any other measured outcomes and TE grades both before or after adjustment. LIMITATIONS, REASONS FOR CAUTION: The study is limited by its retrospective, single-center design. Additionally, although the sample size was relatively large for the study group, the sample size for certain subgroups was relatively small and lacked adequate power, particularly the ICM grade C group. Therefore, these results should be interpreted with caution. WIDER IMPLICATIONS OF THE FINDINGS: The study extends our knowledge of the potential downstream effect of TE grade on placental abnormalities. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Key Research and Development Program of China (2023YFC2705500, 2023YFC2705501, 2023YFC2705505, 2019YFA0802604); National Natural Science Foundation of China (82130046, 82320108009, 82371660, 32300710); Shanghai leading talent program, Innovative research team of high-level local universities in Shanghai (SHSMU-ZLCX20210201, SHSMU-ZLCX20210200, SHSMU-ZLCX20180401), Shanghai Jiaotong University School of Medicine Affiliated Renji Hospital Clinical Research Innovation Cultivation Fund Program (RJPY-DZX-003), Science and Technology Commission of Shanghai Municipality (23Y11901400), Shanghai's Top Priority Research Center Construction Project (2023ZZ02002), and Three-Year Action Plan for Strengthening the Construction of the Public Health System in Shanghai (GWVI-11.1-36). The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: N/A.
Assuntos
Criopreservação , Placenta Prévia , Humanos , Feminino , Gravidez , Placenta Prévia/epidemiologia , Adulto , Estudos Retrospectivos , Transferência de Embrião Único , Blastocisto , Trofoblastos/patologiaRESUMO
STUDY QUESTION: Does severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during the frozen-thawed embryo transfer (FET) cycle affect embryo implantation and pregnancy rates? SUMMARY ANSWER: There is no evidence that SARS-CoV-2 infection of women during the FET cycle negatively affects embryo implantation and pregnancy rates. WHAT IS KNOWN ALREADY: Coronavirus disease 2019 (COVID-19), as a multi-systemic disease, poses a threat to reproductive health. However, the effects of SARS-CoV-2 infection on embryo implantation and pregnancy following fertility treatments, particularly FET, remain largely unknown. STUDY DESIGN, SIZE, DURATION: This retrospective cohort study, included women who underwent FET cycles between 1 November 2022 and 31 December 2022 at an academic fertility centre. PARTICIPANTS/MATERIALS, SETTING, METHODS: Women who tested positive for SARS-CoV-2 during their FET cycles were included in the COVID-19 group, while those who tested negative during the same study period were included in the non-COVID-19 group. The primary outcome was ongoing pregnancy rate. Secondary outcomes included rates of implantation, biochemical pregnancy, clinical pregnancy, early pregnancy loss, and ongoing pregnancy. Multivariate logistic regression models were applied to adjust for potential confounders including age, body mass index, gravidity, vaccination status, and endometrial preparation regimen. Subgroup analyses were conducted by time of infection with respect to transfer (prior to transfer, 1-7 days after transfer, or 8-14 days after transfer) and by level of fever (no fever, fever <39°C, or fever ≥39°C). MAIN RESULTS AND THE ROLE OF CHANCE: A total of 243 and 305 women were included in the COVID-19 and non-COVID-19 group, respectively. The rates of biochemical pregnancy (58.8% vs 62.0%, P = 0.46), clinical pregnancy (53.1% vs 54.4%, P = 0.76), implantation (46.4% vs 46.2%, P = 0.95), early pregnancy loss (24.5% vs 26.5%, P = 0.68), and ongoing pregnancy (44.4% vs 45.6%, P = 0.79) were all comparable between groups with or without infection. Results of logistic regression models, both before and after adjustment, revealed no associations between SARS-CoV-2 infection and rates of biochemical pregnancy, clinical pregnancy, early pregnancy loss, or ongoing pregnancy. Moreover, neither the time of infection with respect to transfer (prior to transfer, 1-7 days after transfer, or 8-14 days after transfer) nor the level of fever (no fever, fever <39°C, or fever ≥39°C) was found to be related to pregnancy rates. LIMITATIONS, REASONS FOR CAUTION: The retrospective nature of the study is subject to possible selection bias. Additionally, although the sample size was relatively large for the COVID-19 group, the sample sizes for certain subgroups were relatively small and lacked adequate power, so these results should be interpreted with caution. WIDER IMPLICATIONS OF THE FINDINGS: The study findings suggest that SARS-CoV-2 infection during the FET cycle in females does not affect embryo implantation and pregnancy rates including biochemical pregnancy, clinical pregnancy, early pregnancy loss, and ongoing pregnancy, indicating that cycle cancellation due to SARS-CoV-2 infection may not be necessary. Further studies are warranted to verify these findings. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Key Research and Development Program of China (2023YFC2705500, 2019YFA0802604), National Natural Science Foundation of China (82130046, 82101747), Shanghai leading talent program, Innovative research team of high-level local universities in Shanghai (SHSMU-ZLCX20210201, SHSMU-ZLCX20210200, SSMU-ZLCX20180401), Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital Clinical Research Innovation Cultivation Fund Program (RJPY-DZX-003), Science and Technology Commission of Shanghai Municipality (23Y11901400), Shanghai Sailing Program (21YF1425000), Shanghai's Top Priority Research Center Construction Project (2023ZZ02002), Three-Year Action Plan for Strengthening the Construction of the Public Health System in Shanghai (GWVI-11.1-36), and Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20161413). The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: N/A.
Assuntos
COVID-19 , Implantação do Embrião , Transferência Embrionária , Resultado da Gravidez , Taxa de Gravidez , SARS-CoV-2 , Humanos , Feminino , Gravidez , COVID-19/epidemiologia , Transferência Embrionária/métodos , Adulto , Estudos Retrospectivos , CriopreservaçãoRESUMO
We present a compact dual-arm thin-film lithium niobate (TFLN) electro-optic phase modulator fabricated using the photolithography-assisted chemo-mechanical etching (PLACE) technique. The design of the device doubles the modulation amount compared to single-arm modulators while maintaining the same chip length. Achieving a half-wave voltage of approximately 3â V, the device outperforms conventional single-arm phase modulators. Furthermore, the phase modulator exhibits low sensitivity to optical wavelengths in the range of 1510-1600â nm and offers a low insertion loss of 2.8â dB. The capability to generate multiple sideband signals for optical frequency comb applications is also demonstrated, producing 29 sideband signals at an input microwave power of 2â W.
RESUMO
We report an electro-optic isolator fabricated on thin-film lithium niobate by photolithography-assisted chemo-mechanical etching that shows an isolation of 39.50â dB and an overall fiber-to-fiber loss of 2.6â dB.
RESUMO
Overweight, with an increasing prevalence worldwide, significantly impairs the clinical outcomes following in vitro fertilization (IVF). Hyperglycemia, hyperlipidemia, and metabolic disorders are always accompanied by the majority of overweight patients. The association between granulosa cell function and metabolic alterations in follicular fluid including lipids, proteins, and growth factors has been extensively documented. However, the effects of higher glucose level on ovarian granulosa cells (GCs), remain largely unknown. In this study, we identified that overweight women had elevated follicular glucose level which profoundly activated NLRP3 inflammasome and pyroptosis. An in vitro correlation between follicular high glucose, NLRP3 inflammasome and pyroptosis was also established. More importantly, in granulosa cells of overweight patients, the activation of the NLRP3 inflammasome and pyroptosis induced by high glucose was involved in the dysregulation of estradiol synthesis. Our study may provide new options to interpretate and improve IVF outcomes in overweight women.
Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Feminino , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Glucose/farmacologia , Piroptose , Sobrepeso , Células da Granulosa/metabolismoRESUMO
Ventricular septal defect (VSD) is the most common type of congenital heart disease. HAND1 gene plays a crucial role in the development of the heart, but the role of the variants in the HAND1 gene promoter region in patients with VSD has not been explored yet. From 588 participants (300 with isolated and sporadic VSD and 288 healthy controls), DNA was extracted from blood samples. Variants at the HAND1 gene promoter region were analyzed through Sanger sequencing. Subsequently, cell functional validation was conducted through cell experiments, including dual-luciferase reporter gene analysis, electrophoretic mobility shift analysis, and bioinformatics analysis was also conducted. The promoter region of HAND1 gene had a total of 9 identified variant sites. Among them, 4 variants were exclusively found in VSD patients, and 1 variant (g.3631A>C) was newly discovered. Cell functional experiments indicated that all four variants decreased the transcriptional activity of HAND1 gene promoter with three of them reached statistical significance (p < 0.05). Subsequent analysis using JASPAR (a transcription factor binding profile database) suggests that these variants may alter the binding sites of transcription factors, potentially contributing to the formation of VSD. Our study for the first time identified variants in the promoter region of HAND1 gene in Chinese patients with isolated and sporadic VSD. These variants significantly decreased the expression of HAND1 gene, impacting transcription factor binding sites, and thereby demonstrating pathogenicity. This study offers new insights into the role of HAND1 gene promoter region, contributing to a better understanding of the genetic basis of VSD formation.
RESUMO
The performance of covalent-organic frameworks (COFs) for the photocatalytic extraction of uranium is greatly limited by the number of adsorption sites. Herein, inspired by electronegative redox reactions, we designed a nitrogen-oxygen rich pyrazine connected COF (TQY-COF) with multiple redox sites as a platform for extracting uranium via combining superaffinity and enhanced photoinduction. The preorganized bisnitrogen-bisoxygen donor configuration on TQY-COF is entirely matched with the typical geometric coordination of hexavalent uranyl ions, which demonstrates high affinity (tetra-coordination). In addition, the presence of the carbonyl group and pyrazine ring effectively stores and controls electron flow, which efficaciously facilitates the separation of e-/h+ and enhances photocatalytic performance. The experimental results show that TQY-COF removes up to 99.8% of uranyl ions from actual uranium mine wastewater under the light conditions without a sacrificial agent, and the separation coefficient reaches 1.73 × 106 mL g-1 in the presence of multiple metal ions, which realizes the precise separation in the complex environment. Importantly, DFT calculations further elucidate the coordination mechanism of uranium and demonstrate the necessity of the presence of N/O atoms in the photocatalytic adsorption of uranium.
RESUMO
BACKGROUND: Deep venous thrombosis (DVT) is the common clinical cardiovascular disease, and easily develops into post-thrombotic syndrome (PTS). The study aimed to examine the clinical value of long non-coding RNA NORAD gene in the development of DVT and PTS. In vitro, the underlying mechanism was explored. METHODS: Serum levels of lncRNA NORAD gene in 85 DVT cases and 85 healthy individuals were tested. The role of lncRNA NORAD gene in human umbilical vein endothelial cells (HUVECs) proliferation, migration and inflammation was examined. The candidate downstream target gene was predicted via bioinformatic analysis. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were done for the function annotation and pathway enrichment. RESULTS: LncRNA NORAD gene was at high expression in the serum of DVT patients, it can distinguish DVT patients from healthy controls with the area under the curve of 0.919. Elevated expression of lncRNA NORAD gene in PTS patients was detected, DVT cases with high expression of lncRNA NORAD gene were more susceptible to PTS. LncRNA NORAD gene knockdown promoted HUVECs' proliferation, migration while suppressing cell apoptosis and inflammation. MiR-93-5p served as a target of lncRNA NORAD gene, and its overexpression reversed the role of lncRNA NORAD gene in the biological function of HUVECs. The target genes of miR-93-5p were enriched in HIF-1 signaling, TGF-beta signaling and PI3K-Akt signaling, protein-protein interaction (PPI) network indicated STAT3, MAPK1 to be the key targets. CONCLUSIONS: Upregulation of expression of lncRNA NORAD gene was a potential diagnostic biomarker for DVT and related to the development of PTS. LncRNA NORAD/miR-93-5p axis was involved in the progress of DVT through regulating endothelial cell function.
RESUMO
The global transition towards diets high in calories has contributed to 2.1 billion people becoming overweight, or obese, which damages male reproduction and harms offspring. Recently, more and more studies have shown that paternal exposure to stress closely affects the health of offspring in an intergenerational and transgenerational way. SET Domain Containing 2 (SETD2), a key epigenetic gene, is highly conserved among species, is a crucial methyltransferase for converting histone 3 lysine 36 dimethylation (H3K36me2) into histone 3 lysine 36 trimethylation (H3K36me3), and plays an important regulator in the response to stress. In this study, we compared patterns of SETD2 expression and the H3K36me3 pattern in pre-implantation embryos derived from normal or obese mice induced by high diet. The results showed that SETD2 mRNA was significantly higher in the high-fat diet (HFD) group than the control diet (CD) group at the 2-cell, 4-cell, 8-cell, and 16-cell stages, and at the morula and blastocyst stages. The relative levels of H3K36me3 in the HFD group at the 2-cell, 4-cell, 8-cell, 16-cell, morula stage, and blastocyst stage were significantly higher than in the CD group. These results indicated that dietary changes in parental generation (F0) male mice fed a HFD were traceable in SETD2/H3K36me3 in embryos, and that a paternal high-fat diet brings about adverse effects for offspring that might be related to SETD2/H3K36me3, which throws new light on the effect of paternal obesity on offspring from an epigenetic perspective.
Assuntos
Dieta Hiperlipídica , Histonas , Humanos , Masculino , Animais , Camundongos , Histonas/genética , Histonas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Lisina/metabolismo , Obesidade/genética , Desenvolvimento EmbrionárioRESUMO
Chlorogenic acid (CGA) is an effective phenolic antioxidant that can scavenge hydroxyl radicals and superoxide anions. Herein, the protective effects and mechanisms leading to CGA-induced porcine parthenogenetic activation (PA) in early-stage embryos were investigated. Our results showed that 50 µM CGA treatment during the in vitro culture (IVC) period significantly increased the cleavage and blastocyst formation rates and improved the blastocyst quality of porcine early-stage embryos derived from PAs. Then, genes related to zygotic genome activation (ZGA) were identified and investigated, revealing that CGA can promote ZGA in porcine PA early-stage embryos. Further analysis revealed that CGA treatment during the IVC period decreased the abundance of reactive oxygen species (ROS), increased the abundance of glutathione and enhanced the activity of catalase and superoxide dismutase in porcine PA early-stage embryos. Mitochondrial function analysis revealed that CGA increased mitochondrial membrane potential and ATP levels and upregulated the mitochondrial homeostasis-related gene NRF-1 in porcine PA early-stage embryos. In summary, our results suggest that CGA treatment during the IVC period helps porcine PA early-stage embryos by regulating oxidative stress and improving mitochondrial function.
Assuntos
Ácido Clorogênico , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário , Mitocôndrias , Estresse Oxidativo , Partenogênese , Espécies Reativas de Oxigênio , Animais , Estresse Oxidativo/efeitos dos fármacos , Partenogênese/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Técnicas de Cultura Embrionária/veterinária , Ácido Clorogênico/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Blastocisto/efeitos dos fármacos , Suínos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Antioxidantes/farmacologia , Feminino , Glutationa/metabolismoRESUMO
Cancer vaccines have received tremendous attention in cancer immunotherapy due to their capability to induce a tumor-specific immune response. However, their effectiveness is compromised by the insufficient spatiotemporal delivery of antigens and adjuvants in the subcellular level to induce a robust CD8+ T cell response. Herein, a cancer nanovaccine G5-pBA/OVA@Mn is prepared through multiple interactions of manganese ions (Mn2+), benzoic acid (BA)-modified fifth generation polyamidoamine (G5-PAMAM) dendrimer, and the model protein antigen ovalbumin (OVA). In the nanovaccine, Mn2+ not only exerts a structural function to assist OVA loading as well as its endosomal escape, but works as an adjuvant of stimulator of interferon genes (STING) pathway. These collaboratively facilitate the orchestrated codelivery of OVA antigen and Mn2+ into cell cytoplasm. Vaccination with G5-pBA/OVA@Mn not only shows a prophylactic effect, but also significantly inhibits growth against B16-OVA tumors, indicating its great potential for cancer immunotherapy.
Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Humanos , Animais , Camundongos , Manganês , Antígenos , Adjuvantes Imunológicos/uso terapêutico , Neoplasias/terapia , Imunoterapia , Camundongos Endogâmicos C57BL , Nanopartículas/química , Células DendríticasRESUMO
Thrombus age determination in fatal venous thromboembolism cases is an important task for forensic pathologists. In this study, we investigated the time-dependent expressions of formyl peptide receptor 2 (FPR2) and Annexin A1 (ANXA1) in a stasis-induced deep vein thrombosis (DVT) murine model, with the aim of obtaining useful information for thrombus age timing. A total of 75 ICR mice were randomly classified into thrombosis group and control group. In thrombosis group, a DVT model was established by ligating the inferior vena cava (IVC) of mice, and thrombosed IVCs were harvested at 1, 3, 5, 7, 10, 14, and 21 days after modeling. In control group, IVCs without thrombosis were taken as control samples. The expressions of FPR2 and ANXA1 during thrombosis were detected using immunohistochemistry and double immunofluorescence staining. Their protein and mRNA levels in the samples were determined by Western blotting and quantitative real-time PCR. The results reveal that FPR2 was predominantly expressed by intrathrombotic neutrophils and macrophages. ANXA1 expression in the thrombi was mainly distributed in neutrophils, endothelial cells of neovessels, and fibroblastic cells. After thrombosis, the expressions of FPR2 and ANXA1 were time-dependently up-regulated. The percentage of FPR2-positive cells and the level of FPR2 protein significantly elevated at 1, 3, 5 and 7 days after IVC ligation as compared to those at 10, 14 and 21 days after ligation (p < 0.05). Moreover, the mRNA level of FPR2 were significantly higher at 5 days than that at the other post-ligation intervals (p < 0.05). Besides, the levels of ANXA1 mRNA and protein peaked at 10 and 14 days after ligation, respectively. A significant increase in the mRNA level of ANXA1 was found at 10 and 14 days as compared with that at the other post-ligation intervals (p < 0.01). Our findings suggest that FPR2 and ANXA1 are promising as useful markers for age estimation of venous thrombi.
RESUMO
We investigate the femtosecond laser ablation of copper with a dual-color double-pulse femtosecond laser at the wavelengths of 515â nm and 1030â nm. By properly choosing the energy of the 515â nm pulse, the optical properties such as surface reflectivity and absorption coefficient on copper surface can be modified to increase the absorption of the subsequent 1030â nm pulse. The ablation depth of dual-color double-pulse laser is at least 50% higher than the total ablation depth of both the 515â nm and 1030â nm pulses, provided that the inter-pulse delay of the double-pulse laser is within the electron-phonon coupling time. The ablation depth enhancement on a copper surface using a dual-color double-pulse femtosecond laser is of significant interest for scientific research and industrial application.
RESUMO
Polycystic ovary syndrome (PCOS) is an endocrine disorder, affecting women of child-bearing age, and the incidence rate is growing and assuming epidemic proportions. The etiology of PCOS remains unknown and there is no cure. Some animal models for PCOS have been established which have enhanced our understanding of the underlying mechanisms, but omics data for revealing PCOS pathogenesis and for drug discovery are still lacking. In the present study, proteomics analysis was used to construct a protein profile of the ovaries in a PCOS mouse model. The result showed a clear difference in protein profile between the PCOS and control group, with 495 upregulated proteins and 404 downregulated proteins in the PCOS group. The GO term and KEGG pathway analyses of differentially expressed proteins mainly showed involvement in lipid metabolism, oxidative stress, and immune response, which are consistent with pathological characteristics of PCOS in terms of abnormal metabolism, endocrine disorders, chronic inflammation and imbalance between oxidant and antioxidant levels. Also, we found that inflammatory responses were activated in the PCOS ovarium, while lipid biosynthetic process peroxisome, and bile secretion were inhibited. In addition, we found some alteration in unexpected pathways, such as glyoxylate and dicarboxylate metabolism, which should be investigated. The present study makes an important contribution to the current lack of PCOS ovarian proteomic data and provides an important reference for research and development of effective drugs and treatments for PCOS.
RESUMO
Endometrial decidualization is a prerequisite for implantation, and impaired decidualization is associated with recurrent implantation failure (RIF). Coding genes of the HOX family have been clarified as critical regulators in endometrial decidualization, but the role of long non-coding RNAs (lncRNAs) in the HOX gene family has yet to be determined. The aim of this study was to clarify the possible roles of lncRNAs in the HOX gene family in decidualization. In this study, we identified that HOXA11-AS was the most reduced lncRNA in the HOX family in the human endometrium during the window of implantation, and it was elevated in RIF patients. Mechanistically, HOXA11-AS negatively regulated decidualization through competitive interaction with PTBP1, an RNA-binding protein. Binding of PTBP1 to HOXA11-AS limited PTBP1 availability to regulate PKM1/2 alternative splicing, resulting in enhanced PKM1 and diminished PKM2 expression, thus attenuating decidualization. The pattern of high HOXA11-AS expression and impaired PKM2 splicing was consistently observed in RIF patients. Collectively, our study indicates that the increase of HOXA11-AS is detrimental to endometrial decidualization, likely contributing to RIF. Our study may shed light on the pathogenesis and treatment of RIF.
Assuntos
Implantação do Embrião , Endométrio , Genes Homeobox , RNA Longo não Codificante , Implantação do Embrião/genética , Endométrio/metabolismo , Feminino , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Estromais/metabolismo , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: PD-1 inhibitors have been approved for the first-line treatment of patients with advanced gastric cancer, gastroesophageal junction cancer, or esophageal adenocarcinoma. However, the results of several clinical trials are not entirely consistent, and the dominant population of first-line immunotherapy for advanced gastric/gastroesophageal junction cancer still needs to be precisely determined. OBJECTIVE: This objective of this study is to evaluate the efficacy of anti-PD-1/PD-L1 therapy in advanced gastric/gastroesophageal junction adenocarcinoma patients through a systematic review and meta-analysis of relevant clinical trials. METHOD: The PubMed, Embase, and Cochrane Library electronic databases were searched up to August 1, 2022, for clinical trials of anti-PD-1/PD-L1 immunotherapy for the first-line treatment of advanced gastroesophageal cancer. Hazard ratios and 95% confidence intervals for overall survival, progression-free survival, and objective response rates were extracted and pooled for meta-analysis. Prespecified subgroups included the following: agent type, PD-L1 expression, and high microsatellite instability. RESULTS: This study analyzed 5 RCTs involving 3,355 patients. Compared with the chemotherapy group, the combined immunotherapy group had a significantly higher objective response rate (OR = 0.63, 95% CI: 0.55-0.72, p < 0.00001) and prolonged overall survival (HR = 0.82, 95% CI: 0.76-0.88, p < 0.00001) and progression-free survival (HR = 0.75, 95% CI: 0.69-0.82, p < 0.00001). The combination of immunotherapy and chemotherapy prolonged OS in both MSI-H (HR = 0.38, p = 0.002) and MSS (HR = 0.78, p < 0.00001) populations, but there was a significant difference between groups (p = 0.02). However, in improving ORR, the benefit of ICI combined with chemotherapy in the MSS group and MSI-H group was not significantly different between groups (p = 0.52). Combination therapy with ICIs was more effective than chemotherapy alone in prolonging OS in the subgroup with a high CPS, regardless of the CPS cutoff for PD-L1. However, when the cutoff of CPS was 1, the difference between subgroups did not reach statistical significance (p = 0.12), while the benefit ratio of the MSI-H group was higher when the cutoff was 10 (p = 0.004) than when the cutoff value was 5 (p = 0.002). CONCLUSIONS: For first-line treatment of advanced gastroesophageal cancer, an ICI combination strategy is more effective than chemotherapy. The subgroup of patients with a CPS ≥10 has a more significant benefit, and CPS ≥10 has the potential to be used as an accurate marker of the dominant population of immuno-combined therapy.