Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 57(3): 541-558.e7, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442708

RESUMO

Cancer patients often receive a combination of antibodies targeting programmed death-ligand 1 (PD-L1) and cytotoxic T lymphocyte antigen-4 (CTLA4). We conducted a window-of-opportunity study in head and neck squamous cell carcinoma (HNSCC) to examine the contribution of anti-CTLA4 to anti-PD-L1 therapy. Single-cell profiling of on- versus pre-treatment biopsies identified T cell expansion as an early response marker. In tumors, anti-PD-L1 triggered the expansion of mostly CD8+ T cells, whereas combination therapy expanded both CD4+ and CD8+ T cells. Such CD4+ T cells exhibited an activated T helper 1 (Th1) phenotype. CD4+ and CD8+ T cells co-localized with and were surrounded by dendritic cells expressing T cell homing factors or antibody-producing plasma cells. T cell receptor tracing suggests that anti-CTLA4, but not anti-PD-L1, triggers the trafficking of CD4+ naive/central-memory T cells from tumor-draining lymph nodes (tdLNs), via blood, to the tumor wherein T cells acquire a Th1 phenotype. Thus, CD4+ T cell activation and recruitment from tdLNs are hallmarks of early response to anti-PD-L1 plus anti-CTLA4 in HNSCC.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Antígeno B7-H1/genética , Antígeno CTLA-4 , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Linfócitos T CD4-Positivos , Microambiente Tumoral
2.
Mol Cell ; 68(4): 715-730.e5, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29129638

RESUMO

The spindle assembly checkpoint (SAC) generates a diffusible protein complex that prevents anaphase until all chromosomes are properly attached to spindle microtubules. A key step in SAC initiation is the recruitment of MAD1 to kinetochores, which is generally thought to be governed by the microtubule-kinetochore (MT-KT) attachment status. However, we demonstrate that the recruitment of MAD1 via BUB1, a conserved kinetochore receptor, is not affected by MT-KT interactions in human cells. Instead, BUB1:MAD1 interaction depends on BUB1 phosphorylation, which is controlled by a biochemical timer that integrates counteracting kinase and phosphatase effects on BUB1 into a pulse-generating incoherent feedforward loop. We propose that this attachment-independent timer serves to rapidly activate the SAC at mitotic entry, before the attachment-sensing MAD1 receptors have become fully operational. The BUB1-centered timer is largely impervious to conventional anti-mitotic drugs, and it is, therefore, a promising therapeutic target to induce cell death through permanent SAC activation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/genética , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Fuso Acromático/genética
3.
Bioessays ; 41(3): e1800217, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30730051

RESUMO

Timers and sensors are common devices that make our daily life safer, more convenient, and more efficient. In a cellular context, they arguably play an even more crucial role as they ensure the survival of cells in the presence of various extrinsic and intrinsic stresses. Biological timers and sensors generate distinct signaling profiles, enabling them to produce different types of cellular responses. Recent data suggest that they can work together to guarantee correct timing and responsiveness. By exploring examples of cellular stress signaling from mitosis, DNA damage, and hypoxia, the authors discuss the common architecture of timer-sensor integration, and how its added features contribute to the generation of desired signaling profiles when dealing with stresses of variable duration and strength. The authors propose timer-sensor integration as a widespread mechanism with profound biological implications and therapeutic potential.


Assuntos
Relógios Biológicos/fisiologia , Pontos de Checagem do Ciclo Celular/fisiologia , Células/metabolismo , Mitose/fisiologia , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
4.
J Cell Biochem ; 120(4): 4851-4862, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30623482

RESUMO

Mounting evidence has demonstrated that long noncoding RNAs (lncRNAs) are dysregulated and implicated in the occurrence and development of a wide range of human malignancies. LINC00461, a novel cancer-related lncRNA, has been reported to be highly expressed and serve as oncogene in glioma; however, its biological role in breast cancer (BC) remains obscure. This study aimed to explore the role of LINC00461 in BC and elucidate the potential molecular mechanisms involved. In the current study, LINC00461 was found to be significantly upregulated in both BC tissues and cell lines. Besides, we found that high LINC00461 expression was associated with TNM stage and differentiation. Furthermore, functional studies demonstrated that LINC00461 expedited BC cell migration and invasion. Notably, LINC00461 was observed to enhance the expression of vimentin and zinc-finger E-box binding homeobox factor 1, suppress the expression of E-cadherin, and promote the activation of extracellular signal-regulated kinase and AKT signaling pathways. Mechanical investigations revealed that LINC00461 positively modulated integrin ß3 (ITGB3) expression as miR-30a-5p sponge in BC cells. Taken together, LINC00461 exerts an oncogenic role in BC through miR-30a-5p/ITGB3 axis. Our data indicate that LINC00461 may be used to be a novel candidate therapeutic target and a valuable diagnostic biomarker for BC.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Integrina beta3/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Integrina beta3/genética , Células MCF-7 , MicroRNAs/genética , Invasividade Neoplásica , Proteínas de Neoplasias/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética
5.
Elife ; 122024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836551

RESUMO

Tuft cells are a group of rare epithelial cells that can detect pathogenic microbes and parasites. Many of these cells express signaling proteins initially found in taste buds. It is, however, not well understood how these taste signaling proteins contribute to the response to the invading pathogens or to the recovery of injured tissues. In this study, we conditionally nullified the signaling G protein subunit Gγ13 and found that the number of ectopic tuft cells in the injured lung was reduced following the infection of the influenza virus H1N1. Furthermore, the infected mutant mice exhibited significantly larger areas of lung injury, increased macrophage infiltration, severer pulmonary epithelial leakage, augmented pyroptosis and cell death, greater bodyweight loss, slower recovery, worsened fibrosis and increased fatality. Our data demonstrate that the Gγ13-mediated signal transduction pathway is critical to tuft cells-mediated inflammation resolution and functional repair of the damaged lungs.To our best knowledge, it is the first report indicating subtype-specific contributions of tuft cells to the resolution and recovery.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Transdução de Sinais , Animais , Camundongos , Vírus da Influenza A Subtipo H1N1/fisiologia , Infecções por Orthomyxoviridae , Lesão Pulmonar/metabolismo , Pulmão/patologia , Inflamação , Células Epiteliais/metabolismo , Camundongos Knockout , Modelos Animais de Doenças
6.
Cancer Discov ; 14(2): 326-347, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37824278

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal malignancy because of its aggressive nature and the paucity of effective treatment options. Almost all registered drugs have proven ineffective in addressing the needs of patients with PDAC. This is the result of a poor understanding of the unique tumor-immune microenvironment (TME) in PDAC. To identify druggable regulators of immunosuppressive TME, we performed a kinome- and membranome-focused CRISPR screening using orthotopic PDAC models. Our data showed that receptor-interacting protein kinase 2 (RIPK2) is a crucial driver of immune evasion of cytotoxic T-cell killing and that genetic or pharmacologic targeting of RIPK2 sensitizes PDAC to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy, leading to prolonged survival or complete regression. Mechanistic studies revealed that tumor-intrinsic RIPK2 ablation disrupts desmoplastic TME and restores MHC class I (MHC-I) surface levels through eliminating NBR1-mediated autophagy-lysosomal degradation. Our results provide a rationale for a novel combination therapy consisting of RIPK2 inhibition and anti-PD-1 immunotherapy for PDAC. SIGNIFICANCE: PDAC is resistant to almost all available therapies, including immune checkpoint blockade. Through in vivo CRISPR screen, we identified that RIPK2 plays a crucial role in facilitating immune evasion by impeding antigen presentation and cytotoxic T-cell killing. Targeting tumor-intrinsic RIPK2 either genetically or pharmacologically improves PDAC to anti-PD-1 immunotherapy. See related commentary by Liu et al., p. 208 . This article is featured in Selected Articles from This Issue, p. 201.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Imunoterapia , Linfócitos T Citotóxicos/metabolismo , Proteínas Quinases , Microambiente Tumoral
7.
Cancer Res ; 84(20): 3371-3387, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39250301

RESUMO

Tumor stroma plays a critical role in fostering tumor progression and metastasis. Cancer-associated fibroblasts (CAF) are a major component of the tumor stroma. Identifying the key molecular determinants for the protumor properties of CAFs could enable the development of more effective treatment strategies. In this study, through analyses of single-cell sequencing data, we identified a population of CAFs expressing high levels of sulfatase 1 (SULF1), which was associated with poor prognosis in patients with colorectal cancer. Colorectal cancer models using mice with conditional SULF1 knockout in fibroblasts revealed the tumor-supportive function of SULF1+ CAFs. Mechanistically, SULF1+ CAFs enhanced the release of VEGFA from heparan sulfate proteoglycan. The increased bioavailability of VEGFA initiated the deposition of extracellular matrix and enhanced angiogenesis. In addition, intestinal microbiota-produced butyrate suppressed SULF1 expression in CAFs through its histone deacetylase (HDAC) inhibitory activity. The insufficient butyrate production in patients with colorectal cancer increased the abundance of SULF1+ CAFs, thereby promoting tumor progression. Importantly, tumor growth inhibition by HDAC was dependent on SULF1 expression in CAFs, and patients with colorectal cancer with more SULF1+ CAFs were more responsive to treatment with the HDAC inhibitor chidamide. Collectively, these findings unveil the critical role of SULF1+ CAFs in colorectal cancer and provide a strategy to stratify patients with colorectal cancer for HDAC inhibitor treatment. Significance: SULF1+ cancer-associated fibroblasts play a tumor-promoting role in colorectal cancer by stimulating extracellular matrix deposition and angiogenesis and can serve as a biomarker for the therapeutic response to HDAC inhibitors in patients.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Sulfotransferases , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Animais , Humanos , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Sulfotransferases/metabolismo , Sulfotransferases/genética , Camundongos Knockout , Neovascularização Patológica/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Feminino , Microbioma Gastrointestinal , Butiratos/metabolismo , Butiratos/farmacologia , Linhagem Celular Tumoral , Prognóstico , Masculino
8.
Nat Commun ; 14(1): 7825, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030622

RESUMO

The combination of atezolizumab plus bevacizumab (atezo/bev) has dramatically changed the treatment landscape of advanced HCC (aHCC), achieving durable responses in some patients. Using single-cell transcriptomics, we characterize the intra-tumoural and peripheral immune context of patients with aHCC treated with atezo/bev. Tumours from patients with durable responses are enriched for PDL1+ CXCL10+ macrophages and, based on cell-cell interaction analysis, express high levels of CXCL9/10/11 and are predicted to attract peripheral CXCR3+ CD8+ effector-memory T cells (CD8 TEM) into the tumour. Based on T cell receptor sharing and pseudotime trajectory analysis, we propose that CD8 TEM preferentially differentiate into clonally-expanded PD1- CD45RA+ effector-memory CD8+ T cells (CD8 TEMRA) with pronounced cytotoxicity. In contrast, in non-responders, CD8 TEM remain frozen in their effector-memory state. Finally, in responders, CD8 TEMRA display a high degree of T cell receptor sharing with blood, consistent with their patrolling activity. These findings may help understand the possible mechanisms underlying response to atezo/bev in aHCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Linfócitos T CD8-Positivos , Carcinoma Hepatocelular/tratamento farmacológico , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Receptor de Morte Celular Programada 1 , Células T de Memória , Neoplasias Hepáticas/tratamento farmacológico , Antígenos Comuns de Leucócito , Macrófagos , Receptores de Antígenos de Linfócitos T , Quimiocina CXCL10
9.
Cell Metab ; 34(11): 1843-1859.e11, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36103895

RESUMO

The tumor microenvironment (TME) is a unique niche governed by constant crosstalk within and across all intratumoral cellular compartments. In particular, intratumoral high potassium (K+) has shown immune-suppressive potency on T cells. However, as a pan-cancer characteristic associated with local necrosis, the impact of this ionic disturbance on innate immunity is unknown. Here, we reveal that intratumoral high K+ suppresses the anti-tumor capacity of tumor-associated macrophages (TAMs). We identify the inwardly rectifying K+ channel Kir2.1 as a central modulator of TAM functional polarization in high K+ TME, and its conditional depletion repolarizes TAMs toward an anti-tumor state, sequentially boosting local anti-tumor immunity. Kir2.1 deficiency disturbs the electrochemically dependent glutamine uptake, engendering TAM metabolic reprogramming from oxidative phosphorylation toward glycolysis. Kir2.1 blockade attenuates both murine tumor- and patient-derived xenograft growth. Collectively, our findings reveal Kir2.1 as a determinant and potential therapeutic target for regaining the anti-tumor capacity of TAMs within ionic-imbalanced TME.


Assuntos
Neoplasias , Canais de Potássio Corretores do Fluxo de Internalização , Humanos , Camundongos , Animais , Macrófagos Associados a Tumor , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Microambiente Tumoral , Neoplasias/metabolismo , Potássio/metabolismo
10.
Front Immunol ; 12: 772729, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956198

RESUMO

Recurrent pregnancy loss (RPL), especially the unexplained RPL, is associated with the disruption of maternal immune tolerance. However, little is known about the immune status at the decidua of RPL with embryonic chromosomal aberrations. Herein, mass cytometry (CyTOF) was used to interrogate the immune atlas at the decidua which was obtained from 15 RPL women-six with normal chromosome and nine with chromosomal aberrations-and five controls. The total frequency of CCR2-CD11chigh macrophages increased, while CD39high NK cells and CCR2-CD11clow macrophages decrease significantly in RPL when RPLs were stratified, compared with controls. Pro-inflammatory subsets of CD11chigh macrophages increased, while less pro-inflammatory or suppressive subsets decreased statistically in RPL decidua whenever RPLs were stratified or not. However, CD11chigh NK and CD161highCD8+ T cells increased only in RPL with normal chromosome, while the inactivated and naive CD8+/CD4+ T cells were enriched only in RPL with chromosomal aberrations. A pro-inflammatory signature is observed in RPL decidua; however, differences exist between RPL with and without chromosomal abnormalities.


Assuntos
Aborto Habitual/imunologia , Decídua/imunologia , Adulto , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Aberrações Cromossômicas , Embrião de Mamíferos , Feminino , Humanos , Inflamação/imunologia , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Gravidez , Adulto Jovem
11.
Genome Med ; 13(1): 111, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34238352

RESUMO

BACKGROUND: High-grade serous tubo-ovarian cancer (HGSTOC) is characterised by extensive inter- and intratumour heterogeneity, resulting in persistent therapeutic resistance and poor disease outcome. Molecular subtype classification based on bulk RNA sequencing facilitates a more accurate characterisation of this heterogeneity, but the lack of strong prognostic or predictive correlations with these subtypes currently hinders their clinical implementation. Stromal admixture profoundly affects the prognostic impact of the molecular subtypes, but the contribution of stromal cells to each subtype has poorly been characterised. Increasing the transcriptomic resolution of the molecular subtypes based on single-cell RNA sequencing (scRNA-seq) may provide insights in the prognostic and predictive relevance of these subtypes. METHODS: We performed scRNA-seq of 18,403 cells unbiasedly collected from 7 treatment-naive HGSTOC tumours. For each phenotypic cluster of tumour or stromal cells, we identified specific transcriptomic markers. We explored which phenotypic clusters correlated with overall survival based on expression of these transcriptomic markers in microarray data of 1467 tumours. By evaluating molecular subtype signatures in single cells, we assessed to what extent a phenotypic cluster of tumour or stromal cells contributes to each molecular subtype. RESULTS: We identified 11 cancer and 32 stromal cell phenotypes in HGSTOC tumours. Of these, the relative frequency of myofibroblasts, TGF-ß-driven cancer-associated fibroblasts, mesothelial cells and lymphatic endothelial cells predicted poor outcome, while plasma cells correlated with more favourable outcome. Moreover, we identified a clear cell-like transcriptomic signature in cancer cells, which correlated with worse overall survival in HGSTOC patients. Stromal cell phenotypes differed substantially between molecular subtypes. For instance, the mesenchymal, immunoreactive and differentiated signatures were characterised by specific fibroblast, immune cell and myofibroblast/mesothelial cell phenotypes, respectively. Cell phenotypes correlating with poor outcome were enriched in molecular subtypes associated with poor outcome. CONCLUSIONS: We used scRNA-seq to identify stromal cell phenotypes predicting overall survival in HGSTOC patients. These stromal features explain the association of the molecular subtypes with outcome but also the latter's weakness of clinical implementation. Stratifying patients based on marker genes specific for these phenotypes represents a promising approach to predict prognosis or response to therapy.


Assuntos
Perfilação da Expressão Gênica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Análise de Célula Única , Transcriptoma , Biomarcadores Tumorais , Comunicação Celular , Biologia Computacional/métodos , Citocinas/metabolismo , Variações do Número de Cópias de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoglobulina G/biossíntese , Imunoglobulina G/imunologia , Metanálise como Assunto , Anotação de Sequência Molecular , Gradação de Tumores , Estadiamento de Neoplasias , Especificidade de Órgãos , Neoplasias Ovarianas/diagnóstico , Fenótipo , Plasmócitos/imunologia , Plasmócitos/metabolismo , Prognóstico , Células Estromais/metabolismo , Células Estromais/patologia , Microambiente Tumoral/genética , Sequenciamento Completo do Genoma
12.
Nat Med ; 27(5): 820-832, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33958794

RESUMO

Immune-checkpoint blockade (ICB) combined with neoadjuvant chemotherapy improves pathological complete response in breast cancer. To understand why only a subset of tumors respond to ICB, patients with hormone receptor-positive or triple-negative breast cancer were treated with anti-PD1 before surgery. Paired pre- versus on-treatment biopsies from treatment-naive patients receiving anti-PD1 (n = 29) or patients receiving neoadjuvant chemotherapy before anti-PD1 (n = 11) were subjected to single-cell transcriptome, T cell receptor and proteome profiling. One-third of tumors contained PD1-expressing T cells, which clonally expanded upon anti-PD1 treatment, irrespective of tumor subtype. Expansion mainly involved CD8+ T cells with pronounced expression of cytotoxic-activity (PRF1, GZMB), immune-cell homing (CXCL13) and exhaustion markers (HAVCR2, LAG3), and CD4+ T cells characterized by expression of T-helper-1 (IFNG) and follicular-helper (BCL6, CXCR5) markers. In pre-treatment biopsies, the relative frequency of immunoregulatory dendritic cells (PD-L1+), specific macrophage phenotypes (CCR2+ or MMP9+) and cancer cells exhibiting major histocompatibility complex class I/II expression correlated positively with T cell expansion. Conversely, undifferentiated pre-effector/memory T cells (TCF7+, GZMK+) or inhibitory macrophages (CX3CR1+, C3+) were inversely correlated with T cell expansion. Collectively, our data identify various immunophenotypes and associated gene sets that are positively or negatively correlated with T cell expansion following anti-PD1 treatment. We shed light on the heterogeneity in treatment response to anti-PD1 in breast cancer.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Análise de Célula Única/métodos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Células Dendríticas/imunologia , Feminino , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Macrófagos/imunologia , Terapia Neoadjuvante/métodos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/cirurgia
13.
Signal Transduct Target Ther ; 6(1): 313, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417435

RESUMO

To date, the overall response rate of PD-1 blockade remains unsatisfactory, partially due to limited understanding of tumor immune microenvironment (TIME). B-cell lymphoma 9 (BCL9), a key transcription co-activator of the Wnt pathway, is highly expressed in cancers. By genetic depletion and pharmacological inhibition of BCL9 in tumors, we found that BCL9 suppression reduced tumor growth, promoted CD8+ T cell tumor infiltration, and enhanced response to anti-PD-1 treatment in mouse colon cancer models. To determine the underlying mechanism of BCL9's role in TIME regulation, single-cell RNA-seq was applied to reveal cellular landscape and transcription differences in the tumor immune microenvironment upon BCL9 inhibition. CD155-CD226 and CD155-CD96 checkpoints play key roles in cancer cell/CD8+ T cell interaction. BCL9 suppression induces phosphorylation of VAV1 in CD8+ T cells and increases GLI1 and PATCH expression to promote CD155 expression in cancer cells. In The Cancer Genome Atlas database analysis, we found that BCL9 expression is positively associated with CD155 and negatively associated with CD226 expression. BCL9 is also linked to adenomatous polyposis coli (APC) mutation involved in patient survival following anti-PD-1 treatment. This study points to cellular diversity within the tumor immune microenvironment affected by BCL9 inhibition and provides new insights into the role of BCL9 in regulating CD226 and CD96 checkpoints.


Assuntos
Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos T/genética , Neoplasias do Colo/tratamento farmacológico , Receptor de Morte Celular Programada 1/genética , Fatores de Transcrição/genética , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-vav/genética , Receptores Virais/genética , Fatores de Transcrição/antagonistas & inibidores , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Proteína GLI1 em Dedos de Zinco/genética
14.
Nat Commun ; 12(1): 6243, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716338

RESUMO

Understanding the pathology of COVID-19 is a global research priority. Early evidence suggests that the respiratory microbiome may be playing a role in disease progression, yet current studies report contradictory results. Here, we examine potential confounders in COVID-19 respiratory microbiome studies by analyzing the upper (n = 58) and lower (n = 35) respiratory tract microbiome in well-phenotyped COVID-19 patients and controls combining microbiome sequencing, viral load determination, and immunoprofiling. We find that time in the intensive care unit and type of oxygen support, as well as associated treatments such as antibiotic usage, explain the most variation within the upper respiratory tract microbiome, while SARS-CoV-2 viral load has a reduced impact. Specifically, mechanical ventilation is linked to altered community structure and significant shifts in oral taxa previously associated with COVID-19. Single-cell transcriptomics of the lower respiratory tract of COVID-19 patients identifies specific oral bacteria in physical association with proinflammatory immune cells, which show higher levels of inflammatory markers. Overall, our findings suggest confounders are driving contradictory results in current COVID-19 microbiome studies and careful attention needs to be paid to ICU stay and type of oxygen support, as bacteria favored in these conditions may contribute to the inflammatory phenotypes observed in severe COVID-19 patients.


Assuntos
COVID-19/microbiologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Humanos , Microbiota/fisiologia , SARS-CoV-2/patogenicidade , Transcriptoma/genética
15.
Cell Res ; 31(3): 272-290, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33473155

RESUMO

How the innate and adaptive host immune system miscommunicate to worsen COVID-19 immunopathology has not been fully elucidated. Here, we perform single-cell deep-immune profiling of bronchoalveolar lavage (BAL) samples from 5 patients with mild and 26 with critical COVID-19 in comparison to BALs from non-COVID-19 pneumonia and normal lung. We use pseudotime inference to build T-cell and monocyte-to-macrophage trajectories and model gene expression changes along them. In mild COVID-19, CD8+ resident-memory (TRM) and CD4+ T-helper-17 (TH17) cells undergo active (presumably antigen-driven) expansion towards the end of the trajectory, and are characterized by good effector functions, while in critical COVID-19 they remain more naïve. Vice versa, CD4+ T-cells with T-helper-1 characteristics (TH1-like) and CD8+ T-cells expressing exhaustion markers (TEX-like) are enriched halfway their trajectories in mild COVID-19, where they also exhibit good effector functions, while in critical COVID-19 they show evidence of inflammation-associated stress at the end of their trajectories. Monocyte-to-macrophage trajectories show that chronic hyperinflammatory monocytes are enriched in critical COVID-19, while alveolar macrophages, otherwise characterized by anti-inflammatory and antigen-presenting characteristics, are depleted. In critical COVID-19, monocytes contribute to an ATP-purinergic signaling-inflammasome footprint that could enable COVID-19 associated fibrosis and worsen disease-severity. Finally, viral RNA-tracking reveals infected lung epithelial cells, and a significant proportion of neutrophils and macrophages that are involved in viral clearance.


Assuntos
Imunidade Adaptativa , Lavagem Broncoalveolar , COVID-19/diagnóstico , COVID-19/imunologia , Imunidade Inata , Análise de Célula Única , Líquido da Lavagem Broncoalveolar , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Comunicação Celular , Perfilação da Expressão Gênica , Humanos , Pulmão/virologia , Macrófagos Alveolares/citologia , Monócitos/citologia , Neutrófilos/citologia , Fenótipo , Análise de Componente Principal , RNA-Seq , Células Th17/citologia
16.
Cancer Immunol Res ; 9(3): 309-323, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33361087

RESUMO

IL1ß is a central mediator of inflammation. Secretion of IL1ß typically requires proteolytic maturation by the inflammasome and formation of membrane pores by gasdermin D (GSDMD). Emerging evidence suggests an important role for IL1ß in promoting cancer progression in patients, but the underlying mechanisms are ill-defined. Here, we have shown a key role for IL1ß in driving tumor progression in two distinct mouse tumor models. Notably, activation of the inflammasome, caspase-8, as well as the pore-forming proteins GSDMD and mixed lineage kinase domain-like protein in the host were dispensable for the release of intratumoral bioactive IL1ß. Inflammasome-independent IL1ß release promoted systemic neutrophil expansion and fostered accumulation of T-cell-suppressive neutrophils in the tumor. Moreover, IL1ß was essential for neutrophil infiltration triggered by antiangiogenic therapy, thereby contributing to treatment-induced immunosuppression. Deletion of IL1ß allowed intratumoral accumulation of CD8+ effector T cells that subsequently activated tumor-associated macrophages. Depletion of either CD8+ T cells or macrophages abolished tumor growth inhibition in IL1ß-deficient mice, demonstrating a crucial role for CD8+ T-cell-macrophage cross-talk in the antitumor immune response. Overall, these results support a tumor-promoting role for IL1ß through establishing an immunosuppressive microenvironment and show that inflammasome activation is not essential for release of this cytokine in tumors.


Assuntos
Interleucina-1beta/metabolismo , Neoplasias/imunologia , Neutrófilos/imunologia , Evasão Tumoral , Microambiente Tumoral/imunologia , Animais , Comunicação Celular/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Interleucina-1beta/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Knockout , Neoplasias/patologia , Neutrófilos/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Linfócitos T Citotóxicos/imunologia , Macrófagos Associados a Tumor/imunologia
17.
Mol Biol Cell ; 31(6): 419-438, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31967936

RESUMO

Chromosome segregation during mitosis is antagonistically regulated by the Aurora-B kinase and RepoMan (recruits PP1 onto mitotic chromatin at anaphase)-associated phosphatases PP1/PP2A. Aurora B is overexpressed in many cancers but, surprisingly, this only rarely causes lethal aneuploidy. Here we show that RepoMan abundance is regulated by the same mechanisms that control Aurora B, including FOXM1-regulated expression and proteasomal degradation following ubiquitination by APC/C-CDH1 or SCFFBXW7. The deregulation of these mechanisms can account for the balanced co-overexpression of Aurora B and RepoMan in many cancers, which limits chromosome segregation errors. In addition, Aurora B and RepoMan independently promote cancer cell proliferation by reducing checkpoint--induced cell-cycle arrest during interphase. The co-up-regulation of RepoMan and Aurora B in tumors is inversely correlated with patient survival, underscoring its potential importance for tumor progression. Finally, we demonstrate that high RepoMan levels sensitize cancer cells to Aurora-B inhibitors. Hence, the co-up-regulation of RepoMan and Aurora B is associated with tumor aggressiveness but also exposes a vulnerable target for therapeutic intervention.


Assuntos
Aurora Quinase B/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Proteína Forkhead Box M1/metabolismo , Células HEK293 , Humanos , Interfase , Mitose , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteólise , Resultado do Tratamento
18.
Genome Biol ; 21(1): 182, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32718321

RESUMO

BACKGROUND: Hypoxia is pervasive in cancer and other diseases. Cells sense and adapt to hypoxia by activating hypoxia-inducible transcription factors (HIFs), but it is still an outstanding question why cell types differ in their transcriptional response to hypoxia. RESULTS: We report that HIFs fail to bind CpG dinucleotides that are methylated in their consensus binding sequence, both in in vitro biochemical binding assays and in vivo studies of differentially methylated isogenic cell lines. Based on in silico structural modeling, we show that 5-methylcytosine indeed causes steric hindrance in the HIF binding pocket. A model wherein cell-type-specific methylation landscapes, as laid down by the differential expression and binding of other transcription factors under normoxia, control cell-type-specific hypoxia responses is observed. We also discover ectopic HIF binding sites in repeat regions which are normally methylated. Genetic and pharmacological DNA demethylation, but also cancer-associated DNA hypomethylation, expose these binding sites, inducing HIF-dependent expression of cryptic transcripts. In line with such cryptic transcripts being more prone to cause double-stranded RNA and viral mimicry, we observe low DNA methylation and high cryptic transcript expression in tumors with high immune checkpoint expression, but not in tumors with low immune checkpoint expression, where they would compromise tumor immunotolerance. In a low-immunogenic tumor model, DNA demethylation upregulates cryptic transcript expression in a HIF-dependent manner, causing immune activation and reducing tumor growth. CONCLUSIONS: Our data elucidate the mechanism underlying cell-type-specific responses to hypoxia and suggest DNA methylation and hypoxia to underlie tumor immunotolerance.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Metilação de DNA , Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Evasão Tumoral , Células A549 , Humanos , Tolerância Imunológica , Células MCF-7
19.
Cell Res ; 30(9): 745-762, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32561858

RESUMO

The stromal compartment of the tumor microenvironment consists of a heterogeneous set of tissue-resident and tumor-infiltrating cells, which are profoundly moulded by cancer cells. An outstanding question is to what extent this heterogeneity is similar between cancers affecting different organs. Here, we profile 233,591 single cells from patients with lung, colorectal, ovary and breast cancer (n = 36) and construct a pan-cancer blueprint of stromal cell heterogeneity using different single-cell RNA and protein-based technologies. We identify 68 stromal cell populations, of which 46 are shared between cancer types and 22 are unique. We also characterise each population phenotypically by highlighting its marker genes, transcription factors, metabolic activities and tissue-specific expression differences. Resident cell types are characterised by substantial tissue specificity, while tumor-infiltrating cell types are largely shared across cancer types. Finally, by applying the blueprint to melanoma tumors treated with checkpoint immunotherapy and identifying a naïve CD4+ T-cell phenotype predictive of response to checkpoint immunotherapy, we illustrate how it can serve as a guide to interpret scRNA-seq data. In conclusion, by providing a comprehensive blueprint through an interactive web server, we generate the first panoramic view on the shared complexity of stromal cells in different cancers.


Assuntos
Neoplasias/genética , Neoplasias/patologia , RNA-Seq , Análise de Célula Única , Microambiente Tumoral , Linfócitos B/imunologia , Diferenciação Celular , Células Dendríticas/metabolismo , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Células Matadoras Naturais/imunologia , Macrófagos/patologia , Monócitos/patologia , Especificidade de Órgãos , Fenótipo , Reprodutibilidade dos Testes , Processos Estocásticos , Células Estromais/metabolismo , Células Estromais/patologia
20.
Nat Genet ; 52(6): 594-603, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32451460

RESUMO

Immunotherapy for metastatic colorectal cancer is effective only for mismatch repair-deficient tumors with high microsatellite instability that demonstrate immune infiltration, suggesting that tumor cells can determine their immune microenvironment. To understand this cross-talk, we analyzed the transcriptome of 91,103 unsorted single cells from 23 Korean and 6 Belgian patients. Cancer cells displayed transcriptional features reminiscent of normal differentiation programs, and genetic alterations that apparently fostered immunosuppressive microenvironments directed by regulatory T cells, myofibroblasts and myeloid cells. Intercellular network reconstruction supported the association between cancer cell signatures and specific stromal or immune cell populations. Our collective view of the cellular landscape and intercellular interactions in colorectal cancer provide mechanistic information for the design of efficient immuno-oncology treatment strategies.


Assuntos
Linhagem da Célula , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Neoplasias Colorretais/patologia , Mucosa Gástrica/imunologia , Mucosa Gástrica/patologia , Humanos , Análise de Sequência de RNA , Análise de Célula Única , Células Estromais/patologia , Linfócitos T/imunologia , Linfócitos T/patologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA