RESUMO
Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) cause severe respiratory diseases in infants and elderly adults1. No vaccine or effective antiviral therapy currently exists to control RSV or HMPV infections. During viral genome replication and transcription, the tetrameric phosphoprotein P serves as a crucial adaptor between the ribonucleoprotein template and the L protein, which has RNA-dependent RNA polymerase (RdRp), GDP polyribonucleotidyltransferase and cap-specific methyltransferase activities2,3. How P interacts with L and mediates the association with the free form of N and with the ribonucleoprotein is not clear for HMPV or other major human pathogens, including the viruses that cause measles, Ebola and rabies. Here we report a cryo-electron microscopy reconstruction that shows the ring-shaped structure of the polymerase and capping domains of HMPV-L bound to a tetramer of P. The connector and methyltransferase domains of L are mobile with respect to the core. The putative priming loop that is important for the initiation of RNA synthesis is fully retracted, which leaves space in the active-site cavity for RNA elongation. P interacts extensively with the N-terminal region of L, burying more than 4,016 Å2 of the molecular surface area in the interface. Two of the four helices that form the coiled-coil tetramerization domain of P, and long C-terminal extensions projecting from these two helices, wrap around the L protein in a manner similar to tentacles. The structural versatility of the four P protomers-which are largely disordered in their free state-demonstrates an example of a 'folding-upon-partner-binding' mechanism for carrying out P adaptor functions. The structure shows that P has the potential to modulate multiple functions of L and these results should accelerate the design of specific antiviral drugs.
Assuntos
Metapneumovirus/enzimologia , Fosfoproteínas/química , RNA Polimerase Dependente de RNA/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Microscopia Crioeletrônica , Metapneumovirus/genética , Modelos Moleculares , Fosfoproteínas/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismoRESUMO
Current coronavirus disease 2019 vaccines face limitations including waning immunity, immune escape by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, limited cellular response, and poor mucosal immunity. We engineered a Clec9A-receptor binding domain (RBD) antibody construct that delivers the SARS-CoV-2 RBD to conventional type 1 dendritic cells. Compared with non-targeting approaches, single dose immunization in mice with Clec9A-RBD induced far higher RBD-specific antibody titers that were sustained for up to 21 months after vaccination. Uniquely, increasing neutralizing and antibody-dependent cytotoxicity activities across the sarbecovirus family was observed, suggesting antibody affinity maturation over time. Consistently and remarkably, RBD-specific follicular T helper cells and germinal center B cells persisted up to 12 months after immunization. Furthermore, Clec9A-RBD immunization induced a durable mono- and poly-functional T-helper 1-biased cellular response that was strongly cross-reactive against SARS-CoV-2 variants of concern, including Omicron subvariants, and with a robust CD8+ T cell signature. Uniquely, Clec9A-RBD single-shot systemic immunization effectively primed RBD-specific cellular and humoral immunity in lung and resulted in significant protection against homologous SARS-CoV-2 challenge as evidenced by limited body weight loss and approximately 2 log10 decrease in lung viral loads compared with non-immunized controls. Therefore, Clec9A-RBD immunization has the potential to trigger robust and sustained, systemic and mucosal protective immunity against rapidly evolving SARS-CoV2 variants.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Células Dendríticas , Imunidade nas Mucosas , Lectinas Tipo C , SARS-CoV-2 , Animais , Camundongos , Células Dendríticas/imunologia , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/imunologia , Humanos , Feminino , Glicoproteína da Espícula de Coronavírus/imunologia , Receptores Mitogênicos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Receptores ImunológicosRESUMO
In this paper, we utilized a combined mode-locked fiber laser including a saturable absorber mirror (SESAM) and nonlinear polarization evolution (NPE) to generate conventional solitons (CSs) and dissipative solitons (DSs), respectively, in order to investigate the difference in signal-to-noise ratio (SNR) between the outputs of these two types of solitons in artificial and natural saturators. Both simulation and experimental results demonstrated that, under the shared pump power, the DSs from the NPE-based mode-locked fiber output exhibited a higher SNR of approximately 60 dB, compared to the CSs from the SESAM-based mode-locked fiber output of 45 dB. Furthermore, we conducted theoretical analysis of these results. We believe that this work can provide new approaches for SNR improvement research in the fields of passively mode-locked fiber lasers.
RESUMO
Waning antibody levels against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the emergence of variants of concern highlight the need for booster vaccinations. This is particularly important for the elderly population, who are at a higher risk of developing severe coronavirus disease 2019 (COVID-19) disease. While studies have shown increased antibody responses following booster vaccination, understanding the changes in T and B cell compartments induced by a third vaccine dose remains limited. We analyzed the humoral and cellular responses in subjects who received either a homologous messenger RNA(mRNA) booster vaccine (BNT162b2 + BNT162b2 + BNT162b2; ''BBB") or a heterologous mRNA booster vaccine (BNT162b2 + BNT162b2 + mRNA-1273; ''BBM") at Day 0 (prebooster), Day 7, and Day 28 (postbooster). Compared with BBB, elderly individuals (≥60 years old) who received the BBM vaccination regimen display higher levels of neutralizing antibodies against the Wuhan and Delta strains along with a higher boost in immunoglobulin G memory B cells, particularly against the Omicron variant. Circulating T helper type 1(Th1), Th2, Th17, and T follicular helper responses were also increased in elderly individuals given the BBM regimen. While mRNA vaccines increase antibody, T cell, and B cell responses against SARS-CoV-2 1 month after receiving the third dose booster, the efficacy of the booster vaccine strategies may vary depending on age group and regimen combination.
Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Humanos , Pessoa de Meia-Idade , SARS-CoV-2/genética , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas de mRNA , Anticorpos Neutralizantes , Anticorpos Antivirais , VacinaçãoRESUMO
Bacterial two-component regulatory systems (TCS) play important roles in sensing environmental stimuli and responding to them by regulating gene expression. VbrK/VbrR, a TCS in Vibrio parahaemolyticus, confers resistance to ß-lactam antibiotics through activating a ß-lactamase gene. Its periplasmic sensor domain was previously suggested to detect ß-lactam antibiotics by direct binding. Here, we report a crystal structure of the periplasmic sensing domain of VbrK (VbrKSD) using sulfur-based single-wavelength anomalous diffraction (S-SAD) phasing. Contrary to most bacterial sensor domains which form dimers, we show that VbrKSD is a monomer using size exclusion chromatography coupled with multi-angle light scattering. This observation is also supported by molecular dynamics simulations. To quantify the binding affinity of ß-lactam antibiotics to VbrKSD, we performed isothermal titration calorimetry and other biophysical analyses. Unexpectedly, VbrKSD did not show any significant binding to ß-lactam antibiotics. Therefore, we propose that the detection of ß-lactam antibiotics by VbrK is likely to be indirect via an as yet unidentified mechanism.
Assuntos
Antibacterianos/química , Histidina Quinase/química , Periplasma/química , beta-Lactamas/química , Proteínas de Bactérias/química , Cristalografia por Raios X/métodos , Ligação Proteica , Vibrio parahaemolyticus/química , beta-Lactamases/químicaRESUMO
Many eukaryotic organisms encode more than one RNA-dependent RNA polymerase (RdRP) that probably emerged as a result of gene duplication. Such RdRP paralogs often participate in distinct RNA silencing pathways and show characteristic repertoires of enzymatic activities in vitro However, to what extent members of individual paralogous groups can undergo functional changes during speciation remains an open question. We show that orthologs of QDE-1, an RdRP component of the quelling pathway in Neurospora crassa, have rapidly diverged in evolution at the amino acid sequence level. Analyses of purified QDE-1 polymerases from N. crassa (QDE-1(Ncr)) and related fungi, Thielavia terrestris (QDE-1(Tte)) and Myceliophthora thermophila (QDE-1(Mth)), show that all three enzymes can synthesize RNA, but the precise modes of their action differ considerably. Unlike their QDE-1(Ncr) counterpart favoring processive RNA synthesis, QDE-1(Tte) and QDE-1(Mth) produce predominantly short RNA copies via primer-independent initiation. Surprisingly, a 3.19 Å resolution crystal structure of QDE-1(Tte) reveals a quasisymmetric dimer similar to QDE-1(Ncr) Further electron microscopy analyses confirm that QDE-1(Tte) occurs as a dimer in solution and retains this status upon interaction with a template. We conclude that divergence of orthologous RdRPs can result in functional innovation while retaining overall protein fold and quaternary structure.
Assuntos
Evolução Molecular , Proteínas Fúngicas , Neurospora crassa , Multimerização Proteica/fisiologia , RNA Polimerase Dependente de RNA , Cristalografia por Raios X , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Neurospora crassa/enzimologia , Neurospora crassa/genética , Estrutura Quaternária de Proteína , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismoRESUMO
The advent of SARS-CoV-2 variants with defined mutations that augment pathogenicity and/or increase immune evasiveness continues to stimulate global efforts to improve vaccine formulation and efficacy. The extraordinary advantages of lipid nanoparticles (LNPs), including versatile design, scalability, and reproducibility, make them ideal candidates for developing next-generation mRNA vaccines against circulating SARS-CoV-2 variants. Here, we assess the efficacy of LNP-encapsulated mRNA booster vaccines encoding the spike protein of SARS-CoV-2 for variants of concern (Delta, Omicron) and using a predecessor (YN2016C isolated from bats) strain spike protein to elicit durable cross-protective neutralizing antibody responses. The mRNA-LNP vaccines have desirable physicochemical characteristics, such as small size (~78 nm), low polydispersity index (<0.13), and high encapsulation efficiency (>90%). We employ in vivo bioluminescence imaging to illustrate the capacity of our LNPs to induce robust mRNA expression in secondary lymphoid organs. In a BALB/c mouse model, a three-dose subcutaneous immunization of mRNA-LNPs vaccines achieved remarkably high levels of cross-neutralization against the Omicron B1.1.529 and BA.2 variants for extended periods of time (28 weeks) with good safety profiles for all constructs when used in a booster regime, including the YN2016C bat virus sequences. These findings have important implications for the design of mRNA-LNP vaccines that aim to trigger durable cross-protective immunity against the current and newly emerging variants.
RESUMO
Although the two-dose mRNA vaccination regime provides protection against SARS-CoV-2, older adults have been shown to exhibit poorer vaccination responses. In addition, the role of vaccine-induced T-cell responses is not well characterised. We aim to assess the impact of age on immune responses after two doses of the BNT162b2 mRNA vaccine, focussing on antigen-specific T-cells. A prospective 3-month study was conducted on 15 young (median age 31 years, interquartile range (IQR) 25-35 years) and 14 older adults (median age 72 years, IQR 70-73 years). We assessed functional, neutralising antibody responses against SARS-CoV-2 variants using ACE-2 inhibition assays, and changes in B and T-cell subsets by high-dimensional flow cytometry. Antigen-specific T-cell responses were also quantified by intracellular cytokine staining and flow cytometry. Older adults had attenuated T-helper (Th) response to vaccination, which was associated with weaker antibody responses and decreased SARS-CoV-2 neutralisation. Antigen-specific interferon-γ (IFNγ)-secreting CD4+ T-cells to wild-type and Omicron antigens increased in young adults, which was strongly positively correlated with their neutralising antibody responses. Conversely, this relationship was negative in older adults. Hence, older adults' relative IFNγ-secreting CD4+ T cell deficiency might explain their poorer COVID-19 vaccination responses. Further exploration into the aetiology is needed and would be integral in developing novel vaccination strategies and improving infection outcomes in older adults.
Assuntos
COVID-19 , Interferon gama , Adulto Jovem , Humanos , Idoso , Adulto , Linfócitos T CD4-Positivos , Vacinas contra COVID-19 , Vacina BNT162 , Estudos Prospectivos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Anticorpos Neutralizantes , Anticorpos AntiviraisRESUMO
BACKGROUND: Immunity to SARS-CoV-2 vaccination and infection differs considerably among individuals. We investigate the critical pathways that influence vaccine-induced cross-variant serological immunity among individuals at high-risk of COVID-19 complications. METHODS: Neutralizing antibodies to the wild-type SARS-CoV-2 virus and its variants (Beta, Gamma, Delta and Omicron) were analyzed in patients with autoimmune diseases, chronic comorbidities (multimorbidity), and healthy controls. Antibody levels were assessed at baseline and at different intervals up to 12 months following primary and booster vaccination with either BNT162b2 or mRNA-1273. Immunity induced by vaccination with and without infection (hybrid immunity) was compared with that of unvaccinated individuals with recent SARS-CoV-2 infection. Plasma cytokines were analyzed to investigate variations in antibody production following vaccination. RESULTS: Patients with autoimmune diseases (n = 137) produced lesser antibodies to the wild-type SARS-CoV-2 virus and its variants compared with those in the multimorbidity (n = 153) and healthy groups (n = 229); antibody levels were significantly lower in patients with neuromyelitis optica and those on prednisolone, mycophenolate or rituximab treatment. Multivariate logistic regression analysis identified neuromyelitis optica (odds ratio 8.20, 95% CI 1.68-39.9) and mycophenolate (13.69, 3.78-49.5) as significant predictors of a poorer antibody response to vaccination (i.e, neutralizing antibody <40%). Infected participants exhibited antibody levels that were 28.7% higher (95% CI 24.7-32.7) compared to non-infected participants six months after receiving a booster vaccination. Individuals infected during the Delta outbreak generated cross-protective neutralizing antibodies against the Omicron variant in quantities comparable to those observed after infection with the Omicron variant itself. In contrast, unvaccinated individuals recently infected with the wild-type (n = 2390) consistently displayed lower levels of neutralizing antibodies against both the wild-type virus and other variants. Pathway analyses suggested an inverse relationship between baseline T cell subsets and antibody production following vaccination. CONCLUSION: Hybrid immunity confers a robust protection against COVID-19 among immunocompromised individuals.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Hospedeiro Imunocomprometido , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/prevenção & controle , Masculino , Feminino , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Anticorpos Antivirais/sangue , Hospedeiro Imunocomprometido/imunologia , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Idoso , Vacina BNT162/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Vacinação , Proteção Cruzada/imunologia , Imunização Secundária , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Doenças Autoimunes/imunologia , Citocinas/sangueRESUMO
Despite being a convenient clinical substrate for biomonitoring, saliva's widespread utilization has not yet been realized. The non-Newtonian, heterogenous, and highly viscous nature of saliva complicate the development of automated fluid handling processes that are vital for accurate diagnoses. Furthermore, conventional saliva processing methods are resource and/or time intensive precluding certain testing capabilities, with these challenges aggravated during a pandemic. The conventional approaches may also alter analyte structure, reducing application opportunities in point-of-care diagnostics. To overcome these challenges, we introduce the SHEAR saliva collection device that mechanically processes saliva, in a rapid and resource-efficient way. We demonstrate the device's impact on reducing saliva's viscosity, improving sample's uniformity, and increasing diagnostic performance of a COVID-19 rapid antigen test. Additionally, a formal user experience study revealed generally positive comments. SHEAR saliva collection device may support realization of the saliva's potential, particularly in large-scale and/or resource-limited settings for global and community diagnostics.
RESUMO
COVID-19 vaccination has significantly impacted the global pandemic by reducing the severity of infection, lowering rates of hospitalization, and reducing morbidity/mortality in healthy individuals. However, the degree of vaccine-induced protection afforded to renal transplant recipients who receive forms of maintenance immunosuppression remains poorly defined. This is particularly important when we factor in the emergence of SARS-CoV-2 variants of concern (VOCs) that have defined mutations that reduce the effectiveness of Ab responses targeting the Spike Ags from the ancestral Wuhan-Hu-1 variants employed in the most widely used vaccine formats. In this study, we describe a qualitative, longitudinal analysis of neutralizing Ab responses against multiple SARS-CoV-2 VOCs in 129 renal transplant recipients who have received three doses of the Pfizer-BioNTech COVID-19 vaccine (BNT162b2). Our results reveal a qualitative and quantitative reduction in the vaccine-induced serological response in transplant recipients versus healthy controls where only 51.9% (67 of 129) made a measurable vaccine-induced IgG response and 41.1% (53 of 129) exhibited a significant neutralizing Ab titer (based on a pseudovirus neutralization test value >50%). Analysis on the VOCs revealed strongest binding toward the wild-type Wuhan-Hu-1 and Delta variants but none with both of the Omicron variants tested (BA1 and BA2). Moreover, older transplant recipients and those who are on mycophenolic acid as part of their maintenance therapy exhibited a profound reduction in all of the analyzed vaccine-induced immune correlates. These data have important implications for how we monitor and manage transplant patients in the future as COVID-19 becomes endemic in our populations.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacina BNT162 , Transplantados , COVID-19/prevenção & controle , SARS-CoV-2RESUMO
The changing landscape of SARS-CoV-2 Spike protein is linked to the emergence of variants, immune-escape and reduced efficacy of the existing repertoire of anti-viral antibodies. The functional activity of neutralizing antibodies is linked to their quaternary changes occurring as a result of antibody-Spike trimer interactions. Here, we reveal the conformational dynamics and allosteric perturbations linked to binding of novel human antibodies and the viral Spike protein. We identified epitope hotspots, and associated changes in Spike dynamics that distinguish weak, moderate and strong neutralizing antibodies. We show the impact of mutations in Wuhan-Hu-1, Delta, and Omicron variants on differences in the antibody-induced conformational changes in Spike and illustrate how these render certain antibodies ineffective. Antibodies with similar binding affinities may induce destabilizing or stabilizing allosteric effects on Spike, with implications for neutralization efficacy. Our results provide mechanistic insights into the functional modes and synergistic behavior of human antibodies against COVID-19 and may assist in designing effective antiviral strategies.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Testes de NeutralizaçãoRESUMO
The scale and duration of neutralizing antibody responses targeting SARS-CoV-2 viral variants represents a critically important serological parameter that predicts protective immunity for COVID-19. In this study, we describe the development and employment of a new functional assay that measures neutralizing antibodies for SARS-CoV-2 and present longitudinal data illustrating the impact of age, sex and comorbidities on the kinetics and strength of vaccine-induced antibody responses for key variants in an Asian volunteer cohort. We also present an accurate quantitation of serological responses for SARS-CoV-2 that exploits a unique set of in-house, recombinant human monoclonal antibodies targeting the viral Spike and nucleocapsid proteins and demonstrate a reduction in neutralizing antibody titres across all groups 6 months post-vaccination. We also observe a marked reduction in the serological binding activity and neutralizing responses targeting recently newly emerged Omicron variants including XBB 1.5 and highlight a significant increase in cross-protective neutralizing antibody responses following a third dose (boost) of vaccine. These data illustrate how key virological factors such as immune escape mutations combined with host demographic factors such as age and sex of the vaccinated individual influence the strength and duration of cross-protective serological immunity for COVID-19.
Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , Anticorpos Amplamente Neutralizantes , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Emprego , Vacinação , Anticorpos AntiviraisRESUMO
Previous studies with Geobacter sulfurreducens have demonstrated that OmcS, an abundant c-type cytochrome that is only loosely bound to the outer surface, plays an important role in electron transfer to Fe(III) oxides as well as other extracellular electron acceptors. In order to further investigate the function of OmcS, it was purified from a strain that overproduces the protein. Purified OmcS had a molecular mass of 47015 Da, and six low-spin bis-histidinyl hexacoordinated heme groups. Its midpoint redox potential was -212 mV. A thermal stability analysis showed that the cooperative melting of purified OmcS occurs in the range of 65-82 °C. Far UV circular dichroism spectroscopy indicated that the secondary structure of purified OmcS consists of about 10% α-helix and abundant disordered structures. Dithionite-reduced OmcS was able to transfer electrons to a variety of substrates of environmental importance including insoluble Fe(III) oxide, Mn(IV) oxide and humic substances. Stopped flow analysis revealed that the reaction rate of OmcS oxidation has a hyperbolic dependence on the concentration of the studied substrates. A ten-fold faster reaction rate with anthraquinone-2,6-disulfonate (AQDS) (25.2 s⻹) was observed as compared to that with Fe(III) citrate (2.9 s⻹). The results, coupled with previous localization and gene deletion studies, suggest that OmcS is well-suited to play an important role in extracellular electron transfer.
Assuntos
Grupo dos Citocromos c/química , Geobacter/enzimologia , Ferro/metabolismo , Dicroísmo Circular , Grupo dos Citocromos c/isolamento & purificação , Grupo dos Citocromos c/metabolismo , Heme/metabolismo , Cinética , Peso Molecular , Oxirredução , SolubilidadeRESUMO
Several human monoclonal Abs for treating Influenza have been evaluated in clinical trials with limited success despite demonstrating superiority in preclinical animal models including mice. To conduct efficacy studies in mice, human monoclonal Abs are genetically engineered to contain mouse heavy chain constant domain to facilitate the engagement of Fc-receptors on mouse immune effector cells. Although studies have consistently reported discrepancies in Ab effectiveness following genetic engineering, the structural and mechanistic basis for these inconsistencies remain uncharacterized. Here, we use homology modeling to predict variable region (VR) analogous monoclonal Abs possessing human IgG1, mouse IgG1, and mouse IgG2a heavy chain constant domains. We then examine predicted 3D structures for variations in the spatial location and orientation of corresponding paratope amino acid residues. By structurally aligning crystal structures of Fabs in complex with hemagglutinin (HA), we show that corresponding paratope amino acid residues for VR-analogous human IgG1, mouse IgG1, and mouse IgG2a monoclonal Abs interact differentially with HA suggesting that their epitopes might not be identical. To demonstrate that variations in the paratope 3D fine architecture have implications for Ab specificity and effectiveness, we genetically engineered VR-analogous human IgG1, human IgG4, mouse IgG1, and mouse IgG2a monoclonal Abs and explored their specificity and effectiveness in protecting MDCK cells from infection by pandemic H1N1 and H3N2 Influenza viruses. We found that VR-analogous monoclonal Abs placed on mouse heavy chain constant domains were more efficacious at protecting MDCK cells from Influenza virus infection relative to those on human heavy chain constant domains. Interestingly, mouse but not human heavy chain constant domains increased target breadth in some monoclonal Abs. These data suggest that heavy chain constant domain sequences play a role in shaping Ab repertoires that go beyond class or sub-class differences in immune effector recruitment. This represents a facet of Ab biology that can potentially be exploited to improve the scope and utilization of current therapeutic or prophylactic candidates for influenza.
RESUMO
The spike (S) protein is the main handle for SARS-CoV-2 to enter host cells via surface angiotensin-converting enzyme 2 (ACE2) receptors. How ACE2 binding activates proteolysis of S protein is unknown. Here, using amide hydrogen-deuterium exchange mass spectrometry and molecular dynamics simulations, we have mapped the S:ACE2 interaction interface and uncovered long-range allosteric propagation of ACE2 binding to sites necessary for host-mediated proteolysis of S protein, critical for viral host entry. Unexpectedly, ACE2 binding enhances dynamics at a distal S1/S2 cleavage site and flanking protease docking site ~27 Å away while dampening dynamics of the stalk hinge (central helix and heptad repeat [HR]) regions ~130 Å away. This highlights that the stalk and proteolysis sites of the S protein are dynamic hotspots in the prefusion state. Our findings provide a dynamics map of the S:ACE2 interface in solution and also offer mechanistic insights into how ACE2 binding is allosterically coupled to distal proteolytic processing sites and viral-host membrane fusion. Thus, protease docking sites flanking the S1/S2 cleavage site represent alternate allosteric hotspot targets for potential therapeutic development.
Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Sítio Alostérico , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/química , Sítios de Ligação , COVID-19/metabolismo , Humanos , Espectrometria de Massas/métodos , Simulação de Dinâmica Molecular , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteólise , Receptores Virais/química , Receptores Virais/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Internalização do VírusRESUMO
Background: Neutralizing antibodies (NAbs) prevent pathogens from infecting host cells. Detection of SARS-CoV-2 NAbs is critical to evaluate herd immunity and monitor vaccine efficacy against SARS-CoV-2, the virus that causes COVID-19. All currently available NAb tests are lab-based and time-intensive. Method: We develop a 10 min cellulose pull-down test to detect NAbs against SARS-CoV-2 from human plasma. The test evaluates the ability of antibodies to disrupt ACE2 receptor-RBD complex formation. The simple, portable, and rapid testing process relies on two key technologies: (i) the vertical-flow paper-based assay format and (ii) the rapid interaction of cellulose binding domain to cellulose paper. Results: Here we show the construction of a cellulose-based vertical-flow test. The developed test gives above 80% sensitivity and specificity and up to 93% accuracy as compared to two current lab-based methods using COVID-19 convalescent plasma. Conclusions: A rapid 10 min cellulose based test has been developed for detection of NAb against SARS-CoV-2. The test demonstrates comparable performance to the lab-based tests and can be used at Point-of-Care. Importantly, the approach used for this test can be easily extended to test RBD variants or to evaluate NAbs against other pathogens.
RESUMO
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.
Assuntos
Citocromos c/análise , Fímbrias Bacterianas/química , Geobacter/enzimologia , Compostos Férricos/metabolismo , Geobacter/metabolismo , Imuno-Histoquímica , Microscopia ImunoeletrônicaRESUMO
Previous studies have demonstrated that Geobacter sulfurreducens requires the c-type cytochrome OmcZ, which is present in large (OmcZ(L); 50-kDa) and small (OmcZ(S); 30-kDa) forms, for optimal current production in microbial fuel cells. This protein was further characterized to aid in understanding its role in current production. Subcellular-localization studies suggested that OmcZ(S) was the predominant extracellular form of OmcZ. N- and C-terminal amino acid sequence analysis of purified OmcZ(S) and molecular weight measurements indicated that OmcZ(S) is a cleaved product of OmcZ(L) retaining all 8 hemes, including 1 heme with the unusual c-type heme-binding motif CX(14)CH. The purified OmcZ(S) was remarkably thermally stable (thermal-denaturing temperature, 94.2 degrees C). Redox titration analysis revealed that the midpoint reduction potential of OmcZ(S) is approximately -220 mV (versus the standard hydrogen electrode [SHE]) with nonequivalent heme groups that cover a large reduction potential range (-420 to -60 mV). OmcZ(S) transferred electrons in vitro to a diversity of potential extracellular electron acceptors, such as Fe(III) citrate, U(VI), Cr(VI), Au(III), Mn(IV) oxide, and the humic substance analogue anthraquinone-2,6-disulfonate, but not Fe(III) oxide. The biochemical properties and extracellular localization of OmcZ suggest that it is well suited for promoting electron transfer in current-producing biofilms of G. sulfurreducens.
Assuntos
Fontes de Energia Bioelétrica , Citocromos c/isolamento & purificação , Citocromos c/metabolismo , Eletricidade , Geobacter/enzimologia , Geobacter/metabolismo , Sítios de Ligação , Citocromos c/química , Transporte de Elétrons , Heme/metabolismo , Temperatura Alta , Dados de Sequência Molecular , Peso Molecular , Oxirredução , Ligação Proteica , Estabilidade Proteica , Alinhamento de Sequência , Análise de Sequência de ProteínaRESUMO
The c-type cytochrome (OmcB) and the multicopper protein (OmpB) required for Fe(III) oxide reduction by Geobacter sulfurreducens were predicted previously to be outer membrane proteins, but it is not clear whether they are positioned in a manner that permits the interaction with Fe(III). Treatment of whole cells with proteinase K inhibited Fe(III) reduction, but had no impact on the inner membrane-associated fumarate reduction. OmcB was digested by protease, resulting in a smaller peptide. However, immunogold labeling coupled with transmission electron microscopy did not detect OmcB, suggesting that it is only partially exposed on the cell surface. In contrast, OmpB was completely digested with protease. OmpB was loosely associated with the cell surface as a substantial portion of it was recovered in the culture supernatant. Immunogold labeling demonstrated that OmpB associated with the cell was evenly distributed on the cell surface rather than localized to one side of the cell like the conductive pili. Although several proteins required for Fe(III) oxide reduction are shown to be exposed on the outer surface of G. sulfurreducens, the finding that OmcB is also surface exposed is the first report of a protein required for optimal Fe(III) citrate reduction at least partially accessible on the cell surface.