Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 35(12): 4266-4283, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37668409

RESUMO

Tomato (Solanum lycopersicum) fruit shape is related to microtubule organization and the activity of microtubule-associated proteins (MAPs). However, insights into the mechanism of fruit shape formation from a cell biology perspective remain limited. Analysis of the tissue expression profiles of different microtubule regulators revealed that functionally distinct classes of MAPs, including members of the plant-specific MICROTUBULE-ASSOCIATED PROTEIN 70 (MAP70) and IQ67 DOMAIN (IQD, also named SUN in tomato) families, are differentially expressed during fruit development. SlMAP70-1-3 and SlIQD21a are highly expressed during fruit initiation, which relates to the dramatic microtubule pattern rearrangements throughout this developmental stage of tomato fruits. Transgenic tomato lines overexpressing SlMAP70-1 or SlIQD21a produced elongated fruits with reduced cell circularity and microtubule anisotropy, while their loss-of-function mutants showed the opposite phenotype, harboring flatter fruits. Fruits were further elongated in plants coexpressing both SlMAP70-1 and SlIQD21a. We demonstrated that SlMAP70s and SlIQD21a physically interact and that the elongated fruit phenotype is likely due to microtubule stabilization induced by the SlMAP70-SlIQD21a interaction. Together, our results identify SlMAP70 proteins and SlIQD21a as important regulators of fruit elongation and demonstrate that manipulating microtubule function during early fruit development provides an effective approach to alter fruit shape.


Assuntos
Frutas , Solanum lycopersicum , Humanos , Frutas/metabolismo , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fenótipo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
2.
J Integr Plant Biol ; 65(3): 721-738, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36263896

RESUMO

In plants, cortical microtubules anchor to the plasma membrane in arrays and play important roles in cell shape. However, the molecular mechanism of microtubule binding proteins, which connect the plasma membrane and cortical microtubules in cell morphology remains largely unknown. Here, we report that a plasma membrane and microtubule dual-localized IQ67 domain protein, IQD21, is critical for cotyledon pavement cell (PC) morphogenesis in Arabidopsis. iqd21 mutation caused increased indentation width, decreased lobe length, and similar lobe number of PCs, whereas IQD21 overexpression had a different effect on cotyledon PC shape. Weak overexpression led to increased lobe number, decreased indentation width, and similar lobe length, while moderate or great overexpression resulted in decreased lobe number, indentation width, and lobe length of PCs. Live-cell observations revealed that IQD21 accumulation at indentation regions correlates with lobe initiation and outgrowth during PC development. Cell biological and genetic approaches revealed that IQD21 promotes transfacial microtubules anchoring to the plasma membrane via its polybasic sites and bundling at the indentation regions in both periclinal and anticlinal walls. IQD21 controls cortical microtubule organization mainly through promoting Katanin 1-mediated microtubule severing during PC interdigitation. These findings provide the genetic evidence that transfacial microtubule arrays play a determinant role in lobe formation, and the insight into the molecular mechanism of IQD21 in transfacial microtubule organization at indentations and puzzle-shaped PC development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Microtúbulos/metabolismo , Arabidopsis/metabolismo , Katanina/metabolismo , Morfogênese
3.
J Cell Sci ; 133(6)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32051284

RESUMO

Self-incompatibility (SI) in the poppy Papaver rhoeas triggers dramatic alterations in actin within pollen tubes. However, how these actin alterations are mechanistically achieved remains largely unexplored. Here, we used treatment with the Ca2+ ionophore A23187 to mimic the SI-induced elevation in cytosolic Ca2+ and trigger formation of the distinctive F-actin foci. Live-cell imaging revealed that this remodeling involves F-actin fragmentation and depolymerization, accompanied by the rapid formation of punctate actin foci and subsequent increase in their size. We established that actin foci are generated and enlarged from crosslinking of fragmented actin filament structures. Moreover, we show that villins associate with actin structures and are involved in this actin reorganization process. Notably, we demonstrate that Arabidopsis VILLIN5 promotes actin depolymerization and formation of actin foci by fragmenting actin filaments, and controlling the enlargement of actin foci via bundling of actin filaments. Our study thus uncovers important novel insights about the molecular players and mechanisms involved in forming the distinctive actin foci in pollen tubes.


Assuntos
Actinas , Proteínas dos Microfilamentos , Tubo Polínico , Citoesqueleto de Actina , Actinas/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/fisiologia , Tubo Polínico/genética
4.
J Reprod Dev ; 68(1): 12-20, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-34690213

RESUMO

Ovarian angiogenesis is an extremely rapid process that occurs during the transition from follicle to corpus luteum (CL) and is crucial for reproduction. It is regulated by numerous factors including transforming growth factor-ß1 (TGFB1). However, the regulatory mechanism of TGFB1 in ovarian angiogenesis is not fully understood. To address this, in this study we obtained high-throughput transcriptome analysis (RNA-seq) data from bovine luteinizing follicular cells cultured in a system mimicking angiogenesis and treated with TGFB1, and identified 455 differentially expressed genes (DEGs). Quantitative real-time PCR results confirmed the differential expression patterns of the 12 selected genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified that the MAPK and ErbB pathways, cell adhesion molecules (CAMs), and extracellular matrix (ECM)-receptor interactions may play pivotal roles in TGFB1-mediated inhibition of CL angiogenesis. TGFB1 phosphorylated ERK1/2 (MAPK1/3) and Akt, indicating that these pathways may play an important role in the regulation of angiogenesis. Several genes with specific functions in cell adhesion and ECM degradation were identified among the DEGs. In particular, TGFB1-induced upregulation of syndecan-1 (SDC1) and collagen type I alpha 1 chain (COL1A1) expression may contribute to the deposition of type I collagen in luteinizing follicular cells. These results indicate that TGFB1 inhibits cell adhesion and ECM degradation processes involving ERK1/2, ErbB, and PI3K/Akt signaling pathways, and leads to inhibition of angiogenesis during the follicular-luteal transition. Our results further reveal the molecular mechanisms underlying the actions of TGFB1 in early luteinization.


Assuntos
Fosfatidilinositol 3-Quinases , Fator de Crescimento Transformador beta1 , Animais , Bovinos , Adesão Celular , Corpo Lúteo/metabolismo , Matriz Extracelular/metabolismo , Feminino , Perfilação da Expressão Gênica , Fosfatidilinositol 3-Quinases/genética , Transcriptoma , Fator de Crescimento Transformador beta1/metabolismo
5.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36613849

RESUMO

The influence of monochromatic green light stimulation on hatching performance and embryo development has been studied in chickens, but not geese. The liver has crucial functions in the regulation of energy metabolism during embryogenesis, but its involvement in green light transduction is still unidentified. We aimed to determine the influence of monochromatic green light on Yangzhou goose hatching performance and embryo development. We also investigated the metabolomics and transcriptomic responses of the embryonic liver to green light to determine the underlying molecular mechanisms. Eggs were incubated under either 12 h of monochromatic green light/dark (12 L:12D) cycles or 24 h of darkness (0G:24D). Green light promoted embryonic development and hatching performance, also affected the expression of myogenic regulatory factors associated with muscle development. It also shortened hatching time and elevated plasma levels of growth hormone and insulin-like growth factor-1. Metabolomics and transcriptomic results revealed differentially expressed genes and metabolites with enhanced gluconeogenesis/glycolysis and increased plasma glucose and pyruvate levels under green light. Hence, the growth-promoting effect possibly through regulating energy metabolism in the liver and myogenic regulatory factors in muscle. Our findings provide important and novel insights into the mechanisms underlying the beneficial effects of green light on goose embryos.


Assuntos
Desenvolvimento Embrionário , Gansos , Glucose , Fígado , Animais , Desenvolvimento Embrionário/efeitos da radiação , Fígado/metabolismo , Fatores de Regulação Miogênica
6.
Plant Physiol ; 184(1): 176-193, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32636342

RESUMO

Actin binding proteins and transcription factors are essential in regulating plant root hair growth in response to various environmental stresses; however, the interaction between these two factors in regulating root hair growth remains poorly understood. Apical and subapical thick actin bundles are necessary for terminating rapid elongation of root hair cells. Here, we show that Arabidopsis (Arabidopsis thaliana) actin-bundling protein Villin1 (VLN1) decorates filaments in shank, subapical, and apical hairs. vln1 mutants displayed significantly longer hairs with longer hair growing time and defects in the thick actin bundles and bundling activities in the subapical and apical regions, whereas seedlings overexpressing VLN1 showed different results. Genetic analysis showed that the transcription factor GLABRA2 (Gl2) played a regulatory role similar to that of VLN1 in hair growth and actin dynamics. Moreover, further analyses demonstrated that VLN1 overexpression suppresses the gl2 mutant phenotypes regarding hair growth and actin dynamics; GL2 directly recognizes the promoter of VLN1 and positively regulates VLN1 expression in root hairs; and the GL2-mediated VLN1 pathway is involved in the root hair growth response to osmotic stress. Our results demonstrate that the GL2-mediated VLN1 pathway plays an important role in the root hair growth response to osmotic stress, and they describe a transcriptional mechanism that regulates actin dynamics and thereby modulates cell tip growth in response to environmental signals.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Homeodomínio/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Pressão Osmótica , Raízes de Plantas/genética
7.
Biochem Genet ; 59(6): 1631-1647, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34046810

RESUMO

Accumulating evidence has demonstrated the vital roles of long non-coding RNAs (lncRNAs) in acute lung injury (ALI). In this study, we aimed to explore the effect of Nuclear Paraspeckle Assembly Transcript 1 (NEAT1) on ALI development. The ALI mice and cell models were constructed using lipopolysaccharide (LPS)-induced method. The concentrations of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) were measured by enzyme-linked immunosorbent assay (ELISA). The levels of TNF-α mRNA, IL-6 mRNA, IL-1ß mRNA, NEAT1, miR-182-5p, and WNT-inducible secreted protein 1 (WISP1) mRNA were determined by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Cell viability was evaluated by Cell Counting Kit-8 (CCK-8) assay. The level of lactate dehydrogenase (LDH) and the activity of caspase-3 were measured by specific kits. The interaction between miR-182-5p and NEAT1 or WISP1 was investigated by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Protein levels were measured by Western blot assay. NEAT1 level was elevated in LPS-induced ALI mice and LPS-stimulated MH-S cells. LPS treatment repressed MH-S cell viability and promoted apoptosis and inflammation, while NEAT1 silencing restored the impacts. For mechanism analysis, NEAT1 was identified as the sponge for miR-182-5p to positively regulate WISP1 expression. Moreover, NEAT1 knockdown could accelerate cell viability and inhibit cell apoptosis and inflammation in LPS-induced MH-S cells by elevating miR-182-5p and decreasing WISP1 in LPS-exposed MH-S cells. In addition, NEAT1 deficiency blocked the activation of NF-κB pathway caused by LPS in MH-S cells. NEAT1 overexpression restrained cell viability and facilitated cell apoptosis and inflammation in LPS-exposed MH-S cells through miR-182-5p/WISP1 axis.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , RNA Longo não Codificante , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Animais , Apoptose , Proteínas de Sinalização Intercelular CCN , Lipopolissacarídeos , Camundongos , MicroRNAs/genética , Paraspeckles , Proteínas Proto-Oncogênicas , RNA Longo não Codificante/genética
9.
J Exp Bot ; 71(22): 7132-7145, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32930788

RESUMO

Trichomes are specialized epidermal appendages that serve as excellent models to study cell morphogenesis. Although the molecular mechanism underlying trichome morphogenesis in Arabidopsis has been well characterized, most of the regulators essential for multicellular trichome morphology remain unknown in tomato. In this study, we determined that the recessive hairless-2 (hl-2) mutation in tomato causes severe distortion of all trichome types, along with increased stem fragility. Using map-based cloning, we found that the hl-2 phenotype was associated with a 100 bp insertion in the coding region of Nck-associated protein 1, a component of the SCAR/WAVE complex. Direct protein-protein interaction was detected between Hl-2 and Hl (SRA1, specifically Rac1-associated protein) using yeast two-hybrid and co-immunoprecipitation assays, suggesting that these proteins may work together during trichome formation. In addition, knock-down of a HD-Zip IV transcription factor, HDZIPIV8, distorted trichomes similar to the hl-2 mutant. HDZIPIV8 regulates the expression of Hl-2 by binding to the L1-box in the Hl-2 promoter region, and is involved in organizing actin filaments. The brittleness of hl-2 stems was found to result from decreased cellulose content. Taken together, these findings suggest that the Hl-2 gene plays an important role in controlling multicellular trichome morphogenesis and mechanical properties of stems in tomato plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Fenótipo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tricomas/metabolismo
10.
J Integr Plant Biol ; 60(9): 897-906, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29424471

RESUMO

Calcium (Ca2+ ) signaling has been implicated in pollen germination and pollen tube growth. To date, however, we still know very little about how exactly Ca2+ signaling links to various physiological subcellular processes during pollen germination and pollen tube growth. Given that Ca2+ signaling is tightly related to the cytosolic concentration and dynamics of Ca2+ , it is vital to trace the dynamic changes in Ca2+ levels in order to decode Ca2+ signaling. Here, we demonstrate that G-CaMP5 serves well as an indicator for monitoring cytosolic Ca2+ dynamics in pollen cells. Using this probe, we show that cytosolic Ca2+ changes dramatically during pollen germination, and, as reported previously, Ca2+ forms a tip-focused gradient in the pollen tube and undergoes oscillation in the tip region during pollen tube growth. In particular, using G-CaMP5 allowed us to capture the dynamic changes in the cytosolic Ca2+ concentration ([Ca2+ ]cyt ) in pollen tubes in response to various exogenous treatments. Our data suggest that G-CaMP5 is a suitable probe for monitoring the dynamics of [Ca2+ ]cyt in pollen cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cálcio/metabolismo , Pólen/metabolismo , Citosol/metabolismo , Tubo Polínico/metabolismo
11.
J Biol Chem ; 291(34): 17881-96, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27261463

RESUMO

Fimbrins/plastins have been implicated in the generation of distinct actin structures, which are linked to different cellular processes. Historically, fimbrins/plastins were mainly considered as generating tight actin bundles. Here, we demonstrate that different members of the fimbrin/plastin family have diverged biochemically during evolution to generate either tight actin bundles or loose networks with distinct biochemical and biophysical properties. Using the phylogenetically and functionally distinct Arabidopsis fimbrins FIM4 and FIM5 we found that FIM4 generates both actin bundles and cross-linked actin filaments, whereas FIM5 only generates actin bundles. The distinct functions of FIM4 and FIM5 are clearly observed at single-filament resolution. Domain swapping experiments showed that cooperation between the conformationally plastic calponin-homology domain 2 (CH2) and the N-terminal headpiece determines the function of the full-length protein. Our study suggests that the structural plasticity of fimbrins/plastins has biologically meaningful consequences, and provides novel insights into the structure-function relationship of fimbrins/plastins as well as shedding light on how cells generate distinct actin structures.


Assuntos
Citoesqueleto de Actina/química , Proteínas de Arabidopsis/química , Arabidopsis/química , Glicoproteínas de Membrana/química , Proteínas dos Microfilamentos/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Domínios Proteicos
12.
J Exp Bot ; 67(11): 3407-17, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27117336

RESUMO

The actin cytoskeleton is increasingly recognized as a major regulator of pollen tube growth. Actin filaments have distinct distribution patterns and dynamic properties within different regions of the pollen tube. Apical actin filaments are highly dynamic and crucial for pollen tube growth. However, how apical actin filaments are generated and properly constructed remains an open question. Here we showed that Arabidopsis fimbrin5 (FIM5) decorates filamentous structures throughout the entire tube but is apically concentrated. Apical actin structures are disorganized to different degrees in the pollen tubes of fim5 loss-of-function mutants. Further observations suggest that apical actin structures are not constructed properly because apical actin filaments cannot be maintained at the cortex of fim5 pollen tubes. Actin filaments appeared to be more curved in fim5 pollen tubes and this was confirmed by measurements showing that the convolutedness and the rate of change of convolutedness of actin filaments was significantly increased in fim5 pollen tubes. This suggests that the rigidity of the actin filaments may be compromised in fim5 pollen tubes. Further, the apical cell wall composition is altered, implying that tip-directed vesicle trafficking events are impaired in fim5 pollen tubes. Thus, we found that FIM5 decorates apical actin filaments and regulates their organization in order to drive polarized pollen tube growth.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glicoproteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Tubo Polínico/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Tubo Polínico/genética , Tubo Polínico/metabolismo
13.
Plant Cell ; 25(9): 3405-23, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24058157

RESUMO

Actin filaments are often arranged into higher-order structures, such as the longitudinal actin cables that generate the reverse fountain cytoplasmic streaming pattern present in pollen tubes. While several actin binding proteins have been implicated in the generation of these cables, the mechanisms that regulate their dynamic turnover remain largely unknown. Here, we show that Arabidopsis thaliana actin-depolymerizing factor7 (ADF7) is required for turnover of longitudinal actin cables. In vitro biochemical analyses revealed that ADF7 is a typical ADF that prefers ADP-G-actin over ATP-G-actin. ADF7 inhibits nucleotide exchange on actin and severs filaments, but its filament severing and depolymerizing activities are less potent than those of the vegetative ADF1. ADF7 primarily decorates longitudinal actin cables in the shanks of pollen tubes. Consistent with this localization pattern, the severing frequency and depolymerization rate of filaments significantly decreased, while their maximum lifetime significantly increased, in adf7 pollen tube shanks. Furthermore, an ADF7-enhanced green fluorescent protein fusion with defective severing activity but normal G-actin binding activity could not complement adf7, providing compelling evidence that the severing activity of ADF7 is vital for its in vivo functions. These observations suggest that ADF7 evolved to promote turnover of longitudinal actin cables by severing actin filaments in pollen tubes.


Assuntos
Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Citoesqueleto de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Corrente Citoplasmática/genética , Genes Reporter , Proteínas de Fluorescência Verde , Modelos Moleculares , Dados de Sequência Molecular , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão , Alinhamento de Sequência , Tiazolidinas/farmacologia
14.
Plant Cell ; 25(5): 1803-17, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23715472

RESUMO

Apical actin filaments are crucial for pollen tube tip growth. However, the specific dynamic changes and regulatory mechanisms associated with actin filaments in the apical region remain largely unknown. Here, we have investigated the quantitative dynamic parameters that underlie actin filament growth and disappearance in the apical regions of pollen tubes and identified villin as the major player that drives rapid turnover of actin filaments in this region. Downregulation of Arabidopsis thaliana VILLIN2 (VLN2) and VLN5 led to accumulation of actin filaments at the pollen tube apex. Careful analysis of single filament dynamics showed that the severing frequency significantly decreased, and the lifetime significantly increased in vln2 vln5 pollen tubes. These results indicate that villin-mediated severing is critical for turnover and departure of actin filaments originating in the apical region. Consequently, the construction of actin collars was affected in vln2 vln5 pollen tubes. In addition to the decrease in severing frequency, actin filaments also became wavy and buckled in the apical cytoplasm of vln2 vln5 pollen tubes. These results suggest that villin confers rigidity upon actin filaments. Furthermore, an observed decrease in skewness of actin filaments in the subapical region of vln2 vln5 pollen tubes suggests that villin-mediated bundling activity may also play a role in the construction of actin collars. Thus, our data suggest that villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars.


Assuntos
Actinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas dos Microfilamentos/metabolismo , Tubo Polínico/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas dos Microfilamentos/genética , Microscopia Confocal , Microscopia de Fluorescência , Modelos Biológicos , Mutação , Plantas Geneticamente Modificadas , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vesículas Transportadoras/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
15.
Plant Cell ; 25(11): 4544-59, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24280386

RESUMO

Microfilament and Ca(2+) dynamics play important roles in stress signaling in plants. Through genetic screening of Arabidopsis thaliana mutants that are defective in stress-induced increases in cytosolic Ca(2+) ([Ca(2+)]cyt), we identified Actin-Related Protein2 (Arp2) as a regulator of [Ca(2+)]cyt in response to salt stress. Plants lacking Arp2 or other proteins in the Arp2/3 complex exhibited enhanced salt-induced increases in [Ca(2+)]cyt, decreased mitochondria movement, and hypersensitivity to salt. In addition, mitochondria aggregated, the mitochondrial permeability transition pore opened, and mitochondrial membrane potential Ψm was impaired in the arp2 mutant, and these changes were associated with salt-induced cell death. When opening of the enhanced mitochondrial permeability transition pore was blocked or increases in [Ca(2+)]cyt were prevented, the salt-sensitive phenotype of the arp2 mutant was partially rescued. These results indicate that the Arp2/3 complex regulates mitochondrial-dependent Ca(2+) signaling in response to salt stress.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteína 2 Relacionada a Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Sinalização do Cálcio , Mitocôndrias/metabolismo , Estresse Fisiológico , Proteína 2 Relacionada a Actina/genética , Proteína 3 Relacionada a Actina/genética , Proteínas de Arabidopsis/genética , Citosol/metabolismo , Mitocôndrias/genética , Mutação , Plantas Geneticamente Modificadas , Tolerância ao Sal/fisiologia
16.
J Integr Plant Biol ; 57(1): 40-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25294278

RESUMO

Regulation of actin dynamics is a central theme in cell biology that is important for different aspects of cell physiology. Villin, a member of the villin/gelsolin/fragmin superfamily of proteins, is an important regulator of actin. Villins contain six gelsolin homology domains (G1-G6) and an extra headpiece domain. In contrast to their mammalian counterparts, plant villins are expressed widely, implying that plant villins play a more general role in regulating actin dynamics. Some plant villins have a defined role in modifying actin dynamics in the pollen tube; most of their in vivo activities remain to be ascertained. Recently, our understanding of the functions and mechanisms of action for plant villins has progressed rapidly, primarily due to the advent of Arabidopsis thaliana genetic approaches and imaging capabilities that can visualize actin dynamics at the single filament level in vitro and in living plant cells. In this review, we focus on discussing the biochemical activities and modes of regulation of plant villins. Here, we present current understanding of the functions of plant villins. Finally, we highlight some of the key unanswered questions regarding the functions and regulation of plant villins for future research.


Assuntos
Actinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Família Multigênica , Células Vegetais/metabolismo
17.
Plant Cell ; 23(6): 2314-30, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21719691

RESUMO

Microfilament dynamics play a critical role in regulating stomatal movement; however, the molecular mechanism underlying this process is not well understood. We report here the identification and characterization of STOMATAL CLOSURE-RELATED ACTIN BINDING PROTEIN1 (SCAB1), an Arabidopsis thaliana actin binding protein. Plants lacking SCAB1 were hypersensitive to drought stress and exhibited reduced abscisic acid-, H(2)O(2)-, and CaCl(2)-regulated stomatal movement. In vitro and in vivo analyses revealed that SCAB1 binds, stabilizes, and bundles actin filaments. SCAB1 shares sequence similarity only with plant proteins and contains a previously undiscovered actin binding domain. During stomatal closure, actin filaments switched from a radial orientation in open stomata to a longitudinal orientation in closed stomata. This switch took longer in scab1 plants than in wild-type plants and was correlated with the delay in stomatal closure seen in scab1 mutants in response to drought stress. Our results suggest that SCAB1 is required for the precise regulation of actin filament reorganization during stomatal closure.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas dos Microfilamentos/metabolismo , Estômatos de Plantas/metabolismo , Ácido Abscísico/metabolismo , Citoesqueleto de Actina/genética , Animais , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Cloreto de Cálcio/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Proteínas dos Microfilamentos/classificação , Proteínas dos Microfilamentos/genética , Microtúbulos/metabolismo , Dados de Sequência Molecular , Oxidantes/metabolismo , Filogenia , Estômatos de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Estresse Fisiológico
18.
Front Vet Sci ; 11: 1396766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933706

RESUMO

Background: Porcine skeletal muscle development is pivotal for improving meat production. TP63, a transcription factor, regulates vital cellular processes, yet its role in skeletal muscle proliferation is unclear. Methods: The effects of TP63 on skeletal muscle cell viability and proliferation were investigated using both mouse and porcine skeletal muscle myoblasts. Selective sweep analysis in Western pigs identified TP63 as a potential candidate gene for skeletal muscle development. The correlation between TP63 overexpression and cell proliferation was assessed using quantitative real-time PCR (RT-qPCR) and 5-ethynyl-2'-deoxyuridine (EDU). Results: The study revealed a positive correlation between TP63 overexpression and skeletal muscle cell proliferation. Bioinformatics analysis predicted an interaction between MEF2A, another transcription factor, and the mutation site of TP63. Experimental validation through dual-luciferase assays confirmed that a candidate enhancer SNP could influence MEF2A binding, subsequently regulating TP63 expression and promoting skeletal muscle cell proliferation. Conclusion: These findings offer experimental evidence for further exploration of skeletal muscle development mechanisms and the advancement of genetic breeding strategies aimed at improving meat production traits.

19.
Genes (Basel) ; 15(2)2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38397156

RESUMO

In the Suidae family, warthogs show significant survival adaptability and trait specificity. This study offers a comparative genomic analysis between the warthog and other Suidae species, including the Luchuan pig, Duroc pig, and Red River hog. By integrating the four genomes with sequences from the other four species, we identified 8868 single-copy orthologous genes. Based on 8868 orthologous protein sequences, phylogenetic assessments highlighted divergence timelines and unique evolutionary branches within suid species. Warthogs exist on different evolutionary branches compared to DRCs and LCs, with a divergence time preceding that of DRC and LC. Contraction and expansion analyses of warthog gene families have been conducted to elucidate the mechanisms of their evolutionary adaptations. Using GO, KEGG, and MGI databases, warthogs showed a preference for expansion in sensory genes and contraction in metabolic genes, underscoring phenotypic diversity and adaptive evolution direction. Associating genes with the QTLdb-pigSS11 database revealed links between gene families and immunity traits. The overlap of olfactory genes in immune-related QTL regions highlighted their importance in evolutionary adaptations. This work highlights the unique evolutionary strategies and adaptive mechanisms of warthogs, guiding future research into the distinct adaptability and disease resistance in pigs, particularly focusing on traits such as resistance to African Swine Fever Virus.


Assuntos
Vírus da Febre Suína Africana , Suínos/genética , Animais , Filogenia , Genoma/genética , Genômica , Fenótipo
20.
Plant Cell ; 22(11): 3745-63, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21098731

RESUMO

Actin cables in pollen tubes serve as molecular tracks for cytoplasmic streaming and organelle movement and are formed by actin bundling factors like villins and fimbrins. However, the precise mechanisms by which actin cables are generated and maintained remain largely unknown. Fimbrins comprise a family of five members in Arabidopsis thaliana. Here, we characterized a fimbrin isoform, Arabidopsis FIMBRIN5 (FIM5). Our results show that FIM5 is required for the organization of actin cytoskeleton in pollen grains and pollen tubes, and FIM5 loss-of-function associates with a delay of pollen germination and inhibition of pollen tube growth. FIM5 decorates actin filaments throughout pollen grains and tubes. Actin filaments become redistributed in fim5 pollen grains and disorganized in fim5 pollen tubes. Specifically, actin cables protrude into the extreme tips, and their longitudinal arrangement is disrupted in the shank of fim5 pollen tubes. Consequently, the pattern and velocity of cytoplasmic streaming were altered in fim5 pollen tubes. Additionally, loss of FIM5 function rendered pollen germination and tube growth hypersensitive to the actin-depolymerizing drug latrunculin B. In vitro biochemical analyses indicated that FIM5 exhibits actin bundling activity and stabilizes actin filaments. Thus, we propose that FIM5 regulates actin dynamics and organization during pollen germination and tube growth via stabilizing actin filaments and organizing them into higher-order structures.


Assuntos
Actinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis , Germinação/fisiologia , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Pólen/metabolismo , Actinas/ultraestrutura , Arabidopsis/anatomia & histologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Sítios de Ligação , Cruzamentos Genéticos , Corrente Citoplasmática , Teste de Complementação Genética , Células Germinativas Vegetais/citologia , Células Germinativas Vegetais/metabolismo , Glicoproteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Pólen/ultraestrutura , Tubo Polínico/ultraestrutura , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA