Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Surg Res ; 290: 147-155, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37267704

RESUMO

INTRODUCTION: Older adult burn victims have poorer outcomes than younger burn victims. The liver is critical for the recovery of patients with burns. Postburn hepatic apoptosis in young individuals compromises liver integrity; however, this pathway has not yet been studied in older individuals. Because aged animals with burns suffer significant liver damage, we hypothesized that apoptosis is altered in these animals and may affect liver function. Understanding postburn hepatic apoptosis and its effects on liver function in aged animals may help improve outcomes in older patients. METHODS: We compared the protein and gene expression levels in young and aged mice after a 15% total-body-surface-area burn. Liver and serum samples were collected at different time points after injury. RESULTS: Caspase-9 expression in liver tissue was downregulated by 47% in young animals and upregulated by 62% in aged animals 9 h postburn (P < 0.05). The livers of aged mice showed a Bcl-extra-large (Bcl-xL) transcription increase only after 6 h; however, the livers of young mice exhibited 4.3-fold, 14.4-fold, and 7.8-fold Bcl-xL transcription increases at 3, 6, and 9 h postburn, respectively (P < 0.05). The livers of young mice showed no changes in Caspase-9, Caspase-3, or Bcl-xL protein levels during the early postburn period. In contrast, the livers of aged mice contained cleaved caspase-9, reduced full-length caspase-3, and an accumulation of ΔN-Bcl-x at 6 and 9 h postburn (P < 0.05). p21 expression decreased in aged mice; however, it was significantly increased in the liver tissue of young mice postburn (P < 0.05). Serum amyloid A1 and serum amyloid A2 serum protein levels were 5.2- and 3.1-fold higher in young mice than in aged mice, respectively, at 6 and 9 h postburn (P < 0.05). CONCLUSIONS: Livers of aged mice exhibited different apoptotic processes compared to those of young mice early after burn injury. Collectively, burn-induced liver apoptosis in aged mice compromises hepatic serum protein production.


Assuntos
Queimaduras , Caspases , Animais , Camundongos , Apoptose , Queimaduras/complicações , Queimaduras/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Caspases/metabolismo , Fígado
2.
Anticancer Res ; 43(8): 3411-3418, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37500147

RESUMO

BACKGROUND/AIM: The primary mode of therapy for individuals with locally advanced esophageal adenocarcinoma (EAC) is neoadjuvant chemotherapy, commonly 5-Fluorouracil (5-FU). However, approximately 30% of these patients develop resistance to therapy. Glypican-1 (GPC-1) has been identified as one of the key drivers of chemoresistance in cancer; however, its role in EAC cells has not been explored. The objective of the present study was to evaluate the role of GPC-1 in chemoresistance to 5-FU in EAC cells. MATERIALS AND METHODS: Cell viability to 5-FU was measured with CCK-8 assay, and GPC-1 expression was validated using western blot. 5-FU resistant cell lines were generated. The effect of lentivirus-mediated GPC-1 knockdown on FLO-1 cell viability, cell cycle, and apoptosis was evaluated. RESULTS: 5-FU resistant EAC cells showed increased GPC-1 expression and knockdown of GPC-1 increased cell death and apoptosis. Importantly, the knockdown of GPC-1 enhanced the antitumor effects of 5-FU in vitro via down-regulating AKT/ERK/ß-catenin signaling. CONCLUSION: Silencing GPC-1 has the potential to augment the efficacy of 5-FU chemotherapy in resistant EAC tumors.


Assuntos
Adenocarcinoma , Fluoruracila , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Glipicanas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Apoptose , Proliferação de Células
3.
Commun Biol ; 6(1): 597, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268765

RESUMO

Burn induces a systemic response affecting multiple organs, including the liver. Since the liver plays a critical role in metabolic, inflammatory, and immune events, a patient with impaired liver often exhibits poor outcomes. The mortality rate after burns in the elderly population is higher than in any other age group, and studies show that the liver of aged animals is more susceptible to injury after burns. Understanding the aged-specific liver response to burns is fundamental to improving health care. Furthermore, no liver-specific therapy exists to treat burn-induced liver damage highlighting a critical gap in burn injury therapeutics. In this study, we analyzed transcriptomics and metabolomics data from the liver of young and aged mice to identify mechanistic pathways and in-silico predict therapeutic targets to prevent or reverse burn-induced liver damage. Our study highlights pathway interactions and master regulators that underlie the differential liver response to burn injury in young and aged animals.


Assuntos
Queimaduras , Transcriptoma , Idoso , Humanos , Camundongos , Animais , Queimaduras/epidemiologia , Queimaduras/metabolismo , Queimaduras/terapia , Perfilação da Expressão Gênica
4.
Mol Cell Oncol ; 10(1): 2238873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649964

RESUMO

Poorly differentiated esophageal adenocarcinoma (PDEAC) has a dismal prognosis. Glypican-1(GPC-1) is known to be upregulated in several cancer types in contrast to healthy tissues, rendering it as a biomarker. Nevertheless, the potential therapeutic targeting of GPC-1 has not been explored in PDEAC. There is accumulating evidence that GPC-1, via upregulation of PI3K/Akt/ERK signaling, plays a crucial role in the progression and chemoresistance in cancer. Pictilisib, a class I pan PI3K inhibitor, has shown promising antitumor results in clinical trials, however, has not gained widespread success due to acquired drug resistance. This study investigated the role of GPC-1 in chemo-resistant PDEAC and appraises the impact of targeted silencing of GPC-1 on the antitumor effects of Pictilisib in PDEAC cell lines. Immunohistochemistry assays in PDEAC tissue specimens demonstrated a pronounced intensity of staining with GPC-1. Upregulation of GPC-1 was found to be correlated with advanced stage and poor prognosis. In-vitro studies examined the influence of GPC-1 knockdown and Pictilisib, both as individual agents and in combination, on cytotoxicity, cell cycle distribution, apoptosis, and gene expression profiles. Silencing GPC-1 alone showed significantly reduced cell viability, migration, colony formation, epithelial-mesenchymal transition, and stemness in PDEAC cells. Significantly, knockdown of GPC-1 combined with low-dose Pictilisib led to enhancement of cytotoxicity, cell cycle arrest, and apoptosis in ESO-26 and OE-33 cells. In the xenograft mouse model, the combination of Pictilisib and GPC-1 knockdown exhibited synergy. These findings suggest that GPC-1 represents a promising target to augment chemosensitivity in esophageal adenocarcinoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA