Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Altern Ther Health Med ; 30(2): 188-192, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37820683

RESUMO

Objective: To examine the relationship between diastolic function and the ratio of early diastolic mitral inflow to early diastolic mitral annular velocity (E/e') in patients with chronic renal disease who had deep vein catheterization and internal fistula. Methods: The clinical data of 50 uremia patients treated at The Affiliated Dongyang Hospital of Wenzhou Medical University from January 2020 to January 2022 were retrospectively analyzed. To assess the differences in E/e' ratio and patients' diastolic function between the two groups, they were split into two teams according to the various therapy modalities: the internal fistula team (n = 42) and the deep vein catheterization team (n = 8). Results: After treatment, the left ventricular end-diastolic diameter (LVd), E peak, a peak and E/A value, the volume and area of four chambers of the left ventricle (LV), the volume and area of two chambers of LV in both groups were significantly lower than those before treatment (P < .001). After treatment, the LVd left ventricular end-systolic diameter (LVs), the four-chamber volume of LV, and the two-chamber volume and area of LV in patients with internal fistula were significantly lower than those in patients with deep vein catheterization (P < .001). After treatment, E peak, A peak and E/A value, e' interventricular septum, E/e' value of interventricular septum, e' lateral wall, and E of lateral wall in patients with internal fistula group. Conclusion: Both deep vein catheterization and internal fistula treatment can improve the diastolic function and reduce the pulmonary pressure of uremic patients to a certain extent, but internal fistula treatment is better than deep vein catheterization in reducing LVd, LVs, LV four-chamber volume, LV two-chamber volume and area, and the effects of both in improving the E/e ratio of patients are not obvious.


Assuntos
Insuficiência Renal Crônica , Humanos , Estudos Retrospectivos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia , Cateterismo
2.
World J Surg Oncol ; 20(1): 34, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164778

RESUMO

BACKGROUND: Increasing evidence implicates circular RNAs (circRNAs) have been involved in human cancer progression. However, the mechanism remains unclear. In this study, we identified novel circRNAs related to gastric cancer and constructed a circRNA-miRNA-mRNA network. METHODS: Microarray datasets GSE83521 and GSE93541 were obtained from the Gene Expression Omnibus (GEO). Then, we used computational biology to identify circRNAs that were differentially expressed in both GC tissue and plasma compared to normal controls; then, we detected the expression of the selected circRNAs in gastric cell lines by quantitative real-time polymerase chain reaction (qRT-PCR). We also identified circRNA-related candidate miRNAs and their target genes with online tools. Combining the predicted miRNAs and target mRNAs, a competing endogenous RNA regulatory network was established. Functional and pathway enrichment analyses were performed, and interactions between proteins were predicted by using String and Cytoscape. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to elucidate the possible functions of these differentially expressed circRNAs. The regulatory network constructed using the microarray datasets (GSE83521 and GSE93541) contained three differentially co-expressed circRNAs (DECs). A circRNA-miRNA-mRNA network was constructed based on 3 circRNAs, 43 miRNAs and 119 mRNAs. RESULTS: GO and KEGG analysis showed that the regulation of apoptotic signaling pathway and PI3K-Akt signaling pathway were highest degrees of enrichment respectively. We established a protein-protein interaction (PPI) network consisting of 165 nodes and 170 edges and identified hub genes by using MCODE plugin in Cytoscape. Furthermore, a core circRNA-miRNA-mRNA network was constructed based on hub genes. Hsa_circ_0001013 was finally determined to play an important role in the pathogenesis of GC according to the core circRNA-miRNA-mRNA network. CONCLUSIONS: We propose a new circRNA-miRNA-mRNA network that is associated with the pathogenesis of GC. The network may become a new molecular biomarker and could be used to develop potential therapeutic strategies for gastric cancer.


Assuntos
MicroRNAs , Neoplasias Gástricas , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , Fosfatidilinositol 3-Quinases , RNA Circular , RNA Mensageiro/genética , Neoplasias Gástricas/genética
3.
Br J Cancer ; 124(10): 1711-1723, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33723393

RESUMO

BACKGROUND: Activation of mTORC1 plays a significant role in cancer development and progression. However, the metabolic mechanisms to sustain mTORC1 activation of cancer cells within stressed environments are still under-appreciated. We recently revealed high autophagy activity in tumour cells with mTORC1 hyper-activation. Nevertheless, the functions and mechanisms of autophagy in regulating mTORC1 in glioma are not studied. METHODS: Using glioma patient database and human glioma cells, we assessed the mechanisms and function of selective autophagy to sustain mTORC1 hyper-activation in glioma. RESULTS: We revealed a strong association of altered mRNA levels in mTORC1 upstream and downstream genes with prognosis of glioma patients. Our results indicated that autophagy-mediated lipid catabolism was essential to sustain mTORC1 activity in glioma cells under energy stresses. We found that autophagy inhibitors or fatty acid oxidation (FAO) inhibitors in combination with 2-Deoxy-D-glucose (2DG) decreased energy production and survival of glioma cells in vitro. Consistently, inhibition of autophagy or FAO inhibitors with 2DG effectively suppressed the progression of xenografted glioma with hyper-activated mTORC1. CONCLUSIONS: This study established an autophagy/lipid degradation/FAO/ATP generation pathway, which might be used in brain cancer cells under energy stresses to maintain high mTORC1 signalling for tumour progression.


Assuntos
Autofagia/fisiologia , Neoplasias Encefálicas/metabolismo , Metabolismo Energético/fisiologia , Glioma/metabolismo , Metabolismo dos Lipídeos , Animais , Apoptose/genética , Autofagia/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Progressão da Doença , Metabolismo Energético/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Células HEK293 , Humanos , Metabolismo dos Lipídeos/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Nus , Transdução de Sinais/genética
4.
Mol Ther ; 28(8): 1876-1886, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516572

RESUMO

Phosphatidylserine (PS) is often externalized in viable pancreatic cancer cells and is therapeutically targetable using PS-selective drugs. One of the first-line treatments for advanced pancreatic cancer disease, gemcitabine (GEM), provides only marginal benefit to patients. We therefore investigated the therapeutic benefits of combining GEM and the PS-targeting drug, saposin C-dioleoylphosphatidylserine (SapC-DOPS), for treating pancreatic ductal adenocarcinoma (PDAC). Using cell-cycle analyses and a cell surface PS-based sorting method in vitro, we observed an increase in surface PS as cells progress through the cell cycle from G1 to G2/M. We also observed that GEM treatment preferentially targets G1 phase cells that have low surface PS, resulting in an increased median surface PS level of PDAC cells. Inversely, SapC-DOPS preferentially targets high surface PS cells that are predominantly in the G2/M phase. Finally, combination therapy in subcutaneous and orthotopic PDAC tumors in vivo with SapC-DOPS and GEM or Abraxane (Abr)/GEM (one of the current standards of care) significantly inhibits tumor growth and increases survival compared with individual treatments. Our studies confirm a surface PS and cell cycle-based enhancement of cancer cytotoxicity following SapC-DOPS treatment in combination with GEM or Abr/GEM. Thus, PDAC patients treated with Abr/GEM may benefit from concurrent administration of SapC-DOPS.


Assuntos
Antineoplásicos/administração & dosagem , Desoxicitidina/análogos & derivados , Nanopartículas , Fosfatidilserinas/administração & dosagem , Animais , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Desoxicitidina/administração & dosagem , Modelos Animais de Doenças , Citometria de Fluxo , Expressão Gênica , Humanos , Camundongos , Nanopartículas/química , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
5.
Cell Commun Signal ; 18(1): 6, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31918715

RESUMO

Phosphatidylserine (PS) is normally located in the inner leaflet of the membrane bilayer of healthy cells, however it is expressed at high levels on the surface of cancer cells. This has allowed for the development of selective therapeutic agents against cancer cells (without affecting healthy cells). SapC-DOPS is a PS-targeting nanovesicle which effectively targets and kills several cancer types including pancreatic, lung, brain, and pediatric tumors. Our studies have demonstrated that SapC-DOPS selectively induces apoptotic cell death in malignant and metastatic cells, whereas untransformed cells remain unaffected due to low surface PS expression. Furthermore, SapC-DOPS can be used in combination with standard therapies such as irradiation and chemotherapeutic drugs to significantly enhance the antitumor efficacy of these treatments. While the PS-targeting nanovesicles are a promising selective therapeutic option for the treatment of cancers, more preclinical studies are needed to fully understand the mechanisms leading to non-apoptotic PS expression on the surface of viable cancer cells and to determine the effectiveness of SapC-DOPS in advanced metastatic disease. In addition, the completion of clinical studies will determine therapeutic effects and drug safety in patients. A phase I clinical trial using SapC-DOPS has been completed on patients with solid tumors and has demonstrated compelling patient outcomes with a strong safety profile. Results from this study are informing future studies with SapC-DOPS. Abstract video.


Assuntos
Nanopartículas/química , Neoplasias/terapia , Fosfatidilserinas/metabolismo , Saposinas/metabolismo , Animais , Ensaios Clínicos como Assunto , Humanos
6.
J Foot Ankle Surg ; 59(1): 48-52, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31882147

RESUMO

The aim of this study was to assess inter- and intraobserver agreement of the traditional systems (Ruedi-Allgower, AO [Arbeitsgemeinschaft für Osteosynthesefragen], and Topliss) and the newly proposed Leonetti classification system of pilon fractures. We studied all patients at our center who underwent pilon fracture surgery over a 2-year period: 68 patients (70 legs) were included. Four observers independently classified each pilon fracture according to the Ruedi-Allgower, AO, Topliss, and Leonetti systems by evaluating radiographs and computed tomography images on 2 occasions. The inter- and intraobserver agreements were calculated using the Fleiss kappa test. Interobserver reliability was good for AO types (A, B, and C) and Ruedi-Allgower (κ = 0.71 and 0.61, respectively), whereas the interobserver reliability was moderate for AO groups (A1, A2, A3, B1, B2, B3, C1, C2, and C3), Topliss families, Topliss subfamilies, Leonetti types, and Leonetti subtypes. Intraobserver reproducibility was excellent for the Ruedi-Allgower classification, AO types, and Topliss families and good for AO groups, Topliss subfamilies, and Leonetti types and subtypes. Ruedi-Allgower and AO classification systems are the most reliable among those currently used for pilon fractures, but with lower agreement at the AO group level. The use of Topliss and Leonetti classification systems is not recommended because of less favorable results.


Assuntos
Fraturas da Tíbia/classificação , Fraturas da Tíbia/diagnóstico por imagem , Adulto , Idoso , Feminino , Fixação de Fratura , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Estudos Retrospectivos , Fraturas da Tíbia/cirurgia , Tomografia Computadorizada por Raios X , Adulto Jovem
7.
Int J Cancer ; 145(9): 2478-2487, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30963568

RESUMO

The long noncoding RNA HOTAIR plays significant roles in promoting cancer metastasis. However, how it conveys an invasive advantage in cancer cells is not clear. Here we identify the chondroitin sulfotransferase CHST15 (GalNAc4S-6ST) as a novel HOX transcript antisense intergenic RNA (HOTAIR) target gene using RNA profiling and show that CHST15 is required for HOTAIR-mediated invasiveness in breast cancer cells. CHST15 catalyzes sulfation of the C6 hydroxyl group of the N-acetyl galactosamine 4-sulfate moiety in chondroitin sulfate to form the 4,6-disulfated chondroitin sulfate variant known as the CS-E isoform. We show that HOTAIR is necessary and sufficient for CHST15 transcript expression. Inhibition of CHST15 by RNA interference abolished cell invasion promoted by HOTAIR but not on HOTAIR-mediated migratory activity. Conversely, reconstitution of CHST15 expression rescued the invasive activity of HOTAIR-depleted cells. In corroboration with this mechanism, blocking cell surface chondroitin sulfate using a pan-CS antibody or an antibody specifically recognizes the CS-E isoform significantly suppressed HOTAIR-induced invasion. Inhibition of CHST15 compromised tumorigenesis and metastasis in orthotopic breast cancer xenograft models. Furthermore, the expression of HOTAIR closely correlated with the level of CHST15 protein in primary as well as metastatic tumor lesions. Our results demonstrate a novel mechanism underlying the function of HOTAIR in tumor progression through programming the context of cell surface glycosaminoglycans. Our results further establish that the invasive and migratory activities downstream of HOTAIR are distinctly regulated, whereby CHST15 preferentially controls the arm of invasiveness. Thus, the HOTAIR-CHST15 axis may provide a new avenue toward novel therapeutic strategies and prognosis biomarkers for advanced breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Glicoproteínas de Membrana/genética , Invasividade Neoplásica/genética , RNA Longo não Codificante/genética , Sulfotransferases/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Invasividade Neoplásica/patologia , Interferência de RNA , RNA Interferente Pequeno/genética
8.
BMC Musculoskelet Disord ; 19(1): 360, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30301459

RESUMO

BACKGROUND: Local antibiotic therapy has gained increasing attraction in the prevention and treatment of fracture infection. However, no reports have used local antibiotic therapy in the management of early infection after fracture fixation with retention of implants. METHODS: The present surgical technique report the use of antibiotic impregnated bone cement in the management of early infection after fracture fixation. Initially, the fractures were fixed with plates. The average time from initial procedure to debridement was15 days (range 9 to 25 days). The infections were treated with irrigation, debridement, and retention of the implant. The lateral surface of the plates was coated with antibiotic cement and the bone defect was filled with antibiotic cement spacer after thorough debridement. RESULTS: Ten patients underwent this technique. The mean follow-up was 2.0 years (range 6 months to 4 years). The bone union rate was 100%, and the average time to bone healing was5.5 months.There was recurrence of infection in one patient before bone healing, but the implants were left in place until bone healed, and the infection was eradicated after implant removal. CONCLUSION: Coating the plate with antibiotic cement is a simple technique which may play a role in the management of early infection after fracture fixation.


Assuntos
Antibacterianos/uso terapêutico , Cimentos Ósseos/uso terapêutico , Placas Ósseas/efeitos adversos , Materiais Revestidos Biocompatíveis , Fixação de Fratura/instrumentação , Fraturas Ósseas/cirurgia , Infecções Relacionadas à Prótese/terapia , Adolescente , Adulto , Antibacterianos/efeitos adversos , Cimentos Ósseos/efeitos adversos , Criança , Desbridamento , Feminino , Fixação de Fratura/efeitos adversos , Consolidação da Fratura , Fraturas Ósseas/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Infecções Relacionadas à Prótese/diagnóstico , Infecções Relacionadas à Prótese/microbiologia , Recidiva , Fatores de Risco , Irrigação Terapêutica , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
9.
BMC Musculoskelet Disord ; 18(1): 256, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28606128

RESUMO

BACKGROUND: Cement spacers (Masquelet technique) have traditionally been used for the treatment of segmental bone defects. However, no reports have used cement spacers for the treatment of small/partial segmental bone defects associated with osteomyelitis and compared the outcomes with cement beads. METHODS: We retrospectively analysed 40 patients with post-traumatic osteomyelitis of the tibia who underwent treatment, which was performed in two stages. In the first stage, thorough debridement was performed, and bone defects were filled with either antibiotic-impregnated cement beads (bead group, 18 patients) or spacers (spacer group, 22 patients). In the second stage, the cement beads or spacers were removed (for the spacer group, the induced membrane formed by the spacer was preserved) and the bone defects were filled with cancellous autografts. RESULTS: All patients in the bead group had small/partial segmental bone defects after debridement, while 3 patients in the spacer group had large/segmental bone defects. The mean volume of bone defects of the spacer group (40.4 cm3) was significantly larger than that of the bead group (32.4 cm3). The infection control rate (88.9%,16/18 vs 90.9%, 20/22), bone healing time (8.5 months vs 7.5 months) and complication rates (22.2%, 4/18 vs 27.2%, 6/22) were comparable between bead group and spacer group. CONCLUSION: The results of this study suggest that cement spacers may have an infection control rate comparable to cement beads in the treatment of bone defects associated with post-traumatic osteomyelitis. Furthermore, cement spacers could be used for the reconstruction of small/partial segmental bone defects as well as for large/segmental bone defects, whereas cement beads were not suitable for the reconstruction of large/segmental bone defects.


Assuntos
Antibacterianos/uso terapêutico , Cimentos Ósseos/uso terapêutico , Procedimentos Ortopédicos/métodos , Osteomielite/cirurgia , Tíbia/lesões , Adulto , Idoso , Autoenxertos , Cimentos Ósseos/química , Osso Esponjoso/transplante , Desbridamento , Feminino , Humanos , Infecções , Masculino , Pessoa de Meia-Idade , Osteomielite/tratamento farmacológico , Osteomielite/etiologia , Osteomielite/microbiologia , Radiografia , Estudos Retrospectivos , Tíbia/diagnóstico por imagem , Tíbia/cirurgia , Resultado do Tratamento , Adulto Jovem
10.
Mol Cancer ; 15(1): 33, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27160923

RESUMO

Unlike normal cells, cancer cells express high levels of phosphatidylserine on the extracellular leaflet of their cell membrane. Exploiting this characteristic, our lab developed a therapeutic agent that consists of the fusogenic protein, saposin C (SapC) which is embedded in dioleoylphosphatidylserine (DOPS) vesicles. These nanovesicles selectively target cancer cells and induce apoptosis. Here we review the data supporting use of SapC-DOPS to locate tumors for surgical resection or for treatment. In addition, there is important evidence suggesting that SapC-DOPS may also prove to be an effective novel cancer therapeutic reagent. Given that SapC-DOPS is easily labeled with lipophilic dyes, it has been combined with the far-red fluorescent dye, CellVue Maroon (CVM), for tumor targeting studies. We also have used contrast agents incorporated in the SapC-DOPS nanovesicles for computed tomography and magnetic resonance imaging, and review that data here. Administered intravenously, the fluorescently labeled SapC-DOPS traversed the blood-brain tumor barrier enabling identification of brain tumors. SapC-DOPS-CVM also detected a variety of other mouse tumors in vivo, rendering them observable by optical imaging using IVIS and multi-angle rotational optical imaging. Dye is detected within 30 min and remains within tumor for at least 7 days, whereas non-tumor tissues were unstained (some dye observed in the liver was transient, likely representing degradation products). Additionally, labeled SapC-DOPS ex vivo delineated tumors in human histological specimens. SapC-DOPS can also be labeled with contrast reagents for computed tomography or magnetic resonance imaging. In conclusion, labeled SapC-DOPS provides a convenient, specific, and nontoxic method for detecting tumors while concurrently offering a therapeutic benefit.


Assuntos
Nanopartículas , Neoplasias/diagnóstico , Neoplasias/metabolismo , Fosfatidilserinas/metabolismo , Saposinas/metabolismo , Animais , Membrana Celular/metabolismo , Meios de Contraste , Corantes Fluorescentes , Humanos , Modelos Animais , Imagem Molecular/métodos , Imagem Multimodal/métodos , Neoplasias/terapia , Fosfatidilserinas/química , Ligação Proteica , Saposinas/química
11.
Proc Natl Acad Sci U S A ; 110(49): E4753-61, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24248359

RESUMO

Lipid transfer proteins, such as molecules of the saposin family, facilitate extraction of lipids from biological membranes for their loading onto CD1d molecules. Although it has been shown that prosaposin-deficient mice fail to positively select invariant natural killer T (iNKT) cells, it remains unclear whether saposins can facilitate loading of endogenous iNKT cell agonists in the periphery during inflammatory responses. In addition, it is unclear whether saposins, in addition to loading, also promote dissociation of lipids bound to CD1d molecules. To address these questions, we used a combination of cellular assays and demonstrated that saposins influence CD1d-restricted presentation to human iNKT cells not only of exogenous lipids but also of endogenous ligands, such as the self-glycosphingolipid ß-glucopyranosylceramide, up-regulated by antigen-presenting cells following bacterial infection. Furthermore, we demonstrated that in human myeloid cells CD1d-loading of endogenous lipids after bacterial infection, but not at steady state, requires trafficking of CD1d molecules through an endo-lysosomal compartment. Finally, using BIAcore assays we demonstrated that lipid-loaded saposin B increases the off-rate of lipids bound to CD1d molecules, providing important insights into the mechanisms by which it acts as a "lipid editor," capable of fine-tuning loading and unloading of CD1d molecules. These results have important implications in understanding how to optimize lipid-loading onto antigen-presenting cells, to better harness iNKT cells central role at the interface between innate and adaptive immunity.


Assuntos
Antígenos CD1d/metabolismo , Imunidade Inata/imunologia , Metabolismo dos Lipídeos/fisiologia , Células T Matadoras Naturais/imunologia , Saposinas/metabolismo , Células Apresentadoras de Antígenos/imunologia , Bactérias/imunologia , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Imunoprecipitação , Contagem de Cintilação
12.
BMC Genomics ; 16: 1086, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26689283

RESUMO

BACKGROUND: The most common ladybird beetle, Coccinella septempunctata L., is an excellent predator of crop pests such as aphids and white flies, and it shows a wide range of adaptability, a large appetite and a high reproductive ability. Diapause research plays an important role in the artificial propagation and shelf-life extension of insect products. Although this lady beetle's regulatory, physiological and biochemical characteristics in the diapause period are well understood, the molecular mechanism of diapause remains unknown. Therefore, we collected female adults in three different states, i.e., non-diapause, diapause and diapause termination, for transcriptome sequencing. RESULTS: After transcriptome sequencing using the Illumina HiSeq 2500 platform with pretreatment, a total of 417.6 million clean reads from nine samples were filtered using the program FASTX (version 0.0). Additionally, 106,262 contigs were assembled into 82,820 unigenes with an average length of 921 bp and an N50 of 1,241 bp. All of the unigenes were annotated through BLASTX alignment against the Nr or UniProt database, and 37,872 unigenes were matched. We performed further analysis of these unigenes using the Clusters of Orthologous Groups of proteins (COG), Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Through pairwise comparisons of the non-diapause (ND), diapause (D), and diapause-terminated (DT) groups, 3,501 and 1,427 differentially expressed genes (DEGs) were identified between D and ND and between DT and D, respectively. Moreover, 443 of the DEGs were specifically expressed during the diapause period (i.e., DEGs that were expressed at the highest or lowest levels during diapause compared with the other stages). GO function and KEGG pathway enrichment were performed on all DEGs and showed that RNA-directed DNA polymerase activity and fatty acid metabolism were significantly affected. Furthermore, eight specific expressed genes were selected for validation using qRT-PCR. Among these eight genes, seven genes were up-regulated, and one gene was down-regulated; the change trends of the eight genes were the same between the qRT-PCR and RNA-seq analysis results. CONCLUSIONS: In this study, a new method for collecting and identifying diapause insects was described. We generated a vast quantity of transcriptome data from C. septempunctata L., providing a resource for gene function research. The diapause-associated genes that we identified establish a foundation for future studies on the molecular mechanisms of diapause.


Assuntos
Besouros/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Animais , Besouros/genética , Diapausa de Inseto , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Anotação de Sequência Molecular
13.
Mol Cancer ; 14: 78, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25889084

RESUMO

BACKGROUND: High toxicity, morbidity and secondary malignancy render chemotherapy of neuroblastoma inefficient, prompting the search for novel compounds. Nanovesicles offer great promise in imaging and treatment of cancer. SapC-DOPS, a stable nanovesicle formed from the lysosomal protein saposin C and dioleoylphosphatidylserine possess strong affinity for abundantly exposed surface phosphatidylserine on cancer cells. Here, we show that SapC-DOPS effectively targets and suppresses neuroblastoma growth and elucidate the molecular mechanism of SapC-DOPS action in neuroblastoma in vitro. METHODS: In vivo targeting of neuroblastoma was assessed in xenograft mice injected intravenously with fluorescently-labeled SapC-DOPS. Xenografted tumors were also used to demonstrate its therapeutic efficacy. Apoptosis induction in vivo was evaluated in tumor sections using the TUNEL assay. The mechanisms underlying the induction of apoptosis by SapC-DOPS were addressed through measurements of cell viability, mitochondrial membrane potential (ΔΨM), flow cytometric DNA fragmentation assays and by immunoblot analysis of second mitochondria-derived activator of caspases (Smac), Bax, Cytochrome c (Cyto c) and Caspase-3 in the cytosol or in mitochondrial fractions of cultured neuroblastoma cells. RESULTS: SapC-DOPS showed specific targeting and prevented the growth of human neuroblastoma xenografts in mice. In neuroblastoma cells in vitro, apoptosis occurred via a series of steps that included: (1) loss of ΔΨM and increased mitochondrial superoxide formation; (2) cytosolic release of Smac, Cyto c, AIF; and (3) mitochondrial translocation and polymerization of Bax. ShRNA-mediated Smac knockdown and V5 peptide-mediated Bax inhibition decreased cytosolic Smac and Cyto c release along with caspase activation and abrogated apoptosis, indicating that Smac and Bax are critical mediators of SapC-DOPS action. Similarly, pretreatment with the mitochondria-stabilizing agent bongkrekic acid decreased apoptosis indicating that loss of ΔΨM is critical for SapC-DOPS activity. Apoptosis induction was not critically dependent on reactive oxygen species (ROS) production and Cyclophilin D, since pretreatment with N-acetyl cysteine and cyclosporine A, respectively, did not prevent Smac or Cyto c release. CONCLUSIONS: Taken together, our results indicate that SapC-DOPS acts through a mitochondria-mediated pathway accompanied by an early release of Smac and Bax. Specific tumor-targeting capacity and anticancer efficacy of SapC-DOPS supports its potential as a dual imaging and therapeutic agent in neuroblastoma therapy.


Assuntos
Apoptose/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Neuroblastoma/tratamento farmacológico , Fosfatidilserinas/farmacologia , Saposinas/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Peptidil-Prolil Isomerase F , Ciclofilinas/metabolismo , Ciclosporina/metabolismo , Citocromos c/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Nanopartículas/administração & dosagem , Neuroblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo
14.
J Magn Reson Imaging ; 41(4): 1079-87, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24797437

RESUMO

PURPOSE: To investigate paramagnetic saposin C and dioleylphosphatidylserine (SapC-DOPS) vesicles as a targeted contrast agent for imaging phosphatidylserine (PS) expressed by glioblastoma multiforme (GBM) tumors. MATERIALS AND METHODS: Gd-DTPA-BSA/SapC-DOPS vesicles were formulated, and the vesicle diameter and relaxivity were measured. Targeting of Gd-DTPA-BSA/SapC-DOPS vesicles to tumor cells in vitro and in vivo was compared with nontargeted paramagnetic vesicles (lacking SapC). Mice with GBM brain tumors were imaged at 3, 10, 20, and 24 h postinjection to measure the relaxation rate (R1) in the tumor and the normal brain. RESULTS: The mean diameter of vesicles was 175 nm, and the relaxivity at 7 Tesla was 3.32 (s*mM)(-1) relative to the gadolinium concentration. Gd-DTPA-BSA/SapC-DOPS vesicles targeted cultured cancer cells, leading to an increased R1 and gadolinium level in the cells. In vivo, Gd-DTPA-BSA/SapC-DOPS vesicles produced a 9% increase in the R1 of GBM brain tumors in mice 10 h postinjection, but only minimal changes (1.2% increase) in the normal brain. Nontargeted paramagnetic vesicles yielded minimal change in the tumor R1 at 10 h postinjection (1.3%). CONCLUSION: These experiments demonstrate that Gd-DTPA-BSA/SapC-DOPS vesicles can selectively target implanted brain tumors in vivo, providing noninvasive mapping of the cancer biomarker PS.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/patologia , Imagem Molecular/métodos , Fosfatidilserinas/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Meios de Contraste/administração & dosagem , Feminino , Gadolínio DTPA/administração & dosagem , Glioblastoma/metabolismo , Camundongos , Camundongos Nus , Fosfatidilcolinas/farmacocinética , Distribuição Tecidual , Lipossomas Unilamelares/química
15.
Eur J Haematol ; 95(5): 405-10, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25600460

RESUMO

Externalization of phosphatidylserine (PS) is thought to contribute to sickle cell disease (SCD) pathophysiology. The red blood cell (RBC) aminophospholipid translocase (APLT) mediates the transport of PS from the outer to the inner RBC membrane leaflet to maintain an asymmetric distribution of PL, while phospholipid scramblase (PLSCR) equilibrates PL across the RBC membrane, promoting PS externalization. We previously identified an association between PS externalization level and PLSCR activity in sickle RBC under basal conditions. Other studies showed that activation of protein kinase C (PKC) by PMA (phorbol-12-myristate-13-acetate) causes increased external PS on RBC. Therefore, we hypothesized that PMA-activated PKC stimulates PLSCR activity in RBC and thereby contributes to increased PS externalization. In the current studies, we show that PMA treatment causes immediate and variable PLSCR activation and subsequent PS externalization in control and sickle RBC. While TfR+ sickle reticulocytes display some endogenous PLSCR activity, we observed a robust activation of PLSCR in sickle reticulocytes treated with PMA. The PKC inhibitor, chelerythrine (Chel), significantly inhibited PMA-dependent PLSCR activation and PS externalization. Chel also inhibited endogenous PLSCR activity in sickle reticulocytes. These data provide evidence that PKC mediates PS externalization in RBC through activation of PLSCR.


Assuntos
Eritrócitos/enzimologia , Fosfatidilserinas/farmacologia , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteína Quinase C/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Masculino
16.
Clin Neuropathol ; 34(1): 40-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25518914

RESUMO

The Brain Tumor Epidemiology Consortium (BTEC) is an open scientific forum, which fosters the development of multi-center, international and inter-disciplinary collaborations. BTEC aims to develop a better understanding of the etiology, outcomes, and prevention of brain tumors (http://epi.grants.cancer.gov/btec/). The 15th annual Brain Tumor Epidemiology Consortium Meeting, hosted by the Austrian Societies of Neuropathology and Neuro-oncology, was held on September 9 - 11, 2014 in Vienna, Austria. The meeting focused on the central role of brain tumor epidemiology within multidisciplinary neuro-oncology. Knowledge of disease incidence, outcomes, as well as risk factors is fundamental to all fields involved in research and treatment of patients with brain tumors; thus, epidemiology constitutes an important link between disciplines, indeed the very hub. This was reflected by the scientific program, which included various sessions linking brain tumor epidemiology with clinical neuro-oncology, tissue-based research, and cancer registration. Renowned experts from Europe and the United States contributed their personal perspectives stimulating further group discussions. Several concrete action plans evolved for the group to move forward until next year's meeting, which will be held at the Mayo Clinic at Rochester, MN, USA.


Assuntos
Neoplasias Encefálicas/epidemiologia , Áustria , Humanos
17.
Int J Cancer ; 134(1): 9-20, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23754313

RESUMO

Alternatively spliced tissue factor (asTF) promotes neovascularization and monocyte recruitment via integrin ligation. While asTF mRNA has been detected in some pancreatic ductal adenocarcinoma (PDAC) cell lines and increased asTF expression can promote PDAC growth in a subcutaneous model, the expression of asTF protein in bona fide PDAC lesions and/or its role in metastatic spread are yet to be ascertained. We here report that asTF protein is abundant in lesional and stromal compartments of the five studied types of carcinoma including PDAC. Analysis of 29 specimens of PDAC revealed detectable asTF in >90% of the lesions with a range of staining intensities. asTF levels in PDAC lesions positively correlated with the degree of monocyte infiltration. In an orthotopic model, asTF-overexpressing high-grade PDAC cell line Pt45P1/asTF+ produced metastases to distal lymph nodes, which stained positive for asTF. PDAC cells stimulated with and/or overexpressing asTF exhibited upregulation of genes implicated in PDAC progression and metastatic spread. Pt45P1/asTF+ cells displayed higher coagulant activity compared to Pt45P1 cells; the same effect was observed for cell-derived microparticles (MPs). Our findings demonstrate that asTF is expressed in PDAC and lymph node metastases and potentiates PDAC spread in vivo. asTF elicits global changes in gene expression likely involved in tumor progression and metastatic dissemination, and it also enhances the procoagulant potential of PDAC cells and cell-derived MPs. Thus, asTF may comprise a novel therapeutic target to treat PDAC and, possibly, its thrombotic complications.


Assuntos
Processamento Alternativo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Tromboplastina/genética , Animais , Coagulação Sanguínea/fisiologia , Western Blotting , Citometria de Fluxo , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica/genética , Análise Serial de Tecidos
18.
Mol Ther ; 21(8): 1517-25, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23732993

RESUMO

Saposin C-dioleoylphosphatidylserine (SapC-DOPS) nanovesicles are a nanotherapeutic which effectively target and destroy cancer cells. Here, we explore the systemic use of SapC-DOPS in several models of brain cancer, including glioblastoma multiforme (GBM), and the molecular mechanism behind its tumor-selective targeting specificity. Using two validated spontaneous brain tumor models, we demonstrate the ability of SapC-DOPS to selectively and effectively cross the blood-brain tumor barrier (BBTB) to target brain tumors in vivo and reveal the targeting to be contingent on the exposure of the anionic phospholipid phosphatidylserine (PtdSer). Increased cell surface expression of PtdSer levels was found to correlate with SapC-DOPS-induced killing efficacy, and tumor targeting in vivo was inhibited by blocking PtdSer exposed on cells. Apart from cancer cell killing, SapC-DOPS also exerted a strong antiangiogenic activity in vitro and in vivo. Interestingly, unlike traditional chemotherapy, hypoxic cells were sensitized to SapC-DOPS-mediated killing. This study emphasizes the importance of PtdSer exposure for SapC-DOPS targeting and supports the further development of SapC-DOPS as a novel antitumor and antiangiogenic agent for brain tumors.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Nanopartículas/administração & dosagem , Fosfatidilserinas/química , Saposinas/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Modelos Animais de Doenças , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Nanopartículas/química , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saposinas/administração & dosagem , Saposinas/química , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 30(6): 1213-8, 2013 Dec.
Artigo em Zh | MEDLINE | ID: mdl-24645599

RESUMO

MicroRNA (miRNA) is a family of endogenous single-stranded RNA about 22 nucleotides in length. Through targeting 3' UTR of message RNA (mRNA), they play important roles in post-transcriptional regulatory functions. For further research of miRNA function, the identification of more miRNA positive targets is needed urgently. Aiming at the high-dimensional small sample data sets in miRNA target prediction, an algorithm of eliminating redundant features is proposed based on v-SVM in this paper, and classification and features selection are also fused. The algorithm of eliminating redundant features optimizes the combination of features, and then constructs the best features combination which can represent miRNA and targets interaction model. The prior parameter v (0 < u < or = 1) controls the compression proportion of data set and selects more distinguishing support vectors. Finally, the classifier model of miRNA target prediction is built. The unbiased assessment of the classifier is achieved with a completely independent test dataset. Experiment results indicated that in both classification recognition and generalization performance of miRNA targets predicition, this model was superior to the present machine learning algorithms such as miTarget, NBmiRTar and TargetMiner, etc.


Assuntos
MicroRNAs , Máquina de Vetores de Suporte , Modelos Teóricos
20.
Biomedicines ; 11(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36831002

RESUMO

Cancer is the second leading cause of death worldwide after heart disease. The current treatment options to fight cancer are limited, and there is a critical need for better treatment strategies. During the last several decades, several electric field (EF)-based approaches for anti-cancer therapies have been introduced, such as electroporation and tumor-treating fields; still, they are far from optimal due to their invasive nature, limited efficacy and significant side effects. In this study, we developed a non-contact EF stimulation system to investigate the in vitro effects of a novel EF modality on cancer biomarkers in normal (human astrocytes, human pancreatic ductal epithelial -HDPE-cells) and cancer cell lines (glioblastoma U87-GBM, human pancreatic cancer cfPac-1, and MiaPaCa-2). Our results demonstrate that this EF modality can successfully modulate an important cancer cell biomarker-cell surface phosphatidylserine (PS). Our results further suggest that moderate, but not low, amplitude EF induces p38 mitogen-activated protein kinase (MAPK), actin polymerization, and cell cycle arrest in cancer cell lines. Based on our results, we propose a mechanism for EF-mediated PS exposure in cancer cells, where the magnitude of induced EF on the cell surface can differentially regulate intracellular calcium (Ca2+) levels, thereby modulating surface PS exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA