RESUMO
Cocrystal screening and single-crystal growth remain the primary obstacles in the development of pharmaceutical cocrystals. Here, we present a new approach for cocrystal screening, microspacing in-air sublimation (MAS), to obtain new cocrystals and grow high-quality single crystals of cocrystals within tens of minutes. The method possesses the advantages of strong designable ability of devices, user-friendly control, and compatibility with materials, especially for the thermolabile molecules. A novel drug-drug cocrystal of favipiravir (FPV) with salicylamide (SAA) was first discovered by this method, which shows improved physiochemical properties. Furthermore, this method proved effective in cultivating single crystals of FPV-isonicotinamide (FPV-INIA), FPV-urea, FPV-nicotinamide (FPV-NIA), and FPV-tromethamine (FPV-Tro) cocrystals, and the structures of these cocrystals were determined for the first time. By adjusting the growth temperature and growth distance precisely, we also achieved single crystals of 10 different paracetamol (PCA) cocrystals and piracetam (PIR) cocrystals, which underscores the versatility and efficiency of this method in pharmaceutical cocrystal screening.
Assuntos
Amidas , Cristalização , Niacinamida , Pirazinas , Niacinamida/química , Pirazinas/química , Amidas/química , Salicilamidas/química , Ureia/química , Modelos Moleculares , Cristalografia por Raios XRESUMO
BACKGROUND: Silica-induced pulmonary fibrosis (silicosis) is a diffuse interstitial fibrotic disease characterized by the massive deposition of extracellular matrix in lung tissue. Fibroblast to myofibroblast differentiation is crucial for the disease progression. Inhibiting myofibroblast differentiation may be an effective way for pulmonary fibrosis treatment. METHODS: The experiments were conducted in TGF-ß treated human lung fibroblasts to induce myofibroblast differentiation in vitro and silica treated mice to induce pulmonary fibrosis in vivo. RESULTS: By quantitative mass spectrometry, we revealed that proteins involved in mitochondrial folate metabolism were specifically upregulated during myofibroblast differentiation following TGF-ß stimulation. The expression level of proteins in mitochondrial folate pathway, MTHFD2 and SLC25A32, negatively regulated myofibroblast differentiation. Moreover, plasma folate concentration was significantly reduced in patients and mice with silicosis. Folate supplementation elevated the expression of MTHFD2 and SLC25A32, alleviated oxidative stress and effectively suppressed myofibroblast differentiation and silica-induced pulmonary fibrosis in mice. CONCLUSION: Our study suggests that mitochondrial folate pathway regulates myofibroblast differentiation and could serve as a potential target for ameliorating silica-induced pulmonary fibrosis.
Assuntos
Fibrose Pulmonar , Silicose , Humanos , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Miofibroblastos , Dióxido de Silício/toxicidade , Pulmão/patologia , Fibroblastos/metabolismo , Silicose/metabolismo , Silicose/patologia , Fator de Crescimento Transformador beta/metabolismo , Diferenciação Celular , Camundongos Endogâmicos C57BLRESUMO
Long-term inhalation of silica particles in the workplace causes silicosis, which is incurable and seriously endangers the health of workers. It is believed that silicosis is caused by an imbalance of the pulmonary immune microenvironment, in which pulmonary phagocytes play a crucial role. As an emerging immunomodulatory factor, it is unclear whether T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) participate in silicosis by modulating pulmonary phagocytes function. The purpose of this study was to investigate the dynamic changes of the TIM-3 in pulmonary macrophages, dendritic cells (DCs), and monocytes during the development of silicosis in mice. The plasma levels of soluble TIM-3 in silicosis patients were also examined. Flow cytometry was used to identify alveolar macrophages (AMs), interstitial macrophages (IMs), CD11b+ DC, CD103+ DC, Ly6C+, and Ly6C- monocytes in mouse lung tissues, and further analyses were conducted on the expression of TIM-3. Results showed that soluble TIM-3 was significantly elevated in plasma of silicosis patients, and the level of which was higher in stage II and III patients than that in stage I. In silicosis mice, the protein and mRNA levels of TIM-3 and Galectin9 were significantly upregulated in lung tissues. Specific to pulmonary phagocytes, silica exposure affected TIM-3 expression in a cell-specific and dynamic manner. In macrophages, TIM-3 expression upregulated in AM after 28 days and 56 days of silica instillation, while the expression of TIM-3 in IM decreased at all observation time points. In DCs, silica exposure only caused a decrease of TIM-3 expression in CD11b+ DCs. In monocytes, TIM-3 dynamics in Ly6C+ and Ly6C- monocytes were generally consistent during silicosis development, which significant decrease after 7 and 28 days of silica exposure. In conclusion, TIM-3 may mediate the development of silicosis by regulating pulmonary phagocytes.
Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Silicose , Camundongos , Animais , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Pulmão/metabolismo , Silicose/metabolismo , Fagócitos , Dióxido de Silício/toxicidadeRESUMO
BACKGROUND: Lactate is an important product of glycolysis metabolism during exercise and has long been recognized as an important metabolic signaling molecule involved in inhibiting lipolysis and promoting lipogenesis, which consequently leads to regulated adipose tissue metabolism. However, recent studies have shown that lactate promotes the browning of white adipose tissue (WAT), which induces heat production and energy expenditure and ultimately causes weight loss. These studies assessing the effects of lactate on lipid metabolism in adipose tissue have revealed conflicting data, making it an important area worthy of further research. METHODS: In this study, using intramuscular injection of lactate to the gastrocnemius, we identified the role of lactate treatment on lipid metabolism and mitochondrial biogenesis of white adipose tissue and brown adipose tissue (BAT). RESULTS: Our results showed that lactate treatment activated the cAMP/PKA signaling pathway and promoted the expression of lipolysis-related proteins (AMPK, HSL, ATGL) and mitochondrial biomarkers (PGC-1α, COXIV) of WAT, while BAT showed an opposite trend after lactate treatment. Further studies showed that lactate treatment significantly increased serum epinephrine and promoted ß3-AR protein expression in WAT and significantly decreased in BAT. CONCLUSION: Our study shows that lactate seems to regulate ß3-adrenergic receptors differently in WAT and BAT, thereby eliciting disparate responses in adipose tissue.
Assuntos
Tecido Adiposo Marrom , Ácido Láctico , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético/fisiologia , Ácido Láctico/metabolismo , Lipólise , TermogêneseRESUMO
Silicosis is a fatal fibrotic lung disease caused by long-term silica particle exposure, in which pulmonary macrophages play an important role. However, the relationship between macrophage polarization and silicosis remains unclear. We established an experimental silicosis mouse model to investigate macrophage polarization during silicosis development. C57BL/c mice were exposed to silica by intra-tracheal instillation and sacrificed at different time points. Lung tissues and bronchoalveolar lavage fluid were collected for flow cytometry, quantitative reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assays, western blotting, and histology examinations. The polarization of pulmonary macrophages was dysregulated during silicosis development. In the early stage of silicosis, M1 macrophages were induced and played a leading role in eliciting inflammatory; in the late stage, M2 macrophages were induced to promote tissue repair. Levels of several cytokines in lung tissue microenvironment changed with macrophage polarization. Inflammatory cytokines such as tumor necrosis factor-α and interleukin (IL)-1ß and IL-6 were upregulated in the inflammation stage, while the anti-inflammatory cytokine IL-10 was upregulated in the fibrosis stage. Furthermore, we found that STAT (signal transducer and activator of transcription) and IRF (interferon regulatory factor) signaling pathway were involved in the regulation of macrophage polarization in silicosis. In summary, macrophage polarization is closely related to the occurrence and development of silicosis and may be a key point for further elucidating silicosis pathogenesis.
Assuntos
Macrófagos Alveolares/efeitos dos fármacos , Silicose/imunologia , Animais , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Fatores Reguladores de Interferon/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/metabolismo , Fatores de Transcrição STAT/metabolismo , Dióxido de Silício , Silicose/metabolismo , Silicose/patologiaRESUMO
Silica particles can cause a systemic disease in workers termed lung silicosis, characterized by diffuse fibrosis. The development of lung silicosis involves various signaling pathway networks comprising numerous cell types and cytokines. As an important medium for communication between cells, exosomes have emerged as a hot research topic; however, the role of exosomal microRNAs (miRNAs) in silicosis remains unclear. In this study, we conducted high-throughput sequencing to generate exosomal miRNAs profiles from macrophages that were either exposed to silica or not. A total of 298 miRNAs were differentially expressed, with 155 up-regulated and 143 down-regulated. Highly conserved differentially expressed miRNAs were functionally annotated and analyzed to predict target genes. Among target interactions associated with the TGF-ß signaling pathway, miR-125a-5p and its putative target gene, Smurf1, were subjected to further research. As expected, levels of miR-125a-5p were upregulated in human serous exosomes and vitro, and inhibit the exosomal miR-125a-5p suppressed the expression of the fibrosis hallmarks. Besides, high levels of the miRNA led to upregulation of smooth muscle actin alpha and repression of Smurf1 in NIH-3T3 and MRC-5 cells. ID1 and SMAD1, downstream of TGF-ß signaling, were upregulated, indicating potential activation of this signaling pathway. These results contribute to understanding of the intercellular communication mediated by exosomal miRNAs and its critical role in fibroblast to myofibroblast transition and silicosis.
Assuntos
Transdiferenciação Celular/efeitos dos fármacos , Poluentes Ambientais/farmacologia , Exossomos/genética , Fibroblastos/metabolismo , Macrófagos/efeitos dos fármacos , MicroRNAs/metabolismo , Dióxido de Silício/farmacologia , Animais , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Macrófagos/metabolismo , Camundongos , Células NIH 3T3 , Análise de Sequência de RNA , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases , Regulação para CimaRESUMO
The incidence of disease relating to nanoparticle exposure has been rising rapidly in recent years, for which there is no effective treatment. Macrophage is suggested to play a crucial role in the development of pulmonary disease. To investigate the changes in macrophage after being stimulated by nanometer silica dust and to explore potential biomarkers and signaling pathways, the gene chip GSE13005 was downloaded from Gene Expression Omnibus database, which contained 21 samples: 3 samples per group and 7 groups in total. Macrophages in the control group were cultured in serum-free medium, while the experimental groups were treated with nanometer silica dust in different sizes and concentrations, respectively. To identify the differentially expressed genes and explore their potential functions, we adopted the gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and also constructed protein-protein interaction network. As a result, 1972 differentially expressed genes were identified from 22,690 microarray data in the gene chip, 1069 genes were upregulated and 903 genes were downregulated. Results of the gene ontology analysis indicated that the differentially expressed genes were widely distributed in intracellular and extracellular regions, regulating macrophage apoptosis, inflammatory response, and cell differentiation. The Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the majority of differentially expressed genes were enriched in cytokine-cytokine receptor interaction, cancer or phagosome transcriptional misregulation. The top 10 hub genes, S100a9, Nos3, Psmd14, Psmd4, Lck, Atp6v1h, Jun, Foxh1, Pex14, and Fadd were identified from protein-protein interaction network. In addition, Nos3, Psmd14, Atp6v1h, and Jun were clustered into module M2 (rc = 0.74, p < 0.01), which mainly regulates cell carcinogenesis and antivirus process. In conclusion, differentially expressed genes screened from this study may provide new insights into the exploration of mechanisms, biomarkers, and therapeutic targets for diseases relating to nanoparticle exposure.
Assuntos
Biologia Computacional , Redes Reguladoras de Genes/genética , Mapas de Interação de Proteínas/genética , Transcriptoma/genética , Apoptose/efeitos dos fármacos , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanopartículas/química , Mapas de Interação de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício/administração & dosagem , Dióxido de Silício/químicaRESUMO
Lactate, a metabolite of exercise, plays a crucial role in the body. In these studies, we aimed to investigate the role of G protein-coupled receptor 81 (GPR81), a specific receptor for lactate, in regulating lipid storage in the gastrocnemius muscle of rats. To achieve this, we measured the impact of sodium 3-hydroxybutyrate (3-OBA) concentration and time on the cAMP-PKA signaling pathway in the gastrocnemius muscles of rats. Our investigation involved determining the effects of administering 3-OBA at a concentration of 3 mmol L-1 just 15 min before exercise. As expected, exercise led to a notable increase in intramuscular lactate concentration in rats. However, injecting 3-OBA prior to exercise yielded intriguing results. It not only further augmented the cAMP-PKA signaling pathway but also boosted the expression of lipolysis-related proteins such as hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL). Simultaneously, it decreased the expression of fat-synthesizing proteins, including acetyl CoA carboxylase (ACC) and fatty acid synthase (FAS), while increasing the protein expression of cytochrome c oxidase subunit â £(COX â £) and the activity of citrate synthetase (CS). Unfortunately, there was no significant change observed in intramuscular triglyceride (IMTG) content. In summary, our findings shed light on the role of lactate in partially regulating intramuscular triglycerides during exercise.
Assuntos
Lipólise , Condicionamento Físico Animal , Ratos , Animais , Condicionamento Físico Animal/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Ácido Láctico , Músculo Esquelético/fisiologia , Triglicerídeos/metabolismoRESUMO
The athlete's paradox phenomenon involves the accumulation of intramuscular triglycerides (IMTG) in both insulin-resistant and insulin-sensitive endurance athletes. Nevertheless, a complete understanding of this phenomenon is yet to be achieved. Recent research indicates that lactate, a common byproduct of physical activity, may increase the accumulation of IMTG in skeletal muscle. This is achieved through the activation of G protein-coupled receptor 81 (GPR81) leads to the suppression of the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway. The mechanism accountable for the increase in mitochondrial content in skeletal muscle triggered by lactate remains incomprehensible. Based on current research, our objective is to explore the role of the GPR81-inhibited cAMP-PKA pathway in the aggregation of IMTG and the increase in mitochondrial content as a result of prolonged exercise. The GPR81-cAMP-PKA-signaling pathway regulates the buildup of IMTG caused by extended periods of endurance training (ET). This is likely due to a decrease in proteins related to fat breakdown and an increase in proteins responsible for fat production. It is possible that the GPR81-cAMP-PKA pathway does not contribute to the long-term increase in mitochondrial biogenesis and content, which is induced by chronic ET. Additional investigation is required to explore the possible hindrance of the mitochondrial biogenesis and content process during physical activity by the GPR81-cAMP-PKA signal.
Assuntos
Treino Aeróbico , Humanos , Ratos , Animais , Triglicerídeos , Resistência Física/fisiologia , Músculo Esquelético/metabolismo , Insulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Lactatos/metabolismoRESUMO
Long-term exposure to inhalable silica particles may lead to severe systemic pulmonary disease, such as silicosis. Exosomes have been demonstrated to dominate the pathogenesis of silicosis, but the underlying mechanisms remain unclear. Therefore, this study aimed to explore the roles of exosomes by transmitting miR-107, which has been linked to the toxic pulmonary effects of silica particles. We found that miR-107, miR-122-5p, miR-125a-5p, miR-126-5p, and miR-335-5p were elevated in exosomes extracted from the serum of patients with silicosis. Notably, an increase in miR-107 in serum exosomes and lung tissue was observed in the experimental silicosis mouse model, while the inhibition of miR-107 reduced pulmonary fibrosis. Moreover, exosomes helped the migration of miR-107 from macrophages to lung fibroblasts, triggering the transdifferentiation of cell phenotypes. Further experiments demonstrated that miR-107 targets CDK6 and suppresses the expression of retinoblastoma protein phosphorylation and E2F1, resulting in cell-cycle arrest. Overall, micron-grade silica particles induced lung fibrosis through exosomal miR-107 negatively regulating the cell cycle signaling pathway. These findings may open a new avenue for understanding how silicosis is regulated by exosome-mediated cell-to-cell communication and suggest the prospect of exosomes as therapeutic targets.
Assuntos
Exossomos , MicroRNAs , Fibrose Pulmonar , Dióxido de Silício , Exossomos/metabolismo , Exossomos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Dióxido de Silício/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Camundongos , Humanos , Silicose/metabolismo , Silicose/patologia , Silicose/genética , Silicose/etiologia , Comunicação Celular , Masculino , Modelos Animais de Doenças , Fibroblastos/metabolismo , Macrófagos/metabolismo , Pulmão/patologia , Pulmão/metabolismoRESUMO
ABSTRACT: Objective: This study aimed to investigate the effect of the central venous-to-arterial carbon dioxide partial pressure difference (Pcv-aCO2) on the administration of cardiotonic drugs in patients with early-stage septic shock. Methods: A retrospective study was conducted on 120 patients suffering from septic shock. At admission, the left ventricular ejection fraction (LVEF) and Pcv-aCO2 of the patients were obtained. On the premise of mean arterial pressure ≥ 65 mm Hg, the patients were divided into two groups according to the treatment approaches adopted by different doctors-control group: LVEF ≤50% and observation group: Pcv-aCO2 ≥ 6. Both groups received cardiotonic therapy. Results: The two groups of patients had similar general conditions and preresuscitation conditions ( P > 0.05). Compared with the control group, the observation group had a higher mean arterial pressure, lactic acid clearance rate, and urine output after 6 h of resuscitation ( P < 0.05), but a lower absolute value of lactic acid, total fluid intake in 24 h, and a lower number of patients receiving renal replacement therapy during hospitalization ( P < 0.05). After 6 hours of resuscitation, the percentages of patients meeting central venous oxygen saturation and central venous pressure targets were not significantly different between the control and observation groups ( P > 0.05). There was no difference in the 28-day mortality rate between the two groups ( P > 0.05). Conclusion: Pcv-aCO2 is more effective than LVEF in guiding the administration of cardiotonic drugs in the treatment of patients with septic shock.
Assuntos
Dióxido de Carbono , Cardiotônicos , Pressão Venosa Central , Choque Séptico , Humanos , Choque Séptico/tratamento farmacológico , Choque Séptico/terapia , Masculino , Feminino , Estudos Retrospectivos , Dióxido de Carbono/sangue , Idoso , Pessoa de Meia-Idade , Cardiotônicos/uso terapêutico , Pressão ParcialRESUMO
Fibrosis is a pathological tissue repair activity in which many myofibroblasts are activated and extracellular matrix are excessively accumulated, leading to the formation of permanent scars and finally organ failure. A variety of organs, including the lung, liver, kidney, heart, and skin, can undergo fibrosis under the stimulation of various exogenous or endogenous pathogenic factors. At present, the pathogenesis of fibrosis is still not fully elucidated, but it is known that the immune system plays a key role in the initiation and progression of fibrosis. Immune checkpoint molecules are key regulators to maintain immune tolerance and homeostasis, among which the programmed cell death protein 1/programmed death ligand 1 (PD-1/PD-L1) axis has attracted much attention. The exciting achievements of tumor immunotherapy targeting PD-1/PD-L1 provide new insights into its use as a therapeutic target for other diseases. In recent years, the role of PD-1/PD-L1 axis in fibrosis has been preliminarily explored, further confirming the close relationship among PD-1/PD-L1 signaling, immune regulation, and fibrosis. This review discusses the structure, expression, function, and regulatory mechanism of PD-1 and PD-L1, and summarizes the research progress of PD-1/PD-L1 signaling in fibrotic diseases.
Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Humanos , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais , FibroseRESUMO
Here, using in situ atomic force microscopy (AFM), the dissolution behaviors and dissolution molecular pathways of two azilsartan crystals, the isopropanol solvate (AZ-IPA), and form I (AZ-I), in pure water and 6-30% poly(ethylene glycol) (PEG) aqueous solutions are revealed. The dissolution behaviors of step retreat and etch pit formation are observed on the (100) faces of the two crystals, with a single step corresponding to one molecular monolayer in crystal structures. Etching rates of pits increase with PEG concentration. Furthermore, our results show that AZ-IPA dissolves by the direct detachment of molecules from the step front to solution. Such a mechanism remains even when the PEG concentration changes. However, AZ-I dissolves primarily by the surface diffusion mechanism involving molecular detachment from the step front at first and then diffusion over the terraces before desorption into solution. PEG promotes the dissolution of AZ-I crystals by favoring the molecular detachment from the step front.
RESUMO
Dendritic cells (DCs) are powerful antigen presentation cells and the initiator of adaptive immune response. Cimetidine, a widely used drug for gastric ulcers treatment, has significant immunomodulatory ability. However, the effects of cimetidine on DC-mediated T cell activation need to be further explored. In this study, we constructed the in vitro and in vivo model of cimetidine exposure, and our data showed that cimetidine stimulated the maturity of immature DCs, and further enhanced its T cell priming capacity. In vivo, the number of rat splenic CD103+ DC were not altered after cimetidine exposure, but the expression of surface markers CD54, CD11c, and MHC-II of which were up-regulated. Importantly, cimetidine interfered with DC-mediated T cell polarization, which was reflected in the up-regulation of Th1 and Th17 cells and the down-regulation of Th2 and Treg cells in vitro and in vivo. These results indicate that cimetidine can induce DC activation and promote DC mediated pro-inflammatory T cell response while weaken immunosuppressive T cell response.
Assuntos
Cimetidina , Células Th17 , Animais , Diferenciação Celular , Cimetidina/metabolismo , Cimetidina/farmacologia , Células Dendríticas/metabolismo , Ativação Linfocitária , RatosRESUMO
Pulmonary fibrosis induced by silica particles is defined as silicosis, which is an incurable disease. The pathogenesis of silicosis is not completely clear, but it's certain that immune system dysfunction is closely related to it. Immune checkpoint inhibitors (ICIs) are emerging immunotherapeutic agents that mainly target adaptive immune cells, and there is abundant evidence that ICIs are of great value in cancer treatment. However, whether these attractive agents can be implemented in silicosis treatment is unclear. In this study, we explored the efficacy of small molecule inhibitors targeted PD-1/PD-L1 and CTLA-4 on silica-induced pulmonary fibrosis in mice. ICIs were injected intraperitoneally into mice that received silica instillation twice a week. The mice were sacrificed 7 and 28 days after the injection. The lungs, spleen, hilar lymph nodes, thymus, and peripheral blood of mice were collected and subjected to histological examination, flow cytometry analysis, and mRNA and protein quantification. Our results demonstrated that silica exposure caused damage to multiple immune organs in mice, leading to an imbalance in systemic immune homeostasis. Specifically, proportions and subtypes of T and B cells were significantly altered, and the expressions of PD-1, PD-L1 and CTLA-4 were abnormal on these cells. Both PD-1/PD-L1 and CTLA-4 inhibitor administration modulated silica-induced immune system disruption, however, only PD-1/PD-L1 signaling inhibition showed significant amelioration of silicosis. Our findings confirmed for the first time the potential value of ICIs for the treatment of silica-induced pulmonary fibrosis, and this may provide new ideas for the treatment of other fibrosis-related diseases.
Assuntos
Inibidores de Checkpoint Imunológico/farmacologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Dióxido de Silício/efeitos adversos , Animais , Subpopulações de Linfócitos B/efeitos dos fármacos , Antígeno B7-H1/efeitos dos fármacos , Antígeno CTLA-4/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência de Múltiplos Órgãos/induzido quimicamente , Insuficiência de Múltiplos Órgãos/patologia , Receptor de Morte Celular Programada 1/efeitos dos fármacos , RNA Mensageiro , Subpopulações de Linfócitos T/efeitos dos fármacosRESUMO
As a potential multifunctional phase transition material, the organic-inorganic hybrid perovskite has attracted extensive attention in recent years. Here, we report the single-crystal to single-crystal phase transition and excitation-wavelength-dependent emission (EDE) of layered perovskite (COOH(CH2)3NH3)2PbI4. Single-crystal X-ray diffraction indicated that the crystal structure changes from layered Ruddlesden-Popper (RP) at 302 K to "X" network composed of face-sharing and corner-sharing [PbX6]4- octahedra at 425 K. The material exhibits thermochromic change from orange to yellow at higher temperature. Considering the thermochromism of the material, we apply it for anticounterfeiting and information encryption. The material exhibits EDE properties with a fluorescence color changing from green to red upon 420 and 546 nm excitation, respectively. Time-dependent density functional theory indicated that this phenomenon is mainly related to the laser-induced crystal structural transfer. Our research shows that the (COOH(CH2)3NH3)2PbI4 crystal has a potential application for multifunctional devices.
RESUMO
The glycolytic product of exercise, lactate, has long been recognized to promote lipid accumulation by activation of G-protein-coupled receptor 81 (GPR81) and inhibition of the cyclic adenosine monophosphate-protein kinase A (cAMP -PKA) pathway in adipose tissue. Whether lactate causes a similar process in skeletal muscle is unclear. Lactate might also improve mitochondria content in skeletal muscle; however, the mechanism is not clarified either. In this study, using intramuscular injection of lactate to the gastrocnemius and intraperitoneal injection of forskolin (activator of cAMP-PKA pathway), we identified the role of the cAMP-PKA pathway in lactate-induced intramuscular triglyceride accumulation and mitochondrial content increase. The intramuscular triglyceride level in the gastrocnemius increased after 5weeks of lactate injection (p<0.05), and this effect was blocked by forskolin injection (p<0.05). Corresponding expression level changes of GPR81, P-PKA/PKA, P-CREB/cAMP-response element binding protein (CREB), and proteins related to lipid metabolism suggest that lactate could induce intramuscular triglyceride accumulation partly through the inhibition of the cAMP-PKA pathway. Meanwhile, the intramuscular expression of citrate synthase (CS) and the activity of CS increased after 5weeks of lactate injection (p<0.05), but the change of CS expression was not blocked by forskolin injection, suggesting other mechanisms might exist. Consequently, exploration for other potential mechanisms that might contribute to the lactate-induced mitochondria content increase was conducted. We found an increase in the contents of lactate-related metabolites in skeletal muscle mitochondria after acute lactate injection (the p-value of each analysis is less than 0.05). LHDA was also validated to exist in mitochondria in this study. These results provide a possibility for metabolism-related mechanisms of lactate-induced mitochondria content increase. Future study is needed to validate this hypothesis. In conclusion, lactate-induced intramuscular triglyceride accumulation is achieved by inhibition of lipolysis, and this process is regulated by the cAMP-PKA pathway. Promoted lipogenesis also contributes to lactate-induced triglyceride accumulation, and this process might also be regulated by the cAMP-PKA pathway. Lactate injection might increase mitochondria content and cAMP-PKA pathway might have a limited contribution, while other metabolism-related mechanisms might play a prominent role.
RESUMO
Idiopathic pulmonary fibrosis (IPF) is a chronic, fatal disease with high mortality and poor prognosis. It is characterized by a gradual decline in lung function, and there are currently no effective therapeutic methods. Folate is a water-soluble B vitamin that plays an important role in one-carbon transfer reactions, nucleic acid biosynthesis and methylation reactions. Studies have shown that folate may participate in the pathogenesis of IPF through ways of DNA repair, methylation, and reactive oxygen species. Macrophage activation is an important early cellular event in IPF and the inflammatory response that they trigger is a significant feature of IPF. Folate receptor-ß (FR-ß) is a cell surface glycosylphosphatidylinositol-anchored glycoprotein that can mediate the unidirectional transport of folate into cells. And it has been found in previous studies that FR-ß is usually overexpressed on activated macrophages, but the expression on resting macrophages was undetectable. Therefore, targeting FR-ß may have potential value for the early diagnosis and therapy of IPF. Our goal is to highlight the biological role of folate and FR-ß in IPF, and we hope to provide helpful insight for clinical treatment strategies.
Assuntos
Receptor 2 de Folato/fisiologia , Ácido Fólico/fisiologia , Fibrose Pulmonar Idiopática/etiologia , Macrófagos/fisiologia , Polaridade Celular , Receptor 2 de Folato/antagonistas & inibidores , Receptor 2 de Folato/química , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/tratamento farmacológico , Receptor 4 Toll-Like/fisiologiaRESUMO
Improvements in science and technology have led to the increasing threats of new chemicals to the public health. It is crucial to evaluate the toxicity, especially immunotoxicology. Dendritic cells (DCs) are believed to be more favorable choices in immunotoxicity evaluations. To obtain and evaluate the value of human monocyte-derived immature DCs (imDCs) in vitro applications in immunotoxicology, compared the results in vitro. DCs were obtained from enriched leukocytes of peripheral blood by using magnetic cell sorting and cytokine (rhGM-CSF + rhIL-4) co-induction. imDCs function in vitro and the surface antigens changes both in imDCs and THP-1 after 24 h of 2,4-dinitrochlorobenzene (DNCB) exposure were determined. The results were compared with those of DNCB-induced rats. The feasibility of imDCs applications in immunotoxicology was evaluated. In vivo, the splenic nodules, lymphocytes, and CD103+DC surface antigen expression were altered in the spleen of DNCB-induced rats. Moreover, DNCB exposure increased CD8+ T cell numbers both in peripheral blood and in the spleen of DNCB-induced rats. In vitro, DNCB exposure reduced the antigen uptake capacity and enhanced the T cell proliferative capacity of imDCs. The results are consistent with in vivo, but superior to that of the THP-1. Our results suggest that human monocyte-derived DCs may have potential applications as an attractive in vitro alternative cell model to evaluate the sensitization of DNCB.