Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105579

RESUMO

A cylindrical shell piezoelectric vibration gyroscope is a kind of Coriolis vibration gyroscope. Its core components are the cylindrical quartz resonator (CQR) and the piezoelectric ceramic electrodes (PCEs). In order to develop a high-precision Cylindrical shell piezoelectric vibration gyroscope, it is very important to reduce the influence of the PCEs and obtain a high-quality-factor CQR. To achieve this goal, a novel high-temperature sintering method is proposed to combine the CQR and the PCEs, and the corresponding sintered resonators are fabricated. After sintering, results of the acoustic excitation experiment and piezoelectric excitation experiment are tested, and the influence of the sintered PCEs on the CQR is determined. A complete gyroscope is obtained by vacuum packaging the sintered resonator. Through the open-loop and closed-loop tests, the performance parameters of gyroscope are obtained. The feasibility of the high-temperature sintering method is proved by experiments.

2.
Sensors (Basel) ; 20(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075021

RESUMO

The fused silica cylindrical resonator is a type of axisymmetric resonator that can be used for Coriolis vibratory gyroscopes. Although the resonant frequency, frequency mismatch, and Q factor are natural properties of the resonator, they can change with temperature. Therefore, the temperature drift severely limits the detection accuracy and bias stability of the gyroscope. In this paper, the influence of temperature variation on the vibrational characteristics of fused silica cylindrical resonators was investigated. Experiments were performed on a fused silica cylindrical resonator coated with Cr/Au films. It was shown that at the temperature range from 253.15 K to 353.15 K, the resonant frequency linearly increased with temperature, the frequency mismatch remained unchanged, and the Q factor gradually increased till about 333.15 K, when it began to decrease. Meanwhile, the change of thermoelastic damping with temperature may dominate the variation of Q factor at the temperature range from 253.15 K to 353.15 K. This phenomenon was theoretically analyzed and the variation trends of results were consistent with the theoretical analysis. This study indicates that, for the fused silica cylindrical resonator, to discover the influence of temperature variation on the resonant frequency, frequency mismatch, and Q factor, there are certain rules to follow and repeat. The relationship between temperature and frequency can be established, which provides the feasibility of using self-calibration based on temperature characteristics of the resonator for temperature drift compensations. Additionally, there is an optimum temperature that may improve the performance of the Coriolis vibratory gyroscope with the fused silica cylindrical resonator.

3.
Sensors (Basel) ; 20(1)2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31948044

RESUMO

The Coriolis Vibratory Gyroscopes are a type of sensors that measure angular velocities through the Coriolis effect. The resonator is the critical component of the CVGs, the vibrational characteristics of which, including the resonant frequency, frequency mismatch, Q factor, and Q factor asymmetry, have a great influence on the performance of CVG. The frequency mismatch and Q factor of the resonator, in particular, directly determine the precision and drift characteristics of the gyroscope. Although the frequency mismatch and Q factor are natural properties of the resonator, they can change with external conditions, such as temperature, pressure, and external forces. In this paper, the influence of electrostatic forces on the vibrational characteristics of the fused silica cylindrical resonator is investigated. Experiments were performed on a fused silica cylindrical resonator coated with Cr/Au films. It was shown that the resonant frequency, frequency mismatch, and the decay time slightly decreased with electrostatic forces, while the decay time split increased. Lower capacitive gaps and larger applied voltages resulted in lower frequency mismatch and lower decay time. This phenomenon was theoretically analyzed, and the variation trends of results were consistent with the theoretical analysis. This study indicates that, for fused silica cylindrical resonator with electrostatic transduction, the electrostatic influence on the Q factor and frequency, although small, should be considered when designing the capacitive gap and choosing bias voltages.

4.
Sensors (Basel) ; 19(13)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269769

RESUMO

Fused silica cylindrical resonant gyroscope (CRG) is a novel high-precision solid-wave gyroscope, whose performance is primarily determined by the cylindrical resonator's frequency split and quality factor (Q factor). The laser Doppler vibrometer (LDV) is extensively used to measure the dynamic behavior of fused silica cylindrical resonators. An electrical method was proposed to characterize the dynamic behavior of the cylindrical resonator to enhance the measurement efficiency and decrease the equipment cost. With the data acquisition system and the designed signal analysis program based on LabVIEW software, the dynamic behavior of the fused silica cylindrical resonator can be analyzed automatically and quickly. We compared all the electrical measurement results with the optical detection by LDV, demonstrating that the fast Fourier transform (FFT) result of the resonant frequency measured by the electrical method was 0.12 Hz higher than that with the optical method. Thus, the frequency split measured by the electrical and optical methods was the same in 0.18 Hz, and the measurement of the Q factor was basically the same in 730,000. We conducted all measurements under the same operation condition, and the optical method was used as a reference, demonstrating that the electrical method could characterize the dynamic behavior of the fused silica cylindrical resonator and enhance the measurement efficiency.

5.
Sensors (Basel) ; 18(11)2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30400583

RESUMO

The hemispherical resonator gyroscope (HRG) has attracted the interest of the world inertial navigation community because of its exceptional performance, ultra-high reliability and its potential to be miniaturized. These devices achieve their best performance when the differences in the frequencies of the two degenerate working modes are eliminated. Mechanical treatment, laser ablation, ion-beams etching, etc., have all been applied for the frequency tuning of resonators, however, they either require costly equipment and procedures, or alter the quality factors of the resonators significantly. In this paper, we experimentally investigated for the first time the use of a chemical etching procedure to decrease the frequency splits of hemispherical resonators. We provide a theoretical analysis of the chemical etching procedure, as well as the relation between frequency splits and mass errors. Then we demonstrate that the frequency split could be decreased to below 0.05 Hz by the proposed chemical etching procedure. Results also showed that the chemical etching method caused no damage to the quality factors. Compared with other tuning methods, the chemical etching method is convenient to implement, requiring less time and labor input. It can be regarded as an effective trimming method for obtaining medium accuracy hemispherical resonator gyroscopes.

6.
Sensors (Basel) ; 16(8)2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27483263

RESUMO

The cylindrical resonator gyroscope (CRG) is a typical Coriolis vibratory gyroscope whose performance is determined by the Q factor and frequency mismatch of the cylindrical resonator. Enhancing the Q factor is crucial for improving the rate sensitivity and noise performance of the CRG. In this paper, for the first time, a monolithic cylindrical fused silica resonator with a Q factor approaching 8 × 105 (ring-down time over 1 min) is reported. The resonator is made of fused silica with low internal friction and high isotropy, with a diameter of 25 mm and a center frequency of 3974.35 Hz. The structure of the resonator is first briefly introduced, and then the experimental non-contact characterization method is presented. In addition, the post-fabrication experimental procedure of Q factor improvement, including chemical and thermal treatment, is demonstrated. The Q factor improvement by both treatments is compared and the primary loss mechanism is analyzed. To the best of our knowledge, the work presented in this paper represents the highest reported Q factor for a cylindrical resonator. The proposed monolithic cylindrical fused silica resonator may enable high performance inertial sensing with standard manufacturing process and simple post-fabrication treatment.

7.
ACS Omega ; 4(4): 6923-6930, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459806

RESUMO

The luminescence properties of Ba13.35Al30.7Si5.3O70:Eu2+ and Ba13.35Al30.7Si5.3O70:Eu2+,Tm3+ phosphors are presented. After being excited by a light source, Ba13.35Al30.7Si5.3O70:Eu2+,Tm3+ phosphors emit intense yellow long persistent luminescence covering the region from 450 to 700 nm, which can last about 8 h. Thermoluminescence curves were demonstrated to analyze the trapping nature of persistent luminescence. Tm3+ is added to improve the long persistent luminescence properties of phosphors. The mechanism of persistent luminescence has been studied.

8.
Sci Rep ; 9(1): 9461, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263180

RESUMO

Cylindrical shell fused silica resonators coated with 8 axisymmetric Pb(Zr0.53Ti0.47)O3 (PZT) thin film electrodes (thickness ~2 µm) were reported. The resonators were firstly designed and fabricated, then annealed and processed by chemical etching to increase mechanical quality factor (Q factor) of resonators, which achieved as high as 2.89 million for n = 2 wineglass modes after being coated with PZT thin film electrodes. The n = 2 wineglass modes of the resonators were driven by PZT thin film electrodes in experiment and simulation with fine vibratory shape, which demonstrated the feasibility of the cylindrical fused silica resonator driven by PZT thin film electrodes. The application of PZT thin film electrodes to drive and detect cylindrical shell fused silica resonator can significantly improve Q factor of resonators and improve the sensitivity of Coriolis Vibratory Gyroscope (CVG).

9.
Sci Rep ; 6: 24122, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27049237

RESUMO

The presence of a magnetic field gradient in a sample cell containing spin-polarized (129)Xe atoms will cause an increased relaxation rate. We measured the transverse spin relaxation time of (129)Xe verse the applied magnetic field gradient and the cell temperature. We then compared the different transverse spin relaxation behavior of dual isotopes of xenon ((129)Xe and (131)Xe) due to magnetic field gradient in the same cell. The experiment results show the residual magnetic field gradient can be measured and compensated by applying a negative magnetic gradient in the sample cell. The transverse spin relaxation time of (129)Xe could be increased 2-7 times longer when applying an appropriate magnetic field gradient. The experiment results can also be used to determine the diffusion constant of (129)Xe in H2 and N2 to be 0.4 ± 0.26 cm(2)/sec and 0.12 ± 0.02 cm(2)/sec. The results are close with theoretical calculation.

10.
Sci Rep ; 4: 7098, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25403698

RESUMO

We propose and analyze a superluminal ring laser gyroscope (RLG) using multilayer optical coatings with huge group delay (GD). This GD assisted superluminal RLG can measure the absolute rotation with a giant sensitivity-enhancement factor of ~10(3); while, the broadband FWHM of the enhancement factor can reach 20 MHz. This superluminal RLG is based on a traditional RLG with minimal re-engineering, and beneficial for miniaturization according to theoretical calculation. The idea of using GD coatings as a fast-light medium will shed lights on the design and application of fast-light sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA