Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 45(4): 923-931, 2020 Feb.
Artigo em Zh | MEDLINE | ID: mdl-32237495

RESUMO

With the widespread use of traditional Chinese medicine(TCM) and the integration of TCM and western medicine, drug-drug interaction(DDI) is considered as a major cause of therapeutic failures and side effects. Cytochrome P450 enzymes(CYPs) are responsible for large number of drug metabolism. CYP3 A4 and CYP2 D6, two important CYP isoforms, are responsible for about 80% drug metabolism of CYPs super family. The inhibition of CYPs is likely to be the most common factor leading to adverse DDI. Therefore, it is of great significance to predict potential CYP3 A4 and CYP2 D6 inhibitors to prevent the DDI. A fast and low-cost me-thod for calculating and predicting CYP inhibiting components was established in this paper, namely support vector machine(SVM) and molecular docking technology which are used to predict and screen drugs. Firstly, 12 qualitative models of two targets were established by using SVM, and the optimal model was selected to predict the compounds in traditional Chinese medicine database(TCMD). Then, molecular docking technology was used to establish docking model. By analyzing the key amino acids involved in drug-target interactions and combining with SVM model, potential inhibitors of CYP3 A4 and CYP2 D6 were found. From the computational results, astin D and epiberberine exhibited inhibition effect on CYP3 A4 and CYP2 D6, respectively. Astin D was only found in astins family from Aster tataricus, while epiberberine was considered to be the active constituent of Coptidis Rhizoma. Therefore, for the risk of DDI, extra attention should be paid to the source of these potential inhibitors, Asteris Radix et Rhizoma and Coptidis Rhizoma. This computational method provides technical support for discovering potential natural inhibitors of CYPs from Chinese herbs by using SVM and molecular docking model, and it is also helpful to recognize the CYPs-mediated DDI existing in TCM, providing research ideas for further pharmacovigilance of integrated therapy.


Assuntos
Inibidores das Enzimas do Citocromo P-450/análise , Medicamentos de Ervas Chinesas/química , Sistema Enzimático do Citocromo P-450 , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Plantas Medicinais/química
2.
Int J Mol Sci ; 19(1)2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29320397

RESUMO

The metabotropic glutamate receptors (mGluRs) are known as both synaptic receptors and taste receptors. This feature is highly similar to the Property and Flavor theory of Traditional Chinese medicine (TCM), which has the pharmacological effect and flavor. In this study, six ligand based pharmacophore (LBP) models, seven homology modeling models, and fourteen molecular docking models of mGluRs were built based on orthosteric and allosteric sites to screening potential compounds from Traditional Chinese Medicine Database (TCMD). Based on the Pharmacopoeia of the People's Republic of China, TCMs of compounds and their flavors were traced and listed. According to the tracing result, we found that the TCMs of the compounds which bound to orthosteric sites of mGluRs are highly correlated to a sweet flavor, while the allosteric site corresponds to a bitter flavor. Meanwhile, the pharmacological effects of TCMs with highly frequent flavors were further analyzed. We found that those TCMs play a neuroprotective role through the efficiencies of detumescence, promoting blood circulation, analgesic effect, and so on. This study provides a guide for developing new neuroprotective drugs from TCMs which target mGluRs. Moreover, it is the first study to present a novel approach to discuss the association relationship between flavor and the neuroprotective mechanism of TCM based on mGluRs.


Assuntos
Aromatizantes/metabolismo , Fármacos Neuroprotetores/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sítio Alostérico , Sítios de Ligação , Bases de Dados Factuais , Aromatizantes/química , Humanos , Cinética , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fármacos Neuroprotetores/química , Estrutura Terciária de Proteína , Receptores de Glutamato Metabotrópico/química
3.
Molecules ; 23(5)2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-29710800

RESUMO

Squalene synthase (SQS), a key downstream enzyme involved in the cholesterol biosynthetic pathway, plays an important role in treating hyperlipidemia. Compared to statins, SQS inhibitors have shown a very significant lipid-lowering effect and do not cause myotoxicity. Thus, the paper aims to discover potential SQS inhibitors from Traditional Chinese Medicine (TCM) by the combination of molecular modeling methods and biological assays. In this study, cynarin was selected as a potential SQS inhibitor candidate compound based on its pharmacophoric properties, molecular docking studies and molecular dynamics (MD) simulations. Cynarin could form hydrophobic interactions with PHE54, LEU211, LEU183 and PRO292, which are regarded as important interactions for the SQS inhibitors. In addition, the lipid-lowering effect of cynarin was tested in sodium oleate-induced HepG2 cells by decreasing the lipidemic parameter triglyceride (TG) level by 22.50%. Finally. cynarin was reversely screened against other anti-hyperlipidemia targets which existed in HepG2 cells and cynarin was unable to map with the pharmacophore of these targets, which indicated that the lipid-lowering effects of cynarin might be due to the inhibition of SQS. This study discovered cynarin is a potential SQS inhibitor from TCM, which could be further clinically explored for the treatment of hyperlipidemia.


Assuntos
Cinamatos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Inibidores Enzimáticos/farmacologia , Farnesil-Difosfato Farnesiltransferase/antagonistas & inibidores , Metabolismo dos Lipídeos/efeitos dos fármacos , Cinamatos/química , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas/química , Inibidores Enzimáticos/química , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ácido Oleico/efeitos adversos , Triglicerídeos/análise
5.
Molecules ; 22(1)2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-28098801

RESUMO

Our previous studies have shown that Coix glutelin pepsin hydrolysate can effectively inhibit angiotensin converting enzyme (ACE) activity in vitro. The main purpose of this study was to obtain potent anti-hypertensive peptides from Coix glutelin. The Coix glutelin hydrolysates (CGH) were prepared by pepsin catalysis and further separated by an ultrafitration (UF) system, gel filtration chromatography (GFC) and reversed-phase high performance liquid chromatography (RP-HPLC). As a result, the sub-fraction F5-3 had the highest ACE-inhibitory activity. Six ACE inhibitory peptides were identifiedusing nano-liquid chromatography coupled to tandem mass spectrometry. The most potent peptide GAAGGAF (IC50 = 14.19 µmol·L-1) was finally obtained by further molecular simulation screening and a series of division and optimization. Single oral administration of synthesized GAAGGAF at 15 mg/kg body weight (BW) in spontaneously hypertensively rats (SHR) could reduce the systolic blood pressure (SBP) around 27.50 mmHg and blood pressure-lowering effect lasted for at least 8 h. The study demonstrated for the first time that the ACE inhibitory peptide GAAGGAF from Coix glutelin has a significant antihypertensive effect, and it could be a good natural ingredient for pharmaceuticals against hypertension and the related diseases.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Anti-Hipertensivos/farmacologia , Coix/química , Glutens/química , Hipertensão/tratamento farmacológico , Peptídeos/farmacologia , Peptidil Dipeptidase A/metabolismo , Sequência de Aminoácidos , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Animais , Anti-Hipertensivos/química , Anti-Hipertensivos/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Expressão Gênica , Hidrólise , Hipertensão/fisiopatologia , Masculino , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pepsina A/química , Peptídeos/química , Peptídeos/isolamento & purificação , Extratos Vegetais/química , Ratos , Ratos Endogâmicos SHR , Sementes/química , Ultrafiltração
6.
Zhongguo Zhong Yao Za Zhi ; 42(17): 3417-3423, 2017 Sep.
Artigo em Zh | MEDLINE | ID: mdl-29192456

RESUMO

Pinctada fucata oligopeptide is one of key pharmaceutical effective constituents of P. fucata. It is significant to analyze its pharmacological effect and mechanism. This study aims to discover the potential oligopeptides from P. fucata and analyze the mechanism of P. fucata oligopeptide based on in silico technologies and protein interaction network(PIN). First, main protein sequences of P. fucata were collected, and oligopeptides were obtained using in silico gastrointestinal tract proteolysis. Then, key potential targets of P. fucata oligopeptides were obtained through pharmacophore screening. The protein-protein interaction(PPI) of targets was achieved and implemented to construct PIN and analyze the mechanism of P. fucata oligopeptides. P. fucata oligopeptide database was constructed based on in silico technologies, including 458 oligopeptides. Twelve modules were identified from PIN by a graph theoretic clustering algorithm Molecular Complex Detection(MCODE) and analyzed by Gene ontology(GO) enrichment. The results indicated that P. fucata oligopeptides have an effect in treating neurological diseases, such as Alzheimer's disease. In silico proteolysis could be used to analyze the protein sequences of traditional Chinese medicine(TCM). According to the combination of in silico proteolysis and PIN, the biological activity of oligopeptides could be interpreted rapidly based on the known TCM protein sequence. The study provides the methodology basis for rapidly and efficiently implementing the mechanism analysis of TCM oligopeptides.


Assuntos
Oligopeptídeos/farmacologia , Pinctada/química , Animais , Simulação por Computador , Medicina Tradicional Chinesa , Mapas de Interação de Proteínas , Proteólise
7.
Zhongguo Zhong Yao Za Zhi ; 42(4): 746-751, 2017 Feb.
Artigo em Zh | MEDLINE | ID: mdl-28959847

RESUMO

Oligopeptides are one of the the key pharmaceutical effective constituents of traditional Chinese medicine(TCM). Systematic study on composition and efficacy of TCM oligopeptides is essential for the analysis of material basis and mechanism of TCM. In this study, the potential anti-hypertensive oligopeptides from Glycine max and their endothelin receptor A (ETA) antagonistic activity were discovered and predicted based on in silico technologies.Main protein sequences of G. max were collected and oligopeptides were obtained using in silico gastrointestinal tract proteolysis. Then, the pharmacophore of ETA antagonistic peptides was constructed and included one hydrophobic feature, one ionizable negative feature, one ring aromatic feature and five excluded volumes. Meanwhile, three-dimensional structure of ETA was developed by homology modeling methods for further docking studies. According to docking analysis and consensus score, the key amino acid of GLN165 was identified for ETA antagonistic activity. And 27 oligopeptides from G. max were predicted as the potential ETA antagonists by pharmacophore and docking studies.In silico proteolysis could be used to analyze the protein sequences from TCM. According to combination of in silico proteolysis and molecular simulation, the biological activities of oligopeptides could be predicted rapidly based on the known TCM protein sequence. It might provide the methodology basis for rapidly and efficiently implementing the mechanism analysis of TCM oligopeptides.


Assuntos
Anti-Hipertensivos/química , Glycine max/química , Oligopeptídeos/química , Receptor de Endotelina A/química , Simulação por Computador , Antagonistas do Receptor de Endotelina A , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Proteólise
8.
Zhongguo Zhong Yao Za Zhi ; 42(11): 2146-2151, 2017 Jun.
Artigo em Zh | MEDLINE | ID: mdl-28822161

RESUMO

Synergistic effect is main pharmacological mechanism of traditional Chinese medicine(TCM). The research method based on the key targets combination is an important method to explore the synergistic effect of TCM. Peptide transporter 1 (PepT1) is an essential target for drug uptake into the bloodstream, accounting for about 50% of the total transporter protein content from the small intestine. Peroxisome proliferator-activated receptor α(PPARα) is the lipid-lowering target of fibrates, which have a good hypolipidemic effect by activating PPARα. It has been reported that PPARα could activate the gene expression of PepT1s, and PPARα agonists can promote the uptake of PepT1 substrates, indicating their synergistic effect. In this paper, PepT1 substrates and PPARα agonists from TCM were discovered, and their synergistic mechanism was also been discussed based on the target combination of PepT1 and PPARα. The support vector machine(SVM) model of PepT1 substrates was first constructed and utilized to predict potential TCM components. Meanwhile, merged pharmacophore and docking model of PPARα agonists was used to screen the potential active ingredients from TCM. According to the analysis results of two groups, the TCM combination of Panax notoginseng and Ganoderma lucidum, as well as TCM combination of P. notoginseng and Salvia miltiorrhiza were identified to have the synergistic mechanism based on target combination of PepT1 and PPARα. In this study, synergistic mechanism of TCM was analyzed for absorption and hypolipidemic effect based on target combination, which provides a new way to explore the synergetic mechanism of TCM related to pharmacokinetics.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , PPAR alfa/metabolismo , Transportador 1 de Peptídeos/metabolismo , Sinergismo Farmacológico , Ganoderma , Humanos , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , PPAR alfa/agonistas , Panax notoginseng , Máquina de Vetores de Suporte
9.
Mol Divers ; 20(4): 933-944, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27329301

RESUMO

Acyl-coenzyme A cholesterol acyltransferase (ACAT) plays an important role in maintaining cellular and organismal cholesterol homeostasis. Two types of ACAT isozymes with different functions exist in mammals, named ACAT-1 and ACAT-2. Numerous studies showed that ACAT-2 selective inhibitors are effective for the treatment of hypercholesterolemia and atherosclerosis. However, as a typical endoplasmic reticulum protein, ACAT-2 protein has not been purified and revealed, so combinatorial ligand-based methods might be the optimal strategy for discovering the ACAT-2 selective inhibitors. In this study, selective pharmacophore models of ACAT-1 inhibitors and ACAT-2 inhibitors were built, respectively. The optimal pharmacophore model for each subtype was identified and utilized as queries for the Traditional Chinese Medicine Database screening. A total of 180 potential ACAT-2 selective inhibitors were obtained, which were identified using an ACAT-2 pharmacophore and not by our ACAT-1 model. Selective SVM model and bioactive SVR model were generated for further identification of the obtained ACAT-2 inhibitors. Ten compounds were finally obtained with predicted inhibitory activities toward ACAT-2. Hydrogen bond acceptor, 2D autocorrelations, GETAWAY descriptors, and BCUT descriptors were identified as key structural features for selectivity and activity of ACAT-2 inhibitors. This study provides a reasonable ligand-based approach to discover potential ACAT-2 selective inhibitors from Chinese herbs, which could help in further screening and development of ACAT-2 selective inhibitors.


Assuntos
Descoberta de Drogas , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Esterol O-Aciltransferase/antagonistas & inibidores , Esterol O-Aciltransferase/química , Algoritmos , Simulação por Computador , Bases de Dados Factuais , Descoberta de Drogas/métodos , Modelos Moleculares , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Máquina de Vetores de Suporte , Esterol O-Aciltransferase 2
10.
Int J Mol Sci ; 17(12)2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27983650

RESUMO

Adlay (Coix larchryma-jobi L.) was the commonly used Traditional Chinese Medicine (TCM) with high content of seed storage protein. The hydrolyzed bioactive oligopeptides of adlay have been proven to be anti-hypertensive effective components. However, the structures and anti-hypertensive mechanism of bioactive oligopeptides from adlay were not clear. To discover the definite anti-hypertensive oligopeptides from adlay, in silico proteolysis and virtual screening were implemented to obtain potential oligopeptides, which were further identified by biochemistry assay and molecular dynamics simulation. In this paper, ten sequences of adlay prolamins were collected and in silico hydrolyzed to construct the oligopeptide library with 134 oligopeptides. This library was reverse screened by anti-hypertensive pharmacophore database, which was constructed by our research team and contained ten anti-hypertensive targets. Angiotensin-I converting enzyme (ACE) was identified as the main potential target for the anti-hypertensive activity of adlay oligopeptides. Three crystal structures of ACE were utilized for docking studies and 19 oligopeptides were finally identified with potential ACE inhibitory activity. According to mapping features and evaluation indexes of pharmacophore and docking, three oligopeptides were selected for biochemistry assay. An oligopeptide sequence, NPATY (IC50 = 61.88 ± 2.77 µM), was identified as the ACE inhibitor by reverse-phase high performance liquid chromatography (RP-HPLC) assay. Molecular dynamics simulation of NPATY was further utilized to analyze interactive bonds and key residues. ALA354 was identified as a key residue of ACE inhibitors. Hydrophobic effect of VAL518 and electrostatic effects of HIS383, HIS387, HIS513 and Zn2+ were also regarded as playing a key role in inhibiting ACE activities. This study provides a research strategy to explore the pharmacological mechanism of Traditional Chinese Medicine (TCM) proteins based on in silico proteolysis and virtual screening, which could be beneficial to reveal the pharmacological action of TCM proteins and provide new lead compounds for peptides-based drug design.


Assuntos
Anti-Hipertensivos/farmacologia , Coix/química , Simulação por Computador , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Oligopeptídeos/farmacologia , Proteólise , Interface Usuário-Computador , Inibidores da Enzima Conversora de Angiotensina/química , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Cristalografia por Raios X , Bases de Dados de Proteínas , Simulação de Acoplamento Molecular , Biblioteca de Peptídeos , Fatores de Tempo
11.
Molecules ; 21(9)2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27657032

RESUMO

Cyclin-dependent kinase 2 (CDK2), a member of Cyclin-dependent kinases (CDKs), plays an important role in cell division and DNA replication. It is regarded as a desired target to treat cancer and tumor by interrupting aberrant cell proliferation. Compared to lower subtype selectivity of CDK2 ATP-competitive inhibitors, CDK2 allosteric inhibitor with higher subtype selectivity has been used to treat CDK2-related diseases. Recently, the first crystal structure of CDK2 with allosteric inhibitor has been reported, which provides new opportunities to design pure allosteric inhibitors of CDK2. The binding site of the ATP-competition inhibitors and the allosteric inhibitors are partially overlapped in space position, so the same compound might interact with the two binding sites. Thus a novel screening strategy was essential for the discovery of pure CDK2 allosteric inhibitors. In this study, pharmacophore and molecular docking were used to screen potential CDK2 allosteric inhibitors and ATP-competition inhibitors from Traditional Chinese Medicine (TCM). In the docking result of the allosteric site, the compounds which can act with the CDK2 ATP site were discarded, and the remaining compounds were regarded as the potential pure allosteric inhibitors. Among the results, prostaglandin E1 and nordihydroguaiaretic acid (NDGA) were available and their growth inhibitory effect on human HepG2 cell lines was determined by MTT assay. The two compounds could substantially inhibit the growth of HepG2 cell lines with an estimated IC50 of 41.223 µmol/L and 45.646 µmol/L. This study provides virtual screening strategy of allosteric compounds and a reliable method to discover potential pure CDK2 allosteric inhibitors from TCM. Prostaglandin E1 and NDGA could be regarded as promising candidates for CDK2 allosteric inhibitors.

12.
Molecules ; 21(5)2016 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-27213329

RESUMO

Ganoderma triterpenes (GTs) are the major secondary metabolites of Ganoderma lucidum, which is a popularly used traditional Chinese medicine for complementary cancer therapy. In the present study, systematic isolation, and in silico pharmacological prediction are implemented to discover potential anti-cancer active GTs from G. lucidum. Nineteen GTs, three steroids, one cerebroside, and one thymidine were isolated from G. lucidum. Six GTs were first isolated from the fruiting bodies of G. lucidum, including 3ß,7ß,15ß-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid methyl ester (1), 3ß,7ß,15ß-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (2), 3ß,7ß,15α,28-tetrahydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (3), ganotropic acid (4), 26-nor-11,23-dioxo-5α-lanost-8-en-3ß,7ß,15α,25-tetrol (5) and (3ß,7α)-dihydroxy-lanosta-8,24-dien- 11-one (6). (4E,8E)-N-d-2'-hydroxypalmitoyl-l-O-ß-d-glucopyranosyl-9-methyl-4,8-spingodienine (7), and stigmasta-7,22-dien-3ß,5α,6α-triol (8) were first reported from the genus Ganodema. By using reverse pharmacophoric profiling of the six GTs, thirty potential anti-cancer therapeutic targets were identified and utilized to construct their ingredient-target interaction network. Then nineteen high frequency targets of GTs were selected from thirty potential targets to construct a protein interaction network (PIN). In order to cluster the pharmacological activity of GTs, twelve function modules were identified by molecular complex detection (MCODE) and gene ontology (GO) enrichment analysis. The results indicated that anti-cancer effect of GTs might be related to histone acetylation and interphase of mitotic cell cycle by regulating general control non-derepressible 5 (GCN5) and cyclin-dependent kinase-2 (CDK2), respectively. This research mode of extraction, isolation, pharmacological prediction, and PIN analysis might be beneficial to rapidly predict and discover pharmacological activities of novel compounds.


Assuntos
Antineoplásicos/química , Neoplasias/tratamento farmacológico , Reishi/química , Triterpenos/química , Acetilação , Antineoplásicos/uso terapêutico , Divisão Celular/efeitos dos fármacos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Humanos , Medicina Tradicional Chinesa , Estrutura Molecular , Mapas de Interação de Proteínas/efeitos dos fármacos , Relação Estrutura-Atividade , Triterpenos/uso terapêutico
13.
Zhongguo Zhong Yao Za Zhi ; 41(16): 3065-3071, 2016 Aug.
Artigo em Zh | MEDLINE | ID: mdl-28920350

RESUMO

Liver X receptor ß (LXRß) has been a new target in the treatment of hyperlipemia, which was related to the cholesterol homeostasis. In this study, the quantitative pharmacophores were constructed by 3D-QSAR pharmacophore (Hypogen) method based on the LXRß agonists. The optimal pharmacophore model containing one hydrogen bond acceptor, two hydrophobics and one ring aromatic was obtained based on five assessment indictors, including the correlation between predicted value and experimental value of the compounds in training set (correlation), Δcost of the models (Δcost), hit rate of active compounds (HRA), identification of effectiveness index (IEI) and comprehensive evaluation index (CAI). And the values of the five assessment indicators were 0.95, 128.65, 84.44%, 2.58 and 2.18 respectively. The best model as a query to screen the traditional Chinese medicine database (TCMD), a list of 309 compounds was obtained andwere then refined using Libdock program. Finally, based on the screening rules of the Libdock score of initial compound and the key interactions between initial compound and receptor, four compounds, demethoxycurcumin, isolicoflavonol, licochalcone E and silydianin, were selected as potential LXRß agonists. The molecular simulation methods were high-efficiency and time-saving to obtainthe potential LXRß agonists, which could provide assistance for further researchingnovel anti-hyperlipidemia drugs.


Assuntos
Medicamentos de Ervas Chinesas/química , Receptores X do Fígado/agonistas , Simulação de Acoplamento Molecular , Interações Hidrofóbicas e Hidrofílicas , Medicina Tradicional Chinesa , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade
14.
Molecules ; 20(7): 12769-86, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26184151

RESUMO

The metabotropic glutamate subtype 1 (mGluR1), a member of the metabotropic glutamate receptors, is a therapeutic target for neurological disorders. However, due to the lower subtype selectivity of mGluR1 orthosteric compounds, a new targeted strategy, known as allosteric modulators research, is needed for the treatment of mGluR1-related diseases. Recently, the structure of the seven-transmembrane domain (7TMD) of mGluR1 has been solved, which reveals the binding site of allosteric modulators and provides an opportunity for future subtype-selectivity drug design. In this study, a series of computer-aided drug design methods were utilized to discover potential mGluR1 negative allosteric modulators (NAMs). Pharmacophore models were constructed based on three different structure types of mGluR1 NAMs. After validation using the built-in parameters and test set, the optimal pharmacophore model of each structure type was selected and utilized as a query to screen the Traditional Chinese Medicine Database (TCMD). Then, three different hit lists of compounds were obtained. Molecular docking was used based on the latest crystal structure of mGluR1-7TMD to further filter these hits. As a compound with high QFIT and LibDock Score was preferred, a total of 30 compounds were retained. MD simulation was utilized to confirm the stability of potential compounds binding. From the computational results, thesinine-4'-O-ß-d-glucoside, nigrolineaxanthone-P and nodakenin might exhibit negative allosteric moderating effects on mGluR1. This paper indicates the applicability of molecular simulation technologies for discovering potential natural mGluR1 NAMs from Chinese herbs.


Assuntos
Cumarínicos/química , Medicamentos de Ervas Chinesas/química , Glucosídeos/química , Monossacarídeos/química , Alcaloides de Pirrolizidina/química , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Xantonas/química , Regulação Alostérica , Sítio Alostérico , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Glutamato Metabotrópico/química , Interface Usuário-Computador
15.
Zhongguo Zhong Yao Za Zhi ; 40(15): 3063-7, 2015 Aug.
Artigo em Zh | MEDLINE | ID: mdl-26677712

RESUMO

Cholesterol ester transfer protein (CETP) is a key regulator of high density lipoprotein (HDL). Owing to its important role in the reverse of cholesterol transport, CETP has become a hotspot target in modulating lipid drug design. In this paper, structure based pharmacophore (SBP) models for CETP inhibitors were built based on the protein structure 4F2A from Protein Database (PDB). The best pharmacophore contained six hydrophobic features, one hydrogen bond acceptor feature and nine excluded volume features, with the N and CAI value was 3.33 and 2.31 respectively. Then the model was used to search the traditional Chinese medicine database (TCMD) and 629 compounds originated from 315 TCM herbs were obtained. Molecular docking was also used to validate SBP by analyzing the critical amino acid residue and the interaction between potential active compounds and receptor. In this study, several TCM herbs, like Lycii Frutus and Schisandrae chinensis fructus, which contained more optimal SBP based screening results, have been reported hypolipidemic effect, and need to be studied deeply in a more focused research on herbal active constituents. Therefore, this study could provide reliable fundamental data for exploring the action mechanisms of TCM, and be applicable to identify lead candidates, which can be utilized as starting scaffolds for natural CETP inhibitors.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular
16.
Zhongguo Zhong Yao Za Zhi ; 39(11): 1951-5, 2014 Jun.
Artigo em Zh | MEDLINE | ID: mdl-25272821

RESUMO

Multi-target drugs can simultaneously adjust multiple links of the disease network. Despite the higher efficacy and lower toxicity caused by single targets, multi-target drugs become ideal drugs for treating complicated diseases as well the main direction of drug R & D. By virtue of their structural diversity, higher multi-target activity and lower toxicity, natural products become an important source for developing multi-target drugs. Computer-aided drug design (CADD) is a commonly used multi-target drug R&D method, which mainly includes virtual screening and pharmacophore design. In this paper, the authors made a systematical analysis and discussed the prospects and advantages of various methods for multi-target drug R&D with natural products.


Assuntos
Produtos Biológicos/síntese química , Produtos Biológicos/farmacologia , Desenho Assistido por Computador , Desenho de Fármacos , Terapia de Alvo Molecular , Pesquisa Biomédica/instrumentação , Humanos
17.
Zhongguo Zhong Yao Za Zhi ; 39(5): 885-90, 2014 Mar.
Artigo em Zh | MEDLINE | ID: mdl-25204184

RESUMO

To study the quantitative structure-activity relationship (QSAR) between the stuctures of 29 flavonoids and the inhibitory activity of their multidrug resistance-associated protein (MRP) 1 and 2 by using the comparative molecular similarity index analysis (CoMSIA). By studying the impact of the combination of different molecular force fields, researchers obtained the molecular force fields that played an important role in inhibiting the activity of MRP1 and MRP2, built the optimized QSAR model, and discussed the structural modification method for flavonoids' multidrug resistance-associated protein inhibitor. The results of the study could not only provide the guidance for new drug R&D, but also help partially discuss the synergy mechanism between MRP1 and MRP2 receptors and traditional Chinese medicines containing flavonoids.


Assuntos
Medicamentos de Ervas Chinesas/química , Flavonoides/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/farmacologia , Humanos , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade
18.
Zhongguo Zhong Yao Za Zhi ; 39(24): 4839-43, 2014 Dec.
Artigo em Zh | MEDLINE | ID: mdl-25898588

RESUMO

The combined application of statins that inhibit HMG-CoA reductase and fibrates that activate PPAR-α can produce a better lipid-lowering effect than the simple application, but with stronger adverse reactions at the same time. In the treatment of hyperlipidemia, the combined administration of TCMs and HMG-CoA reductase inhibitor in treating hyperlipidemia shows stable efficacy and less adverse reactions, and provides a new option for the combined application of drugs. In this article, the pharmacophore technology was used to search chemical components of TCMs, trace their source herbs, and determine the potential common TCMs that could activate PPAR-α. Because there is no hyperlipidemia-related medication reference in modern TCM classics, to ensure the high safety and efficacy of all selected TCMs, we selected TCMs that are proved to be combined with statins in the World Traditional/Natural Medicine Patent Database, analyzed corresponding drugs in pharmacophore results based on that, and finally obtained common TCMs that can be applied in PPAR-α and combined with statins. Specifically, the pharmacophore model was based on eight receptor-ligand complexes of PPAR-α. The Receptor-Ligand Pharmacophore Generation module in the DS program was used to build the model, optimize with the Screen Library module, and get the best sub-pharmacophore, which consisted of two hydrogen bond acceptor, three hydrophobic groups and 19 excluded volumes, with the identification effectiveness index value N of 2. 82 and the comprehensive evaluation index CAI value of 1. 84. The model was used to screen the TCMD database, hit 5,235 kinds of chemical components and 1 193 natural animals and plants, and finally determine 62 TCMs. Through patent retrieval, we found 38 TCMs; After comparing with the virtual screening results, we finally got seven TCMs.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Acil Coenzima A/metabolismo , Animais , Bases de Dados Factuais , Medicamentos de Ervas Chinesas/química , Interações Hidrofóbicas e Hidrofílicas , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Lipídeos/sangue , Medicina Tradicional Chinesa , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Tecnologia
19.
Comput Biol Med ; 179: 108878, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39043107

RESUMO

Mechanism analysis is essential for the use and promotion of Traditional Chinese Medicine (TCM). Traditional methods of network analysis relying on expert experience lack an explanatory framework, prompting the application of deep learning and machine learning for objective identification of TCM pharmacological effects. A dataset was used to construct an interacted network graph between 424 molecular descriptors and 465 pharmacological targets to represent the relationship between components and pharmacological effects. Subsequently, the optimal identification model of pharmacological effects (IPE) was established through convolution neural networks of GoogLeNet structure. The AUC values are greater than 0.8, MCC values are greater than 0.7, and ACC values are greater than 0.85 across various test datasets. Subsequently, 18 recognition models of TCM efficacy (RTE) were created using support vector machines (SVM). Integration of pharmacological effects and efficacies led to the development of the systemic web platform for identification of pharmacological effects (SYSTCM). The platform, comprising 70,961 terms, including 636 Traditional Chinese Medicines (TCMs), 8190 components, 40 pharmacological effects, and 18 efficacies. Through the SYSTCM platform, (1) Total 100 components were predicted from TCMs with anti-inflammatory pharmacological effects. (2) The pharmacological effects of complete constituents were predicted from Coptidis Rhizoma (Huang Lian). (3) The principal components, pharmacological effects, and efficacies were elucidated from Salviae Miltiorrhizae radix et rhizome (Dan Shen). SYSTCM addresses subjectivity in pharmacological effect determination, offering a potential avenue for advancing TCM drug development and clinical applications. Access SYSTCM at http://systcm.cn.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Máquina de Vetores de Suporte , Internet
20.
J Ethnopharmacol ; 337(Pt 2): 118881, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39362328

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellaria baicalensis Georgi (SCB, Huangqin) is a traditional medicinal plant used to treat fever and respiratory diseases. SCB has a good therapeutic effect on asthma and anti-inflammation in traditional clinic use. However, the molecular mechanism and targets of SCB in treating asthma are still unclear. AIM OF THE STUDY: Combining transcriptomic analysis and in vitro experimental validation, this study aimed to reveal the molecular mechanism and targets of SCB in treating asthma. MATERIALS AND METHODS: The anti-asthmatic effects of SCB and its active components, scutellarin and oroxylin A, were evaluated in ovalbumin (OVA)-induced rats by analysis of pulmonary function and pathology. The signaling pathways in rat pulmonary tissue were analyzed using transcriptomics and protein interaction network analysis. Calcium mobilization assay and molecular docking were utilized to discover the active compounds from SCB with agonism activity of type 2 taste receptors (TAS2Rs). The anti-asthmatic effect and transcriptional regulation of TAS2Rs regulated by SCB and its active components were analyzed in vitro. RESULTS: Extracts of SCB (ESB), scutellarin, and oroxylin A ameliorated airway function and inflammation in OVA-induced rats. The anti-asthma mechanism of ESB, scutellarin and oroxylin A was highly related to immune and taste transduction pathways based on transcriptomic analysis, especially the TAS2Rs signaling pathway. ESB was the direct agonist of TAS2R4 and TAS2R14 with EC50 of 209.1 and 217.2 µg/mL based on calcium mobilization assay, respectively. Baicalein was the main active component for TAS2R4 agonism activity, and scutellarin and oroxylin A had weak agonism activity of TAS2R4 and TAS2R14 through calcium mobilization assay and molecular docking. However, scutellarin and oroxylin A significantly upregulated the gene expression of Tas2r108 (the mouse ortholog of the TAS2R4) in lung tissue. ESB, scutellarin, and oroxylin A inhibited LPS-induced lactate dehydrogenase release and gene expression of TNF through transcriptional regulation of TAS2R4 and TAS2R14 on bronchial epithelial cells. ESB and oroxylin A ameliorated IgE-induced ß-hexosaminidase release and gene expression of Il4 and Tnf and upregulated gene expression of Tas2r108. CONCLUSION: These results provided new insight into the anti-asthmatic mechanism of SCB and active components, scutellarin and oroxylin A, through agonism and transcriptional regulation of TAS2Rs to ameliorate allergic airway inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA