Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Med Virol ; 95(4): e28722, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37185860

RESUMO

In contemporary literature, little attention has been paid to the association between coronavirus disease-2019 (COVID-19) and cancer risk. We performed the Mendelian randomization (MR) to investigate the causal associations between the three types of COVID-19 exposures (critically ill COVID-19, hospitalized COVID-19, and respiratory syndrome coronavirus 2 (SARS-CoV-2) infection) and 33 different types of cancers of the European population. The results of the inverse-variance-weighted model indicated that genetic liabilities to critically ill COVID-19 had suggestive causal associations with the increased risk for HER2-positive breast cancer (odds ratio [OR] = 1.0924; p-value = 0.0116), esophageal cancer (OR = 1.0004; p-value = 0.0226), colorectal cancer (OR = 1.0010; p-value = 0.0242), stomach cancer (OR = 1.2394; p-value = 0.0331), and colon cancer (OR = 1.0006; p-value = 0.0453). The genetic liabilities to hospitalized COVID-19 had suggestive causal associations with the increased risk for HER2-positive breast cancer (OR = 1.1096; p-value = 0.0458), esophageal cancer (OR = 1.0005; p-value = 0.0440) as well as stomach cancer (OR = 1.3043; p-value = 0.0476). The genetic liabilities to SARS-CoV-2 infection had suggestive causal associations with the increased risk for stomach cancer (OR = 2.8563; p-value = 0.0019) but with the decreasing risk for head and neck cancer (OR = 0.9986, p-value = 0.0426). The causal associations of the above combinations were robust through the test of heterogeneity and pleiotropy. Together, our study indicated that COVID-19 had causal effects on cancer risk.


Assuntos
Neoplasias da Mama , COVID-19 , Neoplasias Esofágicas , Neoplasias Gástricas , Humanos , Feminino , SARS-CoV-2 , Estado Terminal , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
2.
BMC Anesthesiol ; 22(1): 261, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974310

RESUMO

BACKGROUND: The majority of patients may experience atelectasis under general anesthesia, and the Trendelenburg position and pneumoperitoneum can aggravate atelectasis during laparoscopic surgery, which promotes postoperative pulmonary complications. Lung recruitment manoeuvres have been proven to reduce perioperative atelectasis, but it remains controversial which method is optimal. Ultrasonic imaging can be conducive to confirming the effect of lung recruitment manoeuvres. The purpose of our study was to assess the effects of ultrasound-guided alveolar recruitment manoeuvres by ultrasonography on reducing perioperative atelectasis and to check whether the effects of recruitment manoeuvres under ultrasound guidance (visual and semiquantitative) on atelectasis are superior to sustained inflation recruitment manoeuvres (classical and widely used) in laparoscopic gynaecological surgery. METHODS: In this randomized, controlled, double-blinded study, women undergoing laparoscopic gynecological surgery were enrolled. Patients were randomly assigned to receive either lung ultrasound-guided alveolar recruitment manoeuvres (UD group), sustained inflation alveolar recruitment manoeuvres (SI group), or no RMs (C group) using a computer-generated table of random numbers. Lung ultrasonography was performed at four predefined time points. The primary outcome was the difference in lung ultrasound score (LUS) among groups at the end of surgery. RESULTS: Lung ultrasound scores in the UD group were significantly lower than those in both the SI group and the C group immediately after the end of surgery (7.67 ± 1.15 versus 9.70 ± 102, difference, -2.03 [95% confidence interval, -2.77 to -1.29], P < 0.001; 7.67 ± 1.15 versus 11.73 ± 1.96, difference, -4.07 [95% confidence interval, -4.81 to -3.33], P < 0.001;, respectively). The intergroup differences were sustained until 30 min after tracheal extubation (9.33 ± 0.96 versus 11.13 ± 0.97, difference, -1.80 [95% confidence interval, -2.42 to -1.18], P < 0.001; 9.33 ± 0.96 versus 10.77 ± 1.57, difference, -1.43 [95% confidence interval, -2.05 to -0.82], P < 0.001;, respectively). The SI group had a significantly lower LUS than the C group at the end of surgery (9.70 ± 1.02 versus 11.73 ± 1.96, difference, -2.03 [95% confidence interval, -2.77 to -1.29] P < 0.001), but the benefit did not persist 30 min after tracheal extubation. CONCLUSIONS: During general anesthesia, ultrasound-guided recruitment manoeuvres can reduce perioperative aeration loss and improve oxygenation. Furthermore, these effects of ultrasound-guided recruitment manoeuvres on atelectasis are superior to sustained inflation recruitment manoeuvres. TRIAL REGISTRATION: Chictr.org.cn, ChiCTR2100042731, Registered 27 January 2021, www.chictr.org.cn .


Assuntos
Laparoscopia , Atelectasia Pulmonar , Feminino , Procedimentos Cirúrgicos em Ginecologia/efeitos adversos , Humanos , Laparoscopia/efeitos adversos , Laparoscopia/métodos , Pulmão/diagnóstico por imagem , Respiração com Pressão Positiva/métodos , Complicações Pós-Operatórias , Atelectasia Pulmonar/diagnóstico por imagem , Atelectasia Pulmonar/etiologia , Atelectasia Pulmonar/prevenção & controle , Ultrassonografia , Ultrassonografia de Intervenção
3.
J Nat Prod ; 80(12): 3103-3111, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29140705

RESUMO

Fifteen new and rare iridoid glucoside dimers, cornusides A-O (1-15), and 10 known iridoid glucosides (16-25) were isolated from the fruit of Cornus officinalis. These new chemical structures were established through spectroscopic analysis (UV, IR, HRESIMS, 1D and 2D NMR). Compounds 1-25 were tested for their inhibitory activities by measuring IL-6-induced STAT3 promoter activity in HepG2 cells, and 3, 12, 17, 22, and 23 showed inhibitory effects, with IC50 values of 11.9, 12.2, 14.0, 7.0, and 6.9 µM, respectively.


Assuntos
Cornus/química , Frutas/química , Glucosídeos/química , Glucosídeos Iridoides/química , Iridoides/química , Piranos/química , Extratos Vegetais/química
4.
Zhongguo Zhong Yao Za Zhi ; 41(10): 1880-1883, 2016 May.
Artigo em Zh | MEDLINE | ID: mdl-28895337

RESUMO

Immunogenic antigen (jujuboside A-BSA) and coating antigen (jujuboside A-OVA) of jujuboside A were synthesized by sodium periodate oxidation method for the first time. Jujuboside A artificial antigen was confirmed by matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF-MS). The titer and specificity of the antibody in serum of immunized mice were detected by enzyme-linked immunosorbent assay (ELISA). The corrected relation curve of inhibition rate showed that the antibody against Jujuboside A obtained from immunized mice could bind to jujuboside A and the titer was up to 1∶4 000. The jujuboside A artificial antigen was synthesized, which can be used further to preparation of monoclonal antibody and the pharmacokinetics study of jujuboside A in laboratory animals.


Assuntos
Antígenos/química , Saponinas/síntese química , Animais , Ensaio de Imunoadsorção Enzimática , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Zhongguo Zhong Yao Za Zhi ; 41(24): 4605-4609, 2016 Dec.
Artigo em Zh | MEDLINE | ID: mdl-28936844

RESUMO

To investigate the chemical compounds from the fruit of Cornus officinalis, six compounds were isolated and determined by extensive spectroscopic analysis as 6'-O-acetyl-7α-O-ethyl morroniside (1), (-)-isolariciresinol 3α-O-ß-D-glucopyranoside(2), apigenin (3), cirsiumaldehyde(4), p-coumaric acid (5), caffeic acid (6). Compound 1 was a new iridoid glucoside,and compounds 2-4 were obtained from the Cornus genus for the first time. Compounds 2-6 were evaluated for the viability of PC12 cells when exposed in conditions of oxygen and glucose deprivation. The MTT results showed that compound 4 increased cell viability moderately in OGD/R treated PC12 cells at the concentration of 1.0 µmol•L⁻¹.


Assuntos
Cornus/química , Frutas/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Animais , Glicosídeos Iridoides/química , Glicosídeos Iridoides/isolamento & purificação , Células PC12 , Compostos Fitoquímicos/química , Ratos
6.
Math Biosci Eng ; 21(2): 1938-1958, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38454669

RESUMO

Retinal vessel segmentation plays a vital role in the clinical diagnosis of ophthalmic diseases. Despite convolutional neural networks (CNNs) excelling in this task, challenges persist, such as restricted receptive fields and information loss from downsampling. To address these issues, we propose a new multi-fusion network with grouped attention (MAG-Net). First, we introduce a hybrid convolutional fusion module instead of the original encoding block to learn more feature information by expanding the receptive field. Additionally, the grouped attention enhancement module uses high-level features to guide low-level features and facilitates detailed information transmission through skip connections. Finally, the multi-scale feature fusion module aggregates features at different scales, effectively reducing information loss during decoder upsampling. To evaluate the performance of the MAG-Net, we conducted experiments on three widely used retinal datasets: DRIVE, CHASE and STARE. The results demonstrate remarkable segmentation accuracy, specificity and Dice coefficients. Specifically, the MAG-Net achieved segmentation accuracy values of 0.9708, 0.9773 and 0.9743, specificity values of 0.9836, 0.9875 and 0.9906 and Dice coefficients of 0.8576, 0.8069 and 0.8228, respectively. The experimental results demonstrate that our method outperforms existing segmentation methods exhibiting superior performance and segmentation outcomes.


Assuntos
Aprendizagem , Vasos Retinianos , Vasos Retinianos/diagnóstico por imagem , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador
7.
Biofabrication ; 16(2)2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38306682

RESUMO

The undulating microtopography located at the junction of the dermis and epidermis of the native skin is called rete ridges (RRs), which plays an important role in enhancing keratinocyte function, improving skin structure and stability, and providing three-dimensional (3D) microenvironment for skin cells. Despite some progress in recent years, most currently designed and manufactured tissue-engineered skin models still cannot replicate the RRs, resulting in a lack of biological signals in the manufactured skin models. In this study, a composite manufacturing method including electrospinning, 3D printing, and functional coating was developed to produce the epidermal models with RRs. Polycaprolactone (PCL) nanofibers were firstly electrospun to mimic the extracellular matrix environment and be responsible for cell attachment. PCL microfibers were then printed onto top of the PCL nanofibers layer by 3D printing to quickly prepare undulating microtopography and finally the entire structures were dip-coated with gelatin hydrogel to form a functional coating layer. The morphology, chemical composition, and structural properties of the fabricated models were studied. The results proved that the multi-process composite fabricated models were suitable for skin tissue engineering. Live and dead staining, cell counting kit-8 (CCK-8) as well as histology (haematoxylin and eosin (HE) methodology) and immunofluorescence (primary and secondary antibodies combination assay) were used to investigate the viability, metabolic activity, and differentiation of skin cells forin vitroculturing.In vitroresults showed that each model had high cell viability, good proliferation, and the expression of differentiation marker. It was worth noting that the sizes of the RRs affected the cell growth status of the epidermal models. In addition, the unique undulation characteristics of the epidermal-dermal junction can be reproduced in the developed epidermal models. Overall, thesein vitrohuman epidermal models can provide valuable reference for skin transplantation, screening and safety evaluation of drugs and cosmetics.


Assuntos
Biomimética , Células Epidérmicas , Epiderme/patologia , Queratinócitos , Pele , Engenharia Tecidual/métodos , Alicerces Teciduais/química
8.
ACS Biomater Sci Eng ; 10(5): 2805-2826, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38621173

RESUMO

Tissue engineering involves implanting grafts into damaged tissue sites to guide and stimulate the formation of new tissue, which is an important strategy in the field of tissue defect treatment. Scaffolds prepared in vitro meet this requirement and are able to provide a biochemical microenvironment for cell growth, adhesion, and tissue formation. Scaffolds made of piezoelectric materials can apply electrical stimulation to the tissue without an external power source, speeding up the tissue repair process. Among piezoelectric polymers, poly(vinylidene fluoride) (PVDF) and its copolymers have the largest piezoelectric coefficients and are widely used in biomedical fields, including implanted sensors, drug delivery, and tissue repair. This paper provides a comprehensive overview of PVDF and its copolymers and fillers for manufacturing scaffolds as well as the roles in improving piezoelectric output, bioactivity, and mechanical properties. Then, common fabrication methods are outlined such as 3D printing, electrospinning, solvent casting, and phase separation. In addition, the applications and mechanisms of scaffold-based PVDF in tissue engineering are introduced, such as bone, nerve, muscle, skin, and blood vessel. Finally, challenges, perspectives, and strategies of scaffold-based PVDF and its copolymers in the future are discussed.


Assuntos
Polivinil , Engenharia Tecidual , Alicerces Teciduais , Polivinil/química , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Humanos , Impressão Tridimensional , Materiais Biocompatíveis/química , Polímeros/química , Animais , Polímeros de Fluorcarboneto
9.
J Funct Biomater ; 15(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38667559

RESUMO

The dermal-epidermal junction (DEJ), located between the dermal-epidermal layers in human skin tissue, plays a significant role in its function. However, the limitations of biomaterial properties and microstructure fabrication methods mean that most current tissue engineered skin models do not consider the existence of DEJ. In this study, a nanofiber membrane that simulates the fluctuating structure of skin DEJ was prepared by the composite molding process. Electrospinning is a technique for the production of nanofibers, which can customize the physical and biological properties of biomaterials. At present, electrospinning technology is widely used in the simulation of customized natural skin DEJ. In this study, four different concentration ratios of poly (lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) nanofiber membranes were prepared based on electrospinning technology. We selected a 15%PLGA + 5%PCL nanofiber membrane with mechanical properties, dimensional stability, hydrophilicity, and biocompatibility after physical properties and biological characterization. Then, the array-based microstructure model was prepared by three-dimensional (3D) printing. Subsequently, the microstructure was created on a 15%PLGA + 5%PCL membrane by the micro-imprinting process. Finally, the cell proliferation and live/dead tests of keratinocytes (HaCaTs) and fibroblasts (HSFs) were measured on the microstructural membrane and flat membrane. The results showed that 15%PLGA + 5%PCL microstructure membrane was more beneficial to promote the adhesion and proliferation of HaCaTs and HSFs than a flat membrane.

10.
Pharmgenomics Pers Med ; 16: 991-1009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37964785

RESUMO

Objective: This study aimed to discern the association between PLP2 expression, its biological significance, and the extent of immune infiltration in human GBM. Methods: Utilizing the GEPIA2 and TCGA databases, we contrasted the expression levels of PLP2 in GBM against normal tissue. We utilized GEPIA2 and LinkedOmics for survival analysis, recognized genes co-expressed with PLP2 via cBioPortal and GEPIA2, and implemented GO and KEGG analyses. The STRING database facilitated the construction of protein-protein interaction networks. We evaluated the relationship of PLP2 with tumor immune infiltrates using ssGSEA and the TIMER 2.0 database. An IHC assay assessed PLP2 and PDL-1 expression in GBM tissue, and the Drugbank database aided in identifying potential PLP2-targeting compounds. Molecular docking was accomplished using Autodock Vina 1.2.2. Results: PLP2 expression was markedly higher in GBM tissues in comparison to normal tissues. High PLP2 expression correlated with a decrease in overall survival across two databases. Functional analyses highlighted a focus of PLP2 functions within leukocyte. Discrepancies in PLP2 expression were evident in immune infiltration, impacting CD4+ T cells, neutrophils, myeloid dendritic cells, and macrophages. There was a concomitant increase in PLP2 and PD-L1 expression in GBM tissues, revealing a link between the two. Molecular docking with ethosuximide and praziquantel yielded scores of -7.441 and -4.295 kcal/mol, correspondingly. Conclusion: PLP2's upregulation in GBM may adversely influence the lifespan of GBM patients. The involvement of PLP2 in pathways linked to leukocyte function is suggested. The positive correlation between PLP2 and PD-L1 could provide insights into PLP2's role in glioma modulation. Our research hints at PLP2's potential as a therapeutic target for GBM, with ethosuximide and praziquantel emerging as potential treatment candidates, especially emphasizing the potential of these compounds in GBM treatment targeting PLP2.

11.
Front Neurol ; 14: 1282683, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020622

RESUMO

Objective: In recent years, more and more cases of intracranial aneurysms (IAs) have been found in elderly patients, and neurosurgical interventions have increased, but there is still no consensus on the best treatment strategy for elderly patients. In elderly patients, endovascular coiling (EC) is more popular than surgical clipping (SC) due to its advantages of less trauma and faster recovery. However, SC has made great progress in recent years, significantly improving the prognosis of elderly patients. Therefore, it is necessary to further explore the effects of different treatment modalities on clinical prognosis, hospital stay, and hospital cost of elderly IA patients, and select the most appropriate treatment modalities. Methods: The authors retrospectively analyzed 767 patients with intracranial aneurysms admitted to the facility between August 2017 and December 2022. Prognostic risk factors and multivariate logistic regression were analyzed for elderly patients treated with EC or SC. The area under the receiver operating characteristic (ROC) curve was used to calculate the predictive power of each independent predictor between the treatment groups. Results: Our study included 767 patients with aneurysms, of whom 348 (45.4%) were elderly, 176 (22.9%) underwent endovascular coiling, and 172 (22.4%) underwent microsurgical clipping. A comparison of elderly patients treated with EC and SC showed a higher prevalence of hypertension in the EC group (P = 0.011) and a higher Hunt-Hess score on admission in the SC group (P = 0.010). Patients in the EC group had shorter hospital stays but higher costs (P = 0.000 and P = 0.000, respectively). Patients treated with SC had a higher incidence of postoperative cerebral infarction and poor prognosis (P = 0.002 and P = 0.008, respectively). Through multi-factor logistic analysis, it was found that age (OR 1.209, 95% CI 1.047-1.397, P = 0.010), length of stay (LOS) (OR 1.160, 95 CI% 1.041-1.289, P = 0.007), and complications (OR 31.873, 95 CI% 11.677-320.701, P = 0.000) was an independent risk factor for poor prognosis in elderly patients with EC. In elderly patients treated with SC, age (OR 1.105, 95% CI 1.010-1.209, P = 0.029) was an independent risk factor for poor prognosis. Conclusion: EC and SC interventions in elderly adults carry higher risks compared to non-older adults, and people should consider these risks and costs when making a decision between intervention and conservative treatment. In elderly patients who received EC or SC treatments, EC showed an advantage in improving outcomes in elderly patients although it increased the economic cost of the patient's hospitalization.

12.
APL Bioeng ; 7(4): 046119, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38075208

RESUMO

Skin lesions not only disrupt appearance and barrier functionality but also lead to severe microbial infections and immune-inflammatory responses, seriously affect physical and mental health. In situ printing involves the direct deposition of bio-ink to create or repair damaged tissues or organs within a clinical setting. In this study, we designed and fabricated a novel portable in situ printer. This handheld instrument exhibits excellent printing performance, allowing hydrogels to be patterned and molded on surfaces according to specific requirements. By utilizing a dual-component hydrogels co-printing approach with high and low viscosities, we achieved in situ cell-laden printing using low-viscosity hydrogel. This demonstrates the advantages of the device in maintaining cell viability and achieving hydrogel structuring. This approach opens up the possibilities for the efficient encapsulation of active components such as drugs, proteins, and cells, enabling controlled macro- and micro-structuring of hydrogels. This breakthrough finding highlights the potential of our technical approach in dermatological treatment and wound repair, by dynamically adapting and regulating microenvironments in conjunction with hydrogel scaffolds and cell reparative impetus.

13.
ACS Appl Mater Interfaces ; 15(38): 45106-45115, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37699573

RESUMO

Gesture recognition systems epitomize a modern and intelligent approach to rehabilitative training, finding utility in assisted driving, sign language comprehension, and machine control. However, wearable devices that can monitor and motivate physically rehabilitated people in real time remain little studied. Here, we present an innovative gesture recognition system that integrates hydrogel strain sensors with machine learning to facilitate finger rehabilitation training. PSTG (PAM/SA/TG) hydrogels are constructed by thermal polymerization of acrylamide (AM), sodium alginate (SA), and tannic acid-reduced graphene oxide (TA-rGO, TG), with AM polymerizing into polyacrylamide (PAM). The surface of TG has abundant functional groups that can establish multiple hydrogen bonds with PAM and SA chains to endow the hydrogel with high stretchability and mechanical stability. Our strain sensor boasts impressive sensitivity (Gauge factor = 6.13), a fast response time (40.5 ms), and high linearity (R2 = 0.999), making it an effective tool for monitoring human joint movements and pronunciation. Leveraging machine learning techniques, our gesture recognition system accurately discerns nine distinct types of gestures with a recognition accuracy of 100%. Our research drives wearable advancements, elevating the landscape of patient rehabilitation and augmenting gesture recognition systems' healthcare applications.

14.
Mar Environ Res ; 192: 106219, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37848362

RESUMO

Based on observations in China's east coastal oceans, we conducted a preliminary assessment of 16 sets of carbonic acid dissociation constants (K1* and K2*) by comparing spectrophotometrically measured pH values at 25 °C with those calculated from total alkalinity and dissolved inorganic carbon. We obtained that K1* and K2* often performed differently within different salinity ranges, and that the constants of Millero et al. (2002) (M02) demonstrated the best performance for the salinity range of 24-35. In contrast, the often recommended constants of Mehrbach et al. (1973) refit by Dickson and Millero (1987) (DM87-M) and Lucker et al. (2000) (L00) would underestimate pH at salinities of 24-30. This was mainly associated with the higher product of K1* and K2* by DM87-M and L00 than by M02 at this salinity range. Also, we found almost no differences between pH values calculated with DM87-M and L00.


Assuntos
Carbono , Ácido Carbônico , Oceanos e Mares , Carbono/análise , Salinidade , China
15.
Biomater Sci ; 10(17): 4724-4739, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35861381

RESUMO

As the largest organ of the human body, the skin has a complex multi-layered structure. The composition of the skin includes cells, extracellular matrix (ECM), vascular networks, and other appendages. Because of the shortage of donor sites, skin substitutes are of great significance in the field of skin tissue repair. Moreover, skin models for disease research, drug screening, and cosmetic testing fall far short of the demand. Skin tissue engineering has made remarkable progress in developing skin models over the years. However, there are still several problems to be resolved. One of the crucial aspects is the lack of vascular systems for nutrient transport and waste disposal. Here, we will focus on the discussion and analysis of advanced manufacturing strategies for prevascularized skin, such as a scaffold-based method, cell coating technology, cell sheet engineering, skin-on-a-chip, and three-dimensional (3D) bioprinting. These key challenges, which restrict the prevascularized skin and provide perspectives on future directions will also be highlighted.


Assuntos
Bioimpressão , Pele Artificial , Matriz Extracelular , Humanos , Impressão Tridimensional , Pele , Engenharia Tecidual/métodos , Alicerces Teciduais/química
16.
Comput Biol Med ; 150: 106146, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228460

RESUMO

BACKGROUND: Dermoscopic image segmentation using deep learning algorithms is a critical technology for skin cancer detection and therapy. Specifically, this technology is a spatially equivariant task and relies heavily on Convolutional Neural Networks (CNNs), which lost more effective features during cascading down-sampling or up-sampling. Recently, vision isotropic architecture has emerged to eliminate cascade procedures in CNNs as well as demonstrates superior performance. Nevertheless, it cannot be used for the segmentation task directly. Based on these discoveries, this research intends to explore an efficient architecture which not only preserves the advantages of the isotropic architecture but is also suitable for clinical dermoscopic diagnosis. METHODS: In this work, we introduce a novel Semi-Isotropic L-shaped network (SIL-Net) for dermoscopic image segmentation. First, we propose a Patch Embedding Weak Correlation (PEWC) module to address the issue of no interaction between adjacent patches during the standard Patch Embedding process. Second, a plug-and-play and zero-parameter Residual Spatial Mirror Information (RSMI) path is proposed to supplement effective features during up-sampling and optimize the lesion boundaries. Third, to further reconstruct deep features and get refined lesion regions, a Depth Separable Transpose Convolution (DSTC) based up-sampling module is designed. RESULTS: The proposed architecture obtains state-of-the-art performance on dermoscopy benchmark datasets ISIC-2017, ISIC-2018 and PH2. Respectively, the Dice coefficient (DICE) of above datasets achieves 89.63%, 93.47%, and 95.11%, where the Mean Intersection over Union (MIoU) are 82.02%, 88.21%, and 90.81%. Furthermore, the robustness and generalizability of our method has been demonstrated through additional experiments on standard intestinal polyp datasets (CVC-ClinicDB and Kvasir-SEG). CONCLUSION: Our findings demonstrate that SIL-Net not only has great potential for precise segmentation of the lesion region but also exhibits stronger generalizability and robustness, indicating that it meets the requirements for clinical diagnosis. Notably, our method shows state-of-the-art performance on all five datasets, which highlights the effectiveness of the semi-isotropic design mechanism.


Assuntos
Dermoscopia , Neoplasias Cutâneas , Humanos , Dermoscopia/métodos , Neoplasias Cutâneas/diagnóstico , Pele/patologia , Algoritmos , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
17.
Oxid Med Cell Longev ; 2022: 6041612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237382

RESUMO

Aberrantly expressed microRNAs (miRNAs) after spinal cord injury (SCI) participate in diverse biological pathways and processes, including apoptosis, inflammation, oxidative stress responses, peroxidation, and ferroptosis. This study was aimed at exploring the mechanisms underlying miRNA-mediated ferroptosis in an SCI rat model. In the present study, a T10 weight-dropping SCI model was established and miRNA profiling was used to detect miRNA expression profiles post-SCI. Basso-Beattie-Bresnahan scores and inclined plane test, hematoxylin and eosin (HE) and Nissl staining, immunohistochemistry and immunofluorescence, western blotting, cell viability, and Annexin V/7-aminoactinomycin D (7-AAD) assays were used to evaluate locomotor activity, histological changes in the injured spinal cords, neuronal ferroptosis, ferroptosis suppressor protein 1 (FSP1) expression, and cell death, respectively. It was observed that many miRNAs were differentially expressed after SCI, and miR-672-3p, which increased significantly, was selected after cross-referencing with predicted target miRNAs. The luciferase reporter assay demonstrated that miR-672-3p downregulated FSP1, a glutathione-independent ferroptosis suppressor, by binding to its 3' untranslated region. Oxygen and glucose deprivation- (OGD-) treated PC12 and AGE1.HN cells were treated with miR-672-3p mimics or inhibitors in vitro. The effect of miR-672-3p mimics or inhibitor on OGD-PC12/AGE1.HN ferroptosis was evaluated by flow cytometry, immunohistochemistry, immunofluorescence, and western blotting. The miR-672-3p mimics promoted ferroptosis after SCI, whereas the miR-672-3p inhibitor inhibited this process. Rats with SCI treated with miR-672-3p mimics or inhibitor showed similar results in vivo. Furthermore, the ferroptosis-related changes caused by SCI or miR-672-3p were reversed by overexpression of FSP1 lentivirus in vivo and in vitro. These results indicated that sh-miR-672-3p exerted a neural restoration effect in vivo and in vitro by inhibiting ferroptosis via the FSP1 pathway.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , MicroRNAs/metabolismo , Recuperação de Função Fisiológica/genética , Transdução de Sinais/genética , Traumatismos da Medula Espinal/metabolismo , Animais , Hipóxia Celular , Linhagem Celular Transformada , Sobrevivência Celular/genética , Modelos Animais de Doenças , Regulação para Baixo/genética , Ferroptose/genética , Glucose/metabolismo , Humanos , Locomoção/genética , Masculino , MicroRNAs/genética , Neurônios/metabolismo , Células PC12 , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/genética , Transfecção
18.
FEBS Open Bio ; 12(5): 1075-1086, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35182051

RESUMO

Nitric oxide synthase 3 (NOS3) is a major vasoprotective enzyme that catalyzes the conversion of l-arginine to nitric oxide (NO) in response to a significant number of signaling pathways. Here, we provide evidence that NOS3 interactions with MAP kinases have physiological relevance. Binding interactions of NOS3 with c-Jun N-terminal kinase (JNK1α1 ), p38α, and ERK2 were characterized using optical biosensing with full-length NOS3 and NOS3 specific peptides and phosphopeptides. Like p38α and ERK2, JNK1α1 exhibited high-affinity binding to full-length NOS3 (KD 15 nm). Rate constants exhibited fast-on, slow-off binding (kon = 4106 m-1 s-1 ; koff = 6.2 × 10-5 s-1 ). Further analysis using synthetic NOS3 peptides revealed two MAP kinase binding sites unique to NOS3. p38α evinced similar affinity with both NOS3 binding sites. For ERK2 and JNK1α1, the affinity at the two sites differed. However, NOS3 peptides with a phosphate at either S114 or S633 did not meaningfully interact with the kinases. Immunoblotting revealed that each kinase phosphorylated NOS3 with a unique pattern. JNK1α1 predominantly phosphorylated NOS3 at S114, ERK2 at S600, and p38α phosphorylated both residues. In vitro production of NO was unchanged by phosphorylation at these sites. In human microvascular endothelial cells, endogenous interactions of all the MAP kinases with NOS3 were captured using proximity ligation assay in resting cells. Our results underscore the importance of MAP kinase interactions, identifying two unique NOS3 interaction sites with potential for modulation by MAP kinase phosphorylation (S114) and other signaling inputs, like protein kinase A (S633).


Assuntos
Células Endoteliais , Proteínas Quinases Ativadas por Mitógeno , Sítios de Ligação , Células Endoteliais/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Peptídeos/metabolismo , Fosforilação
19.
Front Genet ; 13: 977322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226193

RESUMO

Breast cancer (BC) is the most diagnosed cancer in women. Cuproptosis is new regulated cell death, distinct from known death mechanisms and dependent on copper and mitochondrial respiration. However, the comprehensive relationship between cuproptosis and BC is still blank until now. In the present study, we acquired 13 cuproptosis-related regulators (CRRs) from the previous research and downloaded the RNA sequencing data of TCGA-BRCA from the UCSC XENA database. The 13 CRRs were all differently expressed between BC and normal samples. Using consensus clustering based on the five prognostic CRRs, BC patients were classified into two cuproptosis-clusters (C1 and C2). C2 had a significant survival advantage and higher immune infiltration levels than C1. According to the Cox and LASSO regression analyses, a novel cuproptosis-related prognostic signature was developed to predict the prognosis of BC effectively. The high- and low-risk groups were divided based on the risk scores. Kaplan-Meier survival analysis indicated that the high-risk group had shorter overall survival (OS) than the low-risk group in the training, test and entire cohorts. GSEA indicated that the immune-related pathways were significantly enriched in the low-risk group. According to the CIBERSORT and ESTIMATE analyses, patients in the high-risk group had higher infiltrating levels of antitumor lymphocyte cell subpopulations and higher immune score than the low-risk group. The typical immune checkpoints were all elevated in the high-risk group. Furthermore, the high-risk group showed a better immunotherapy response than the low-risk group based on the Tumor Immune Dysfunction and Exclusion (TIDE) and Immunophenoscore (IPS). In conclusion, we identified two cuproptosis-clusters with different prognoses using consensus clustering in BC. We also developed a cuproptosis-related prognostic signature and nomogram, which could indicate the outcome, the tumor immune microenvironment, as well as the response to immunotherapy.

20.
Front Immunol ; 13: 998140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275774

RESUMO

Background: Breast cancer is the most common cancer worldwide. Hypoxia and lactate metabolism are hallmarks of cancer. This study aimed to construct a novel hypoxia- and lactate metabolism-related gene signature to predict the survival, immune microenvironment, and treatment response of breast cancer patients. Methods: RNA-seq and clinical data of breast cancer from The Cancer Genome Atlas database and Gene Expression Omnibus were downloaded. Hypoxia- and lactate metabolism-related genes were collected from publicly available data sources. The differentially expressed genes were identified using the "edgeR" R package. Univariate Cox regression, random survival forest (RSF), and stepwise multivariate Cox regression analyses were performed to construct the hypoxia-lactate metabolism-related prognostic model (HLMRPM). Further analyses, including functional enrichment, ESTIMATE, CIBERSORTx, Immune Cell Abundance Identifier (ImmuCellAI), TIDE, immunophenoscore (IPS), pRRophetic, and CellMiner, were performed to analyze immune status and treatment responses. Results: We identified 181 differentially expressed hypoxia-lactate metabolism-related genes (HLMRGs), 24 of which were valuable prognostic genes. Using RSF and stepwise multivariate Cox regression analysis, five HLMRGs were included to establish the HLMRPM. According to the medium-risk score, patients were divided into high- and low-risk groups. Patients in the high-risk group had a worse prognosis than those in the low-risk group (P < 0.05). A nomogram was further built to predict overall survival (OS). Functional enrichment analyses showed that the low-risk group was enriched with immune-related pathways, such as antigen processing and presentation and cytokine-cytokine receptor interaction, whereas the high-risk group was enriched in mTOR and Wnt signaling pathways. CIBERSORTx and ImmuCellAI showed that the low-risk group had abundant anti-tumor immune cells, whereas in the high-risk group, immunosuppressive cells were dominant. Independent immunotherapy datasets (IMvigor210 and GSE78220), TIDE, IPS and pRRophetic analyses revealed that the low-risk group responded better to common immunotherapy and chemotherapy drugs. Conclusions: We constructed a novel prognostic signature combining lactate metabolism and hypoxia to predict OS, immune status, and treatment response of patients with breast cancer, providing a viewpoint for individualized treatment.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Biologia Computacional , Prognóstico , Imunoterapia , Aprendizado de Máquina , Hipóxia/genética , Serina-Treonina Quinases TOR , Receptores de Citocinas , Citocinas , Lactatos , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA