Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(28): e2317711121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968101

RESUMO

Adult neural stem cells (NSCs) reside in the dentate gyrus of the hippocampus, and their capacity to generate neurons and glia plays a role in learning and memory. In addition, neurodegenerative diseases are known to be caused by a loss of neurons and glial cells, resulting in a need to better understand stem cell fate commitment processes. We previously showed that NSC fate commitment toward a neuronal or glial lineage is strongly influenced by extracellular matrix stiffness, a property of elastic materials. However, tissues in vivo are not purely elastic and have varying degrees of viscous character. Relatively little is known about how the viscoelastic properties of the substrate impact NSC fate commitment. Here, we introduce a polyacrylamide-based cell culture platform that incorporates mismatched DNA oligonucleotide-based cross-links as well as covalent cross-links. This platform allows for tunable viscous stress relaxation properties via variation in the number of mismatched base pairs. We find that NSCs exhibit increased astrocytic differentiation as the degree of stress relaxation is increased. Furthermore, culturing NSCs on increasingly stress-relaxing substrates impacts cytoskeletal dynamics by decreasing intracellular actin flow rates and stimulating cyclic activation of the mechanosensitive protein RhoA. Additionally, inhibition of motor-clutch model components such as myosin II and focal adhesion kinase partially or completely reverts cells to lineage distributions observed on elastic substrates. Collectively, our results introduce a unique system for controlling matrix stress relaxation properties and offer insight into how NSCs integrate viscoelastic cues to direct fate commitment.


Assuntos
Diferenciação Celular , Células-Tronco Neurais , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/fisiologia , Camundongos , Resinas Acrílicas/química , Proteína rhoA de Ligação ao GTP/metabolismo , Células Cultivadas , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios/citologia , Matriz Extracelular/metabolismo , Estresse Mecânico
2.
Proc Natl Acad Sci U S A ; 111(37): 13319-24, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25161284

RESUMO

Packaging specific exogenous active proteins and DNAs together within a single viral-nanocontainer is challenging. The bacteriophage T4 capsid (100 × 70 nm) is well suited for this purpose, because it can hold a single long DNA or multiple short pieces of DNA up to 170 kb packed together with more than 1,000 protein molecules. Any linear DNA can be packaged in vitro into purified procapsids. The capsid-targeting sequence (CTS) directs virtually any protein into the procapsid. Procapsids are assembled with specific CTS-directed exogenous proteins that are encapsidated before the DNA. The capsid also can display on its surface high-affinity eukaryotic cell-binding peptides or proteins that are in fusion with small outer capsid and head outer capsid surface-decoration proteins that can be added in vivo or in vitro. In this study, we demonstrate that the site-specific recombinase cyclic recombination (Cre) targeted into the procapsid is enzymatically active within the procapsid and recircularizes linear plasmid DNA containing two terminal loxP recognition sites when packaged in vitro. mCherry expression driven by a cytomegalovirus promoter in the capsid containing Cre-circularized DNA is enhanced over linear DNA, as shown in recipient eukaryotic cells. The efficient and specific packaging into capsids and the unpackaging of both DNA and protein with release of the enzymatically altered protein-DNA complexes from the nanoparticles into cells have potential in numerous downstream drug and gene therapeutic applications.


Assuntos
Bacteriófago T4/química , Capsídeo/química , DNA/química , Expressão Gênica , Técnicas de Transferência de Genes , Integrases/metabolismo , Nanopartículas/química , Sítios de Ligação Microbiológicos , Sequência de Bases , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , DNA/isolamento & purificação , Empacotamento do DNA , DNA Circular/metabolismo , Citometria de Fluxo , Fluorescência , Humanos , Dados de Sequência Molecular , Plasmídeos/metabolismo , Coloração e Rotulagem , Transformação Genética
3.
Nat Mater ; 18(8): 779-780, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31332317
4.
Sci Adv ; 10(31): eadk8232, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093963

RESUMO

While extracellular matrix (ECM) stress relaxation is increasingly appreciated to regulate stem cell fate commitment and other behaviors, much remains unknown about how cells process stress-relaxation cues in tissue-like three-dimensional (3D) geometries versus traditional 2D cell culture. Here, we develop an oligonucleotide-crosslinked hyaluronic acid-based ECM platform with tunable stress relaxation properties capable of use in either 2D or 3D. Strikingly, stress relaxation favors neural stem cell (NSC) neurogenesis in 3D but suppresses it in 2D. RNA sequencing and functional studies implicate the membrane-associated protein spectrin as a key 3D-specific transducer of stress-relaxation cues. Confining stress drives spectrin's recruitment to the F-actin cytoskeleton, where it mechanically reinforces the cortex and potentiates mechanotransductive signaling. Increased spectrin expression is also accompanied by increased expression of the transcription factor EGR1, which we previously showed mediates NSC stiffness-dependent lineage commitment in 3D. Our work highlights spectrin as an important molecular sensor and transducer of 3D stress-relaxation cues.


Assuntos
Linhagem da Célula , Matriz Extracelular , Células-Tronco Neurais , Espectrina , Espectrina/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Matriz Extracelular/metabolismo , Animais , Camundongos , Diferenciação Celular , Mecanotransdução Celular , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Neurogênese , Citoesqueleto de Actina/metabolismo , Estresse Mecânico , Humanos , Técnicas de Cultura de Células/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA