Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 422
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(32): e2403652121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39083419

RESUMO

Leucine-rich glioma-inactivated protein 1 (LGI1), a secretory protein in the brain, plays a critical role in myelination; dysfunction of this protein leads to hypomyelination and white matter abnormalities (WMAs). Here, we hypothesized that LGI1 may regulate myelination through binding to an unidentified receptor on the membrane of oligodendrocytes (OLs). To search for this hypothetic receptor, we analyzed LGI1 binding proteins through LGI1-3 × FLAG affinity chromatography with mouse brain lysates followed by mass spectrometry. An OL-specific membrane protein, the oligodendrocytic myelin paranodal and inner loop protein (OPALIN), was identified. Conditional knockout (cKO) of OPALIN in the OL lineage caused hypomyelination and WMAs, phenocopying LGI1 deficiency in mice. Biochemical analysis revealed the downregulation of Sox10 and Olig2, transcription factors critical for OL differentiation, further confirming the impaired OL maturation in Opalin cKO mice. Moreover, virus-mediated re-expression of OPALIN successfully restored myelination in Opalin cKO mice. In contrast, re-expression of LGI1-unbound OPALIN_K23A/D26A failed to reverse the hypomyelination phenotype. In conclusion, our study demonstrated that OPALIN on the OL membrane serves as an LGI1 receptor, highlighting the importance of the LGI1/OPALIN complex in orchestrating OL differentiation and myelination.


Assuntos
Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Knockout , Oligodendroglia , Animais , Oligodendroglia/metabolismo , Oligodendroglia/citologia , Camundongos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Bainha de Mielina/metabolismo , Proteínas da Mielina/metabolismo , Proteínas da Mielina/genética
2.
Proc Natl Acad Sci U S A ; 120(24): e2302854120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276396

RESUMO

Stomata are pores found in the epidermis of stems or leaves that modulate both plant gas exchange and water/nutrient uptake. The development and function of plant stomata are regulated by a diverse range of environmental cues. However, how carbohydrate status in preexisting leaves might determine systemic stomatal formation within newly developing leaves has remained obscure. The glucose (Glc) sensor HEXOKINASE1 (HXK1) has been reported to decrease the stability of an ethylene/Glc signaling transcriptional regulator, EIN3 (ETHYLENE INSENSITIVE3). EIN3 in turn directly represses the expression of SUC2 (sucrose transporter 2), encoding a master transporter of sucrose (Suc). Further, KIN10, a nuclear regulator involved in energy homeostasis, has been reported to repress the transcription factor SPCH (SPEECHLESS), a master regulator of stomatal development. Here, we demonstrate that the Glc status of preexisting leaves determines systemic stomatal development within newly developing leaves by the HXK1-¦EIN3-¦SUC2 module. Further, increasing Glc levels in preexisting leaves results in a HXK1-dependent decrease of EIN3 and increase of SUC2, triggering the perception, amplification and relay of HXK1-dependent Glc signaling and thereby triggering Suc transport from mature to newly developing leaves. The HXK1-¦EIN3-¦SUC2 molecular module thereby drives systemic Suc transport from preexisting leaves to newly developing leaves. Subsequently, increasing Suc levels within newly developing leaves promotes stomatal formation through the established KIN10⟶ SPCH module. Our findings thus show how a carbohydrate signal in preexisting leaves is sensed, amplified and relayed to determine the extent of systemic stomatal development within newly developing leaves.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Açúcares/metabolismo , Folhas de Planta/metabolismo , Etilenos/metabolismo , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
3.
Plant Physiol ; 195(3): 2309-2322, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38466216

RESUMO

Soil (or plant) water deficit accelerates plant reproduction. However, the underpinning molecular mechanisms remain unknown. By modulating cell division/number, ABSCISIC ACID-INSENSITIVE 5 (ABI5), a key bZIP (basic (region) leucine zippers) transcription factor, regulates both seed development and abiotic stress responses. The KIP-RELATED PROTEIN (KRP) cyclin-dependent kinases (CDKs) play an essential role in controlling cell division, and SHOOT MERISTEMLESS (STM) plays a key role in the specification of flower meristem identity. Here, our findings show that abscisic acid (ABA) signaling and/or metabolism in adjust reproductive outputs (such as rosette leaf number and open flower number) under water-deficient conditions in Arabidopsis (Arabidopsis thaliana) plants. Reproductive outputs increased under water-sufficient conditions but decreased under water-deficient conditions in the ABA signaling/metabolism mutants abscisic acid2-1 (aba2-1), aba2-11, abscisic acid insensitive3-1 (abi3-1), abi4-1, abi5-7, and abi5-8. Further, under water-deficient conditions, ABA induced-ABI5 directly bound to the promoter of KRP1, which encodes a CDK that plays an essential role in controlling cell division, and this binding subsequently activated KRP1 expression. In turn, KRP1 physically interacted with STM, which functions in the specification of flower meristem identity, promoting STM degradation. We further demonstrate that reproductive outputs are adjusted by the ABI5-KRP1-STM molecular module under water-deficient conditions. Together, our findings reveal the molecular mechanism by which ABA signaling and/or metabolism regulate reproductive development under water-deficient conditions. These findings provide insights that may help guide crop yield improvement under water deficiency.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Flores , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácido Abscísico/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Transdução de Sinais , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Reprodução , Mutação/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Proteínas de Homeodomínio
4.
FASEB J ; 38(7): e23589, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572594

RESUMO

Breast cancer antiestrogen resistance 4 (BCAR4) has been suggested that can modulate cell behavior, resulting in tumorigenesis and chemoresistance. However, the underlying mechanisms of BCAR4 in trastuzumab resistance (TR) is still elusive. Here, we explored the function and the underlying mechanism of BCAR4 involving in TR. We found that BCAR4 is significantly upregulated in trastuzumab-resistant BC cells. Knockdown of BCAR4 could sensitize the BC cells to trastuzumab and suppress epithelial-mesenchymal transition (EMT). Mechanically, BCAR4 promotes yes-associated protein 1 (YAP1) expression by competitively sponging miR-665, to activated TGF-ß signaling. Reciprocally, YAP1 could occupy the BCAR4 promoter to enhance its transcription, suggesting that there exists a positive feedback regulation between YAP1 and BCAR4. Targeting the BCAR4/miR-665/YAP1 axis may provide a novel insight of therapeutic approaches for TR in BC.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , MicroRNAs/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica
5.
PLoS Genet ; 18(9): e1010424, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36129930

RESUMO

In most plants, sucrose, a major storage sugar, is transported into sink organs to support their growth. This key physiological process is dependent on the function of sucrose transporters. Sucrose export from source tissues is predominantly controlled through the activity of SUCROSE TRANSPORTER 2 (SUC2), required for the loading of sucrose into the phloem of Arabidopsis plants. However, how SUC2 activity is controlled to support root growth remains unclear. Glucose is perceived via the function of HEXOKINASE 1 (HXK1), the only known nuclear glucose sensor. HXK1 negatively regulates the stability of ETHYLENE-INSENSITIVE3 (EIN3), a key ethylene/glucose interaction component. Here we show that HXK1 functions upstream of EIN3 in the regulation of root sink growth mediated by glucose signaling. Furthermore, the transcription factor EIN3 directly inhibits SUC2 activity by binding to the SUC2 promoter, regulating glucose signaling linked to root sink growth. We demonstrate that these molecular components form a HXK1-EIN3-SUC2 module integral to the control of root sink growth. Also, we demonstrate that with increasing age, the HXK1-EIN3-SUC2 module promotes sucrose phloem loading in source tissues thereby elevating sucrose levels in sink roots. As a result, glucose signaling mediated-sink root growth is facilitated. Our findings thus establish a direct molecular link between the HXK1-EIN3-SUC2 module, the source-to sink transport of sucrose and root growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Folhas de Planta , Plantas/metabolismo , Sacarose/metabolismo , Fatores de Transcrição/genética
6.
Funct Integr Genomics ; 24(1): 13, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236432

RESUMO

Malus baccata (L.) var. gracilis (Rehd.) has high ornamental value and breeding significance, and comparative chloroplast genome analysis was applied to facilitate genetic breeding for desired traits and resistance and provide insight into the phylogeny of this genus. Using data from whole-genome sequencing, a tetrameric chloroplast genome with a length of 159,992 bp and a total GC content of 36.56% was constructed. The M. baccata var. gracilis chloroplast genome consists of a large single-copy sequence (88,100 bp), a short single-copy region (19,186 bp), and two inverted repeat regions, IRa (26,353 bp) and IRb (26,353 bp). This chloroplast genome contains 112 annotated genes, including 79 protein-coding genes (nine multicopy), 29 tRNA genes (eight multicopy), and four rRNA genes (all multicopy). Calculating the relative synonymous codon usage revealed a total of 32 high-frequency codons, and the codons exhibited a biased usage pattern towards A/U as the ending nucleotide. Interspecific sequence comparison and boundary analysis revealed significant sequence variation in the vast single-copy region, as well as generally similar expansion and contraction of the SSC and IR regions for 10 analyzed Malus species. M. baccata var. gracilis and Malus hupehensis were grouped together into one branch based on phylogenetic analysis of chloroplast genome sequences. The chloroplast genome of Malus species provides an important foundation for species identification, genetic diversity analysis, and Malus chloroplast genetic engineering. Additionally, the results can facilitate the use of pendant traits to improve apple tree shape.


Assuntos
Genoma de Cloroplastos , Malus , Filogenia , Melhoramento Vegetal , Códon/genética
7.
Ann Surg ; 279(5): 808-817, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38264902

RESUMO

OBJECTIVE: To compare the short-term and long-term outcomes between robotic gastrectomy (RG) and laparoscopic gastrectomy (LG) for gastric cancer. BACKGROUND: The clinical outcomes of RG over LG have not yet been effectively demonstrated. METHODS: This retrospective cohort study included 3599 patients with gastric cancer who underwent radical gastrectomy at eight high-volume hospitals in China from January 2015 to June 2019. Propensity score matching was performed between patients who received RG and LG. The primary end point was 3-year disease-free survival (DFS). RESULTS: After 1:1 propensity score matching, 1034 pairs of patients were enrolled in a balanced cohort for further analysis. The 3-year DFS in the RG and LG was 83.7% and 83.1% ( P =0.745), respectively, and the 3-year overall survival was 85.2% and 84.4%, respectively ( P =0.647). During 3 years of follow-up, 154 patients in the RG and LG groups relapsed (cumulative incidence of recurrence: 15.0% vs 15.0%, P =0.988). There was no significant difference in the recurrence sites between the 2 groups (all P >0.05). Sensitivity analysis showed that RG had comparable 3-year DFS (77.4% vs 76.7%, P =0.745) and overall survival (79.7% vs 78.4%, P =0.577) to LG in patients with advanced (pathologic T2-4a) disease, and the recurrence pattern within 3 years was also similar between the 2 groups (all P >0.05). RG had less intraoperative blood loss, lower conversion rate, and shorter hospital stays than LG (all P >0.05). CONCLUSIONS: For resectable gastric cancer, including advanced cases, RG is a safe approach with comparable 3-year oncological outcomes to LG when performed by experienced surgeons.


Assuntos
Laparoscopia , Procedimentos Cirúrgicos Robóticos , Neoplasias Gástricas , Humanos , Resultado do Tratamento , Estudos Retrospectivos , Neoplasias Gástricas/patologia , Gastrectomia , Pontuação de Propensão , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/cirurgia
8.
Small ; 20(29): e2311355, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38363051

RESUMO

Direct photocatalytic methane oxidation into value-added products provides a promising strategy for methane utilization. However, the inefficient generation of reactive oxygen species (ROS) partly limits the activation of CH4. Herein, it is reported that Pd and VOδ co-modified TiO2 enables direct and selective methane oxidation into liquid oxygenates in the presence of O2 and H2. Due to the extra ROS production from the in situ formed H2O2, a highly improved yield rate of 5014 µmol g-1 h-1 for liquid oxygenates with a selectivity of 89.3% is achieved over the optimized Pd0.5V0.2-TiO2 catalyst at ambient temperature, which is much better than those (2682 µmol g-1 h-1, 77.8%) without H2. Detailed investigations also demonstrate the synergistic effect between Pd and VOδ species for enhancing the charge carrier separation and transfer, as well as improving the catalytic activity for O2 reduction and H2O2 production.

9.
Plant Physiol ; 194(1): 391-407, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37738410

RESUMO

Exposure of dark-grown etiolated seedlings to light triggers the transition from skotomorphogenesis/etiolation to photomorphogenesis/de-etiolation. In the life cycle of plants, de-etiolation is essential for seedling development and plant survival. The mobilization of soluble sugars (glucose [Glc], sucrose, and fructose) derived from stored carbohydrates and lipids to target organs, including cotyledons, hypocotyls, and radicles, underpins de-etiolation. Therefore, dynamic carbohydrate biochemistry is a key feature of this phase transition. However, the molecular mechanisms coordinating carbohydrate status with the cellular machinery orchestrating de-etiolation remain largely opaque. Here, we show that the Glc sensor HEXOKINASE 1 (HXK1) interacts with GROWTH REGULATOR FACTOR5 (GRF5), a transcriptional activator and key plant growth regulator, in Arabidopsis (Arabidopsis thaliana). Subsequently, GRF5 directly binds to the promoter of phytochrome A (phyA), encoding a far-red light (FR) sensor/cotyledon greening inhibitor. We demonstrate that the status of Glc within dark-grown etiolated cotyledons determines the de-etiolation of seedlings when exposed to light irradiation by the HXK1-GRF5-phyA molecular module. Thus, following seed germination, accumulating Glc within dark-grown etiolated cotyledons stimulates a HXK1-dependent increase of GRF5 and an associated decrease of phyA, triggering the perception, amplification, and relay of HXK1-dependent Glc signaling, thereby facilitating the de-etiolation of seedlings following light irradiation. Our findings, therefore, establish how cotyledon carbohydrate signaling under subterranean darkness is sensed, amplified, and relayed, determining the phase transition from skotomorphogenesis to photomorphogenesis on exposure to light irradiation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Plântula/metabolismo , Cotilédone/metabolismo , Estiolamento , Glucose/metabolismo , Luz , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo A/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Br J Surg ; 111(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38215239

RESUMO

BACKGROUND: The aim of this multicentre cohort study was to compare the long-term oncological outcomes of robotic gastrectomy (RG) and laparoscopic gastrectomy (LG) for patients with gastric cancer. METHODS: Patients with gastric cancer who underwent radical gastrectomy by robotic or laparoscopic approaches from 1 March 2010 to 31 December 2018 at 10 high-volume centres in China were selected from institutional databases. Patients receiving RG were matched 1 : 1 by propensity score with patients undergoing LG. The primary outcome was 3-year disease-free survival. Secondary outcomes were overall survival and disease recurrence. RESULTS: Some 2055 patients who underwent RG and 4309 patients who had LG were included. The propensity score-matched cohort comprised 2026 RGs and 2026 LGs. Median follow-up was 41 (i.q.r. 39-58) months for the RG group and 39 (38-56) months for the LG group. The 3-year disease-free survival rates were 80.8% in the RG group and 79.5% in the LG group (log rank P = 0.240; HR 0.92, 95% c.i. 0.80 to 1.06; P = 0.242). Three-year OS rates were 83.9 and 81.8% respectively (log rank P = 0.068; HR 0.87, 0.75 to 1.01; P = 0.068) and the cumulative incidence of recurrence over 3 years was 19.3% versus 20.8% (HR 0.95, 0.88 to 1.03; P = 0.219), with no difference between groups. CONCLUSION: RG and LG in patients with gastric cancer are associated with comparable disease-free and overall survival.


Assuntos
Laparoscopia , Levamisol/análogos & derivados , Procedimentos Cirúrgicos Robóticos , Neoplasias Gástricas , Humanos , Resultado do Tratamento , Estudos de Coortes , Neoplasias Gástricas/cirurgia , Gastrectomia , Pontuação de Propensão , Estudos Retrospectivos , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/cirurgia
11.
Physiol Plant ; 176(2): e14238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38488414

RESUMO

Malus sieversii is a precious apple germplasm resource. Browning of explants is one of the most important factors limiting the survival rate of plant tissue culture. In order to explore the molecular mechanism of the browning degree of different strains of Malus sieversii, we compared the dynamic changes of Malus sieversii and Malus robusta Rehd. during the whole browning process using a multi-group method. A total of 44 048 differentially expressed genes (DEGs) were identified by transcriptome analysis on the DNBSEQ-T7 sequencing platform. KEGG enrichment analysis showed that the DEGs were significantly enriched in the flavonoid biosynthesis pathway. In addition, metabonomic analysis showed that (-)-epicatechin, astragalin, chrysin, irigenin, isoquercitrin, naringenin, neobavaisoflavone and prunin exhibited different degrees of free radical scavenging ability in the tissue culture browning process, and their accumulation in different varieties led to differences in the browning degree among varieties. Comprehensive transcriptome and metabonomics analysis of the data related to flavonoid biosynthesis showed that PAL, 4CL, F3H, CYP73A, CHS, CHI, ANS, DFR and PGT1 were the key genes for flavonoid accumulation during browning. In addition, WGCNA analysis revealed a strong correlation between the known flavonoid structure genes and the selected transcriptional genes. Protein interaction predictions demonstrated that 19 transcription factors (7 MYBs and 12 bHLHs) and 8 flavonoid structural genes had targeted relationships. The results show that the interspecific differential expression of flavonoid genes is the key influencing factor of the difference in browning degree between Malus sieversii and Malus robusta Rehd., providing a theoretical basis for further study on the regulation of flavonoid biosynthesis.


Assuntos
Malus , Malus/genética , Malus/metabolismo , Multiômica , Flavonoides/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Regulação da Expressão Gênica de Plantas
12.
BMC Public Health ; 24(1): 730, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448851

RESUMO

BACKGROUND: Exercise and dietary nutrition are considered crucial in human immunodeficiency virus (HIV)/ acquired immunodeficiency syndrome (AIDS) treatment protocols and people living with HIV/AIDS (PLWHA) rehabilitation care. However, there is no well-studied research evaluating the effects of combined interventions on the fitness and immune systems of PLWHA. Therefore, this study aimed to analyze the effects of exercise and dietary intervention on physical fitness, quality of life and immune response in PLWHA. METHODS: This was an experimental study, with a sample of 25 male PLWHA divided into two groups: the intervention group (IG: 12 participants) and the control group (CG: 13 participants). All participants have not had any exercise habits and nutritional supplements in the past six months. The participants in the IG completed 45 min of exercise (60-80% HRmax) 4 times per week for 4 weeks. The exercise was in the form of brisk walking or running. They were also given a nutritional dietary supplement 3 times a day for 4 weeks. The 13 individuals in the CG continued their normal daily life (physical activity and diet). The following parameters were evaluated before and after the intervention: body composition, physical fitness, immune response, quality of life (QoL), stress, dietary behavior, dietary habits, exercise motivation, and physical self-efficacy. RESULTS: The significant changes were observed in burnout of stress variables and physical efficiency index (PEI) of physical fitness in the IG (p =.023). Moreover, in the saliva samples, sal-T levels significantly increased only after the intervention in the IG (p =.012). Additionally, regarding the analysis of the interaction (group × time), there was a significant improvement in the reaction speed (p =.001) and grip strength (left: p =.002, right: p =.030) and a significant difference in physical satisfaction in QoL (p =.001), stress burnout (p =.043), self-confidence in physical efficacy (p =.045), external display (p =.008), and fulfillment (p =.047) in exercise motivation. Moreover, the significant effect of the intervention on emotional eating in dietary behavior was shown in the comparison of the IG before and after intervention (p =.001) and in the comparison of the IG group with the CG after the experiment (p =.013). However, there was no significant effect of time or interaction between the condition and time on body composition. CONCLUSIONS: In conclusion, exercise training and diet therapy caused changes in physical fitness and Sal-T levels, which had positive effects on the health promotion of PLWHA.


Assuntos
Síndrome da Imunodeficiência Adquirida , Masculino , Humanos , Síndrome da Imunodeficiência Adquirida/terapia , HIV , Qualidade de Vida , Exercício Físico , Aptidão Física , Imunidade
13.
Toxicol Ind Health ; 40(5): 244-253, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518383

RESUMO

With the widespread use of manganese dioxide nanoparticles (nano MnO2), health hazards have also emerged. The inflammatory damage of brain tissues could result from nano MnO2, in which the underlying mechanism is still unclear. During this study, we aimed to investigate the role of ROS-mediated p38 MAPK pathway in nano MnO2-induced inflammatory response in BV2 microglial cells. The inflammatory injury model was established by treating BV2 cells with 2.5, 5.0, and 10.0 µg/mL nano MnO2 suspensions for 12 h. Then, the reactive oxygen species (ROS) scavenger (20 nM N-acetylcysteine, NAC) and the p38 MAPK pathway inhibitor (10 µM SB203580) were used to clarify the role of ROS and the p38 MAPK pathway in nano MnO2-induced inflammatory lesions in BV2 cells. The results indicated that nano MnO2 enhanced the expression of pro-inflammatory cytokines IL-1ß and TNF-α, elevated intracellular ROS levels and activated the p38 MAPK pathway in BV2 cells. Controlling intracellular ROS levels with NAC inhibited p38 MAPK pathway activation and attenuated the inflammatory response induced by nano MnO2. Furthermore, inhibition of the p38 MAPK pathway with SB203580 led to a decrease in the production of inflammatory factors (IL-1ß and TNF-α) in BV2 cells. In summary, nano MnO2 can induce inflammatory damage by increasing intracellular ROS levels and further activating the p38 MAPK pathway in BV2 microglial cells.


Assuntos
Compostos de Manganês , Microglia , Óxidos , Proteínas Quinases p38 Ativadas por Mitógeno , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular
14.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396954

RESUMO

Runx2 (runt related transcription factor 2) is an essential transcription factor for osteoblast proliferation and differentiation. Uridine diphosphate (UDP)-N-acetylgalactosamine (GalNAc): polypeptide GalNAc-transferase 3 (Galnt3) prevents proteolytic processing of fibroblast growth factor 23 (Fgf23), which is a hormone that regulates the serum level of phosphorus. Runx2 and Galnt3 were expressed in osteoblasts and osteocytes, and Fgf23 expression was restricted to osteocytes in bone. Overexpression and knock-down of Runx2 upregulated and downregulated, respectively, the expressions of Galnt3 and Fgf23, and Runx2 directly regulated the transcriptional activity of Galnt3 in reporter assays. The expressions of Galnt3 and Fgf23 in osteoblast-specific Runx2 knockout (Runx2fl/flCre) mice were about half those in Runx2fl/fl mice. However, the serum levels of phosphorus and intact Fgf23 in Runx2fl/flCre mice were similar to those in Runx2fl/fl mice. The trabecular bone volume was increased during aging in both male and female Galnt3-/- mice, but the osteoid was reduced. The markers for bone formation and resorption in Galnt3-/- mice were similar to the control in both sexes. Galnt3-/- mice exhibited hyperphosphatemia and hypercalcemia, and the intact Fgf23 was about 40% that of wild-type mice. These findings indicated that Runx2 regulates the expressions of Galnt3 and Fgf23 and that Galnt3 decelerates the mineralization of osteoid by stabilizing Fgf23.


Assuntos
Calcificação Fisiológica , Calcinose , N-Acetilgalactosaminiltransferases , Osteoblastos , Animais , Feminino , Masculino , Camundongos , Calcinose/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Fatores de Crescimento de Fibroblastos/metabolismo , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Osteoblastos/metabolismo , Fósforo , Polipeptídeo N-Acetilgalactosaminiltransferase
15.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(1): 19-24, 2024 Feb.
Artigo em Zh | MEDLINE | ID: mdl-38433626

RESUMO

Objective To analyze the current situation of dietary diversity and caregiver self-efficacy for complementary feeding among infants and young children aged 6 to 23 months in rural Nanchong city,Sichuan province,and to explore the relationship between dietary diversity and caregiver self-efficacy. Methods Multi-stage randomized cluster sampling method was used to select infants and young children aged 6 to 23 months and their caregivers in rural areas of Nanchong city,Sichuan province as the subjects.A structured questionnaire was designed to collect the basic information of the subjects,dietary diversity,and caregiver self-efficacy for complementary feeding.Multivariate Logistic regression was adopted to analyze the relationship between the dietary diversity and caregiver self-efficacy for complementary feeding of infants and young children. Results A total of 770 pairs of infants and young children and their caregivers were included.The minimum pass rate of dietary diversity was 61.56%(474/770) for all the infants and young children and 45.00%(108/240),69.16%(287/415),and 68.70%(79/115) for the infants and young children aged 6 to 11,12 to 17,and 18 to 23 months,respectively.The results of regression analysis showed that the caregiver self-efficacy of complementary feeding was a contributing factor for qualified dietary diversity of infants and young children in the case of other confounders being controlled(OR=1.42,95%CI=1.17-1.73,P<0.001). Conclusion The dietary diversity for infants and young children in rural Nanchong city,Sichuan province needs to be improved,and caregivers with higher self-efficacy of complementary feeding are more likely to provide diversified complementary feeding for infants and young children.


Assuntos
Cuidadores , Autoeficácia , Criança , Lactente , Humanos , Pré-Escolar , Dieta , China
16.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1661-1672, 2024 Mar.
Artigo em Zh | MEDLINE | ID: mdl-38621950

RESUMO

This study assesses the status of outcome measures in the randomized controlled trial(RCT) involving the kidney-tonif-ying and blood-activating method for treating knee osteoarthritis(KOA), aiming to establish a theoretical foundation for the development of a core set of outcome measures in traditional Chinese medicine(TCM) treatment of KOA. The relevant articles were retrieved from CNKI, Wanfang, VIP, SinoMed, PubMed, EMbase, Cochrane Library, and Web of Science, in addition to ClinicalTrials.gov and the China Clinical Trial Registration Center, with the time interval from inception to August 2023. The RCT of treating KOA with the kidney-tonifying and blood-activating method was included. Two assessors independently conducted literature screening, data collection, and qualitative analysis to compile the outcome measure results. A total of 350 RCTs were included, involving 165 outcome measures with the total frequency of 1 462. These outcome measures were categorized into six domains: symptom and sign measures(23) with the frequency of 718(49.1%), TCM symptom and syndrome measures(3) with the frequency of 53(3.6%), physical examination measures(130) with the frequency of 506(34.6%), quality of life measures(4) with the frequency of 20(1.3%), long-term efficacy measures(2) with the frequency of 6(0.4%), and safety measures(3) with the frequency of 159(10.9%). Additionally, 53 studies used TCM syndrome and symptom scores as indicators of efficacy, employing eight distinct measurement tools. The RCTs involving the kidney-tonifying and blood-activating method for treating KOA had a variety of problems, such as unclear prio-ritization of outcome measures, diversity in measurement tools, absence of standardized assessment criteria for specific measures, and non-standardized usage. These problems affected the research quality and reliability. Hence, it is advisable to draw upon international expertise, improve research design, and merge TCM efficacy characteristics with clinical research to establish a core set of KOA outcome measures aligned with TCM principles.


Assuntos
Medicina Tradicional Chinesa , Osteoartrite do Joelho , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Osteoartrite do Joelho/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/administração & dosagem , Rim/fisiopatologia , Avaliação de Resultados em Cuidados de Saúde , Resultado do Tratamento
17.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(6): 659-664, 2024 Jun 15.
Artigo em Zh | MEDLINE | ID: mdl-38926385

RESUMO

In infants with severe bronchopulmonary dysplasia (sBPD), severe pulmonary lobar emphysema may occur as a complication, contributing to significant impairment in ventilation. Clinical management of these infants is extremely challenging and some may require lobectomy to improve ventilation. However, prior to the lobectomy, it is very difficult to assess whether the remaining lung parenchyma would be able to sustain adequate ventilation postoperatively. In addition, preoperative planning and perioperative management are also quite challenging in these patients. This paper reports the utility of selective bronchial occlusion in assessing the safety and efficacy of lobectomy in a case of sBPD complicated by severe right upper lobar emphysema. Since infants with sBPD already have poor lung development and significant lung injury, lobectomy should be viewed as a non-traditional therapy and be carried out with extreme caution. Selective bronchial occlusion test can be an effective tool in assessing the risks and benefits of lobectomy in cases with sBPD and lobar emphysema. However, given the technical difficulty, successful application of this technique requires close collaboration of an experienced interdisciplinary team.


Assuntos
Displasia Broncopulmonar , Recém-Nascido Prematuro , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/cirurgia , Displasia Broncopulmonar/etiologia , Recém-Nascido , Brônquios , Masculino , Pneumonectomia , Feminino
18.
Inorg Chem ; 62(48): 19498-19506, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37987809

RESUMO

Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides in all organisms. There is an ∼35 Å long-range electron-hole transfer pathway during the catalytic process of class Ia RNR, which can be described as Tyr122ß â†” [Trp48ß]? ↔ Tyr356ß â†” Tyr731α ↔ Tyr730α ↔ Cys439α. The formation of the Y122• radical initiates this long-range radical transfer process. However, the generation mechanism of Y122• is not yet clear due to confusion over the intermediate X structures. Based on the two reported X structures, we examined the possible mechanisms of Y122• generation by density functional theory (DFT) calculations. Our examinations revealed that the generation of the Y122• radical from the two different core structures of X was via a similar two-step reaction, with the first step of proton transfer for the formation of the proton receptor of Y122 and the second step of a proton-coupled long-range electron transfer reaction with the proton transfer from the Y122 hydroxyl group to the terminal hydroxide ligand of Fe1III and simultaneously electron transfer from the side chain of Y122 to Fe2IV. These findings provide an insight into the formation mechanism of Y122• catalyzed by the double-iron center of the ß subunit of class Ia RNR.


Assuntos
Ribonucleotídeo Redutases , Ribonucleotídeo Redutases/metabolismo , Prótons , Transporte de Elétrons , Ferro/química , Catálise , Tirosina/química
19.
Environ Sci Technol ; 57(7): 2907-2917, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36749299

RESUMO

The heterogeneous electro-Fenton (hetero-e-Fenton)-coupled electrocatalytic oxygen reduction reaction (ORR) is regarded as a promising strategy for ·OH production by simultaneously driving two-electron ORR toward H2O2 and stepped activating the as-generated H2O2 to ·OH. However, the high-efficiency electrogeneration of ·OH remains challengeable, as it is difficult to synchronously obtain efficient catalysis of both reaction steps above on one catalytic site. In this work, we propose a dual-atomic-site catalyst (CoFe DAC) to cooperatively catalyze ·OH electrogeneration, where the atomically dispersed Co sites are assigned to enhance O2 reduction to H2O2 intermediates and Fe sites are responsible for activation of the as-generated H2O2 to ·OH. The CoFe DAC delivers a higher ·OH production rate of 2.4 mmol L-1 min-1 gcat-1 than the single-site catalyst Co-NC (0.8 mmol L-1 min-1 gcat-1) and Fe-NC (1.0 mmol L-1 min-1 gcat-1). Significantly, the CoFe DAC hetero-e-Fenton process is demonstrated to be more energy-efficient for actual coking wastewater treatment with an energy consumption of 19.0 kWh kg-1 COD-1 than other electrochemical technologies that reported values of 29.7∼68.0 kW h kg-1 COD-1. This study shows the attractive advantages of efficiency and sustainability for ·OH electrogeneration, which should have fresh inspiration for the development of new-generation wastewater treatment technology.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Radical Hidroxila , Peróxido de Hidrogênio , Oxirredução , Catálise , Poluentes Químicos da Água/análise
20.
Bioorg Chem ; 138: 106603, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37210825

RESUMO

Viscosity and peroxynitrite (ONOO-) are two significant indicators to affect and evaluate the mitochondrial functional status, which are nearly relational with pathophysiological process in many diseases. Developing suitable analytical methods for monitoring mitochondrial viscosity changes and ONOO- is thus of great importance. In this research, a new mitochondria-targeted sensor DCVP-NO2 for the dual determination of viscosity and ONOO- was exploited based on the coumarin skeleton. DCVP-NO2 displayed a red fluorescence "turn-on" response toward viscosity along with about 30-fold intensity increase. Meanwhile, it could be used as ratiometric probe for detection of ONOO- with excellent sensitivity and extraordinary selectivity for ONOO- over other chemical and biological species. Moreover, thanks to its good photostability, low cytotoxicity and ideal mitochondrion-targeting capability, DCVP-NO2 was successfully utilized for fluorescence imaging of viscosity variations and ONOO- in mitochondria of living cells through different channels. In addition, the results of cell imaging revealed that ONOO- would lead to the increase of viscosity. Taken together, this work provides a potential molecular tool for researching biological functions and interactions of viscosity and ONOO- in mitochondria.


Assuntos
Corantes Fluorescentes , Ácido Peroxinitroso , Corantes Fluorescentes/química , Ácido Peroxinitroso/análise , Dióxido de Nitrogênio/análise , Viscosidade , Mitocôndrias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA