Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(23): 17396-17409, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36354075

RESUMO

With the widespread photovoltaic deployment to achieve the net-zero energy goal, the resulting photovoltaic waste draws attention. In China, considerable steps have not been taken for photovoltaic waste management. The lack of relevant scientific information on photovoltaic waste brings difficulties to the establishment of photovoltaic waste regulatory systems. In this study, the necessity and feasibility of photovoltaic waste recovery were investigated. In China, the photovoltaic waste stream was quantified as 48.67-60.78 million t in 2050. In photovoltaic waste, indium, selenium, cadmium, and gallium were in high risk, judging by the metal criticality analysis, which meant that their recovery was significant to alleviate the resource shortage. The full recovery method was proved to reduce the environmental burdens most. For cost and benefit analysis, the net present value/size was -1.02 $/kg according to the current industrial status. However, it can be profitable with the recovery of silver. This study provides scientific and comprehensive information for photovoltaic waste management in China and is expected to promote the sustainable development of photovoltaic industry.


Assuntos
Reciclagem , Gerenciamento de Resíduos , Estudos de Viabilidade , Gerenciamento de Resíduos/métodos , China
2.
J Hazard Mater ; 421: 126814, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34396969

RESUMO

The recovery and reuse of waste brominated resin, which is a typical plastic waste, is troublesome because it contains toxic brominated flame retardants. Conventional pyrolysis of brominated resin was suggested to be an effective approach for debromination. However, conventional pyrolysis caused high energy consumption and high yield of toxic volatiles. An energy-saving and environment-friendly technology called infrared heating was reported in this study. According to computation of the developed heat transfer models, the critical debromination temperature was 260 °C in infrared heating, which was 271 °C lower than conventional pyrolysis. Meanwhile, no volatile product appeared in the reported technology. In the pyrolysis residue after infrared heating, bromine concentrated orientationally in the fixed and limited area on the resin particles. Free radicals, such as •CH3, H•, and Br•, were combined with Br• generated in infrared heating to form the concentrated bromine. Compared to the chaotic distribution of bromine in conventional pyrolysis, the orientational concentration of bromine was a progress for removing and collecting bromine in infrared heating. Moreover, compared to conventional pyrolysis, infrared heating could decrease 76.2% energy consumption. This work contributed to provide the novel technology for recovery of plastic wastes.


Assuntos
Bromo , Plásticos , Temperatura Alta , Pirólise , Tecnologia
3.
J Hazard Mater ; 416: 125881, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492821

RESUMO

The recovery of waste glass is an important issue in the fields of social sustainable development and resource recovery. The removal of organic impurity is the first step in the recovery of waste glass. Currently, desiccation-dissociation technology is advised to remove the organic impurity from waste glass. However, the risks of the organic impurity desiccation-dissociation process of waste glass have not been reported in the literature. In this paper, the environmental risks of the organic impurity desiccation-dissociation process of waste glass were assessed. The assessment results indicated that none of TSP (0.143 mg/m3), PM10 (0.090 mg/m3), heavy metals in air and residue after desiccation-dissociation were contaminated. However, the gas contained abundant organic contaminants, especially benzene, whose content was up to 5.26%. Molecular dynamics simulation and contaminant formation pathways analysis indicated that the formation of gaseous organic contaminants was because overmuch small molecular free radicals were generated at 200 °C and combined with each other. Hence, reducing the temperature of desiccation-dissociation, wearing gas masks, and placing organic gas contaminant absorption liquids are necessary protective measures. This paper provides scientific data for the green development of organic impurity desiccation-dissociation technology of waste glass. Meanwhile, this paper makes up for the shortage of the environmental information of the organic impurity desiccation-dissociation of waste glass.


Assuntos
Dessecação , Metais Pesados
4.
J Hazard Mater ; 410: 124611, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33246811

RESUMO

Ball-milling technology is adopted for the debromination of nonmetallic particles of waste printed circuit boards. During the ball-milling process, too short ball-milling time causes insufficient debromination. Excessive ball-milling leads to the waste of resources and the destruction of the main structure of nonmetallic particles resin, unfavorable for the secondary utilization. However, how to determine debromination time of nonmetallic particles in ball-milling process has not been detailed studied. In this study, the ball-milling energy was coupled with the degradation energy of pentabromodiphenyl ether molecule to compute the time for each chemical bond to break. The ball-milling model was used to accurately compute effective mechanical ball-milling energy (1.234 × 10-3 J) generated by a single collision. The average bond energies of C‒O bond, C‒Br bond and C‒H bond (261.24, 302.05 and 489.50 kJ/mol) were analyzed by density functional theory. Under the conditions of 220 r/min and 1.2 g nonmetallic particles and NZVI (4:1). The C‒O bond, C‒Br bond, and C‒H bond fractured completely in turn at 2.25 h, 7.23 h (optimal debromination time), and 11.72 h. Based on the analysis of debromination pathways, it inferred that H2O, HBr, CH3Br, CH4, FeBr2, and graphite were generated. This paper develops a novel idea of the schedule of debromination time of nonmetallic particles, contributing to the directional removal of organic pollutants by ball-milling.

5.
J Hazard Mater ; 393: 122410, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32120221

RESUMO

Pyrolysis technology is advised to dispose nonmetallic particles of waste printed circuit boards to produce oils and gases. During pyrolysis, brominated flame retardants in nonmetallic particles are converted into small-molecular Br-containing substances. They disperse into oil and gas so as to cause secondary pollution. Then, CaCO3 is suggested to be employed to capture the small-molecular Br-containing substances. However, too much CaCO3 will produce over solid wastes. Less CaCO3 might not capture the total Br-containing substances. How to ration the mass of adsorbent for capturing pollutant has not been detailed investigated. This paper found HBr was the main Br-containing substances during high temperature pyrolysis of nonmetallic particles. The capture process of HBr was detailed investigated by the method of computational chemistry. At the condition of 973 K and 100 Pa, HBr was captured by chemical reaction and physical absorption of CaCO3. Unit cell of CaCO3 reacted with two HBr to form CaBr2, and the generated unit cell of CaBr2 can adsorb 0.011 HBr. 0.0106 g CaCO3 can absorb all HBr produced by high temperature vacuum pyrolysis of 1 g nonmetallic particles. This paper contributes a novel approach to accurately ration the mass of adsorbents employed for capturing pollutants.

6.
Sci Total Environ ; 717: 136894, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32084677

RESUMO

Biochar has been widely studied as an amendment for use in remediation of water and soil contaminated with heavy metals such as Pb2+ and Zn2+, but the effects of biochar characteristics, including stability, on the competitive adsorption of Pb2+ and Zn2+ by biochars from various sources are incompletely understood. In this work, biochars from three different feedstocks, including rice straw (RS), chicken manure (CM), and sewage sludge (SS), were prepared at two pyrolysis temperatures, 550 and 350 °C, and tested to investigate the influence of their stabilities and other characteristics on their adsorption of Pb2+ and Zn2+ in both single- and binary-metal systems. RS biochar had the highest carbon and hydrogen contents, greatest number of functional groups (e.g., OH and C=C/C=O), highest pH, most negative surface charge, and highest physical stability, and thus the highest adsorption capacity for Pb2+ and Zn2+. Pyrolysis at the higher temperature resulted in a slight decrease in aromatic functional groups on biochar surfaces but higher adsorption capacities for Pb2+ and Zn2+ due to the decreased biochar particle size and increased specific surface area. FTIR, XRD, and XPS analyses indicated that Pb2+ and Zn2+ were absorbed on the biochars primarily via chemical complexation with aromatic functional groups. Quantum chemistry calculations confirmed that these functional groups (e.g., -OH and-COOH) tended to bind more strongly with Pb2+ than with Zn2+ due to the former's lower binding energies, which also accounted for the notable decrease in adsorption of Zn2+ in the presence of Pb2+. In addition, compared to carboxyl groups, hydroxyl groups had smaller binding energies and stronger metal complexation. These findings provide a theoretical basis for improved understanding of potential applications of biochars in environmental remediation.


Assuntos
Carvão Vegetal/química , Adsorção , Chumbo , Solo , Zinco
7.
Environ Int ; 118: 92-96, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859943

RESUMO

Micro-plastic and nano-particle have been the focal pollutants in environmental science. The printer toner is omitted micro-plastic and nano pollutant. It is comprised of micro polyacrylate styrene and nano-Fe3O4 particles. Polyacrylate styrene and nano-metal were proved to be irreversibly toxic to biological cells. Therefore, toners have the potential environmental risk and healthy harm due to include micro plastics and nano-metal. To our knowledge, few studies provided the specific collection and treatment of micro-plastic pollutant. This paper has chosen a kind of micro-plastic and nano pollutant toxic toner and provided technical guidance and inspiration for controlling the micro-plastic and nano pollutants. The method of vacuum-gasification-condensation was adopted for controlling the micro-plastic and nano pollutant toner. We believe this review will open up a potential avenue for controlling micro-plastic and nano pollutants for environmental protection.


Assuntos
Poluentes Ambientais , Nanopartículas , Plásticos , Eliminação de Resíduos , Conservação dos Recursos Naturais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA