Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 23108, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172186

RESUMO

In studies to date, meshes based on extracellular matrix (ECM) have been extensively used in clinical applications. Unfortunately, little is known about the function of the immunogenic residual, absorbable profile during the tissue repair process. Moreover, there needs to be a recognized preclinical animal model to investigate the safety and efficacy of extracellular matrix meshes. Herein, we designed and fabricated a kind of SIS mesh followed by a scanned electron micrograph characterization and tested α-Gal antigen clearance rate and DNA residual. In order to prove the biocompatibility of the SIS mesh, cell viability, chemotaxis assay and local tissue reaction were assessed by MTT and RTCA cytotoxicity test in vitro as well as implantation and degradation experiments in vivo. Furthermore, we developed a stable preclinical animal model in the porcine ventral hernia repair investigation, which using laparoscopic plus open hybridization method to evaluate tissue adhesion, explant mechanical performance, and histologic analysis after mesh implantation. More importantly, we established a semi-quantitative scoring system to examine the ECM degradation, tissue remodeling and regeneration in the modified porcine surgical hernia model for the first time. Our results highlight the application prospect of the improved porcine ventral hernia model for the safety and efficacy investigation of hernia repair meshes.


Assuntos
Hérnia Ventral , Animais , Suínos , Hérnia Ventral/cirurgia , Modelos Animais , Próteses e Implantes , Herniorrafia/métodos , Cicatrização
2.
Regen Biomater ; 5(1): 9-14, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29423263

RESUMO

Systemic toxicity caused by repeated exposure to both polar and nonpolar leachables of di(2-ethylhexyl)-1,2-cyclohexane plasticized polyvinyl chloride (PVC) was evaluated with dual routes of parenteral administration method on rats in the study. Experimental group and control group were designed by researchers. Tail intravenous injection with 0.9% sodium chloride injection extracts and intraperitoneal injection with corn oil extracts were conducted to the experimental rats while tail intravenous injection with 0.9% sodium chloride Injection and intraperitoneal injection with corn oil were conducted to the control rats. After 14 days, blood specimens were collected for clinical pathology (hematology and clinical chemistry) analysis. Selected organs were weighed and a histopathological examination was conducted. As a result, compared with the control animals, there were no toxicity-related changes on the parameters above. The results show that the rats do not show obvious systemic toxicity reaction caused by repeated exposure with dual routes of parenteral administration method on rats after administration with both polar and nonpolar exacts of di(2-ethylhexyl)-1,2-cyclohexane plasticized PVC simultaneously up for 14 days.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA