Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Compr Rev Food Sci Food Saf ; 22(1): 587-614, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36529880

RESUMO

Whole flaxseed (flour) as a good source of omega-3 fatty acid and phytochemicals with excellent nutritional and functional attributes has been used to enrich foods for health promotion and disease prevention. However, several limitations and contemporary challenges still impact the development of whole flaxseed (flour)-enriched products on the global market, such as naturally occurring antinutritional factors and entrapment of nutrients within food matrix. Whole flaxseed (flour) with different existing forms could variably alter the techno-functional performance of food matrix, and ultimately affect the edible qualities of fortified food products. The potential interaction mechanism between the subject and object components in fortified products has not been elucidated yet. Hence, in this paper, the physical structure and component changes of flaxseed (flour) by pretreatments coupled with their potential influences on the edible qualities of multiple fortified food products were summarized and analyzed. In addition, several typical food products, including baked, noodle, and dairy products were preferentially selected to investigate the potential influencing mechanisms of flaxseed (flour) on different substrate components. In particular, the altered balance between water absorption of flaxseed protein/gum polysaccharides and the interruption of gluten network, lipid lubrication, lipid-amylose complexes, syneresis, and so forth, were thoroughly elucidated. The overall impact of incorporating whole flaxseed (flour) on the quality and nutritional attributes of fortified food products, coupled with the possible solutions against negative influences are aimed. This paper could provide useful information for expanding the application of whole flaxseed (flour) based on the optimal edible and nutritional properties of fortified food products.


Assuntos
Ácidos Graxos Ômega-3 , Linho , Linho/química , Proteínas , Farinha/análise , Ácidos Graxos Ômega-3/química , Controle de Qualidade
2.
J Sci Food Agric ; 102(12): 5495-5501, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35355275

RESUMO

BACKGROUND: The INFOGEST model is a standardized general in vitro digestion study, but it cannot accurately simulate the fatty acid release process of lipids in the stomach and small intestine. In this study, the internationally universal INFOGEST 2019 was used as the basic model and flaxseed oil emulsion was used as the research object. In various improvement models, the effect of fatty acid release rate on the oxidation stability of flaxseed oil was assessed by adding rabbit stomach extract and changing the order of bile salts addition. RESULTS: With the presence of rabbit gastric extract, flaxseed oil emulsion flocculation and coalescence in stomach were reduced, and the absolute value of ζ-potential increased. Moreover, the release rate of fatty acids in the small intestine increased by 12.14%. The amount of lipid oxidation product (i.e. hexanal) in the gastric and intestinal phases increased by 0.08 ppb. In addition, the fatty acid release rate in the small intestine phase increased by 5.85% and the hexanal content increased by 0.011 ppb in the digestion model of adding bile salts before adjusting the pH in the small intestine phase compared with the model of adjusting the pH first and then adding bile salts. CONCLUSION: The results obtained from this study will contribute to finding the most suitable static digestion model for simulating digestion and oxidation of lipid during lipid gastrointestinal digestion. © 2022 Society of Chemical Industry.


Assuntos
Digestão , Óleo de Semente do Linho , Animais , Ácidos e Sais Biliares , Emulsões/química , Ácidos Graxos , Óleo de Semente do Linho/química , Extratos Vegetais , Coelhos
3.
J Nutr Biochem ; 111: 109176, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36220527

RESUMO

One-carbon metabolism is a key metabolic network that integrates nutritional signals with embryonic development. However, the response of one-carbon metabolism to methionine status and the regulatory mechanisms are poorly understood. Herein, we found that methionine supplementation during pregnancy significantly increased fetal number and average fetal weight. In addition, methionine modulated one-carbon metabolism primarily through 2 metabolic enzymes, cystathionine ß-synthase (CBS) and methionine adenosyltransferase 2A (MAT2A), which were significantly increased in fetal liver tissues and porcine trophoblast (pTr) cells in response to proper methionine supplementation. CBS and MAT2A overexpression enhanced the DNA synthesis in pTr cells. More importantly, we identified a transcription factor, DNA damage-inducible transcript 3 (DDIT3), that was the primary regulator of CBS and MAT2A, which bound directly to promoters and negatively regulated the expression of CBS and MAT2A. Taken together, our findings identified that DDIT3 targeting CBS and MAT2A was a novel regulatory pathway that mediated cellular one-carbon metabolism in response to methionine signal and provided promising targets to improve pregnancy health.


Assuntos
Metionina Adenosiltransferase , Metionina , Suínos , Animais , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Desenvolvimento Embrionário , Regiões Promotoras Genéticas , Racemetionina , Carbono
4.
Nutrients ; 14(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36297089

RESUMO

Fatty acids play important roles in maintaining ovarian steroidogenesis and endometrial receptivity. Porcine primary ovarian granulosa cells (PGCs) and endometrial epithelial cells (PEECs) were treated with or without medium- and short-chain fatty acids (MSFAs) for 24 h. The mRNA abundance of genes was detected by fluorescence quantitative PCR. The hormone levels in the PGCs supernatant and the rate of adhesion of porcine trophoblast cells (pTrs) to PEECs were measured. Sows were fed diets with or without MSFAs supplementation during early gestation. The fecal and vaginal microbiomes were identified using 16S sequencing. Reproductive performance was recorded at parturition. MSFAs increased the mRNA abundance of genes involved in steroidogenesis, luteinization in PGCs and endometrial receptivity in PEECs (p < 0.05). The estrogen level in the PGC supernatant and the rate of adhesion increased (p < 0.05). Dietary supplementation with MSFAs increased serum estrogen levels and the total number of live piglets per litter (p < 0.01). Moreover, MSFAs reduced the fecal Trueperella abundance and vaginal Escherichia-Shigella and Clostridium_sensu_stricto_1 abundance. These data revealed that MSFAs improved pregnancy outcomes in sows by enhancing ovarian steroidogenesis and endometrial receptivity while limiting the abundance of several intestinal and vaginal pathogens at early stages of pregnancy.


Assuntos
Ração Animal , Resultado da Gravidez , Gravidez , Suínos , Animais , Feminino , Ração Animal/análise , Lactação , Suplementos Nutricionais/análise , Dieta/veterinária , Ácidos Graxos , Ácidos Graxos Voláteis , RNA Mensageiro , Estrogênios
5.
Oncol Lett ; 21(5): 391, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33777214

RESUMO

Osteosarcoma is the most common malignant bone tumor in adolescents and young adults, and identifying biomarkers for prognosis and therapy is necessary. Bone morphogenetic protein receptor 2 (BMPR2) is involved in various cellular functions, including cell adhesion, proliferation and invasion, inflammation, apoptosis and metastatic spread. However, the correlation between BMPR2 expression levels and prognosis and tumor-infiltrating immune cells in osteosarcoma is not well understood. In the present study, the expression level of BMPR2 was investigated using the Oncomine and R2 databases. The association between the expression level of BMPR2 and the clinical prognosis of patients with cancer was analyzed using the R2 database. The relationship between the expression level of BMPR2 and immune cell infiltration in the stroma of osteosarcoma was assessed using the Tumor Immune Estimation Resource (TIMER) and CIBERSORT. The correlations between BMPR2 expression level and infiltrated immune cell gene marker sets in osteosarcoma were validated in the TIMER and R2 databases. Analysis of a cohort of patients with osteosarcoma revealed that BMPR2 expression was significantly higher in osteosarcoma compared with in normal tissue and was correlated with poor prognosis. M0 macrophages, M2 macrophages, resting mast, γ δ T and CD8+ T cells were the top five immune cells with the highest degrees of infiltration in osteosarcoma. In addition, BMPR2 expression level showed a significant negative correlation with the gene markers of CD8+ T cells, monocytes and M2 macrophages. Low levels of infiltrating CD8+ T cells, monocytes or M2 macrophages in osteosarcoma was significantly associated with poor survival. These data suggested that CD8+ T cells, monocytes and M2 macrophages play significant roles in the establishment of the immune microenvironment of osteosarcoma. High BMPR2 expression was associated with poor prognosis and low infiltration of CD8+ T cells, monocytes and M2 macrophages in osteosarcoma. Hence, BMPR2 can be considered a biomarker of the immune infiltration, metastasis and prognosis of osteosarcoma.

6.
Mater Sci Eng C Mater Biol Appl ; 127: 112234, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34225875

RESUMO

Osteoarthritis (OA) is a degenerative joint disease which is highly prevalent worldwide. However, no therapy for blocking OA pathogenesis is available currently. In this study, chondroitin sulfate (CS) E oligosaccharides were prepared and we identified disaccharide as the functional unit showing the strongest anti-complement activity and screened out complement C5 as its target in the complement system. We determined that CS-E disaccharide produced anti-inflammatory effects to treat OA by regulating the complement system: it inhibited the formation of complement-dependent complexes such as the membrane-attack complex (MAC) by targeting C5 and suppressed MAC-induced protein expression and the activation of downstream MAPK and NF-κB signaling pathways accordingly. By identifying CS-E disaccharide which could be regarded as a complement regulator or inhibitor exhibiting high anti-complement activity and revealing its OA-alleviating mechanism, this study not only provides a new strategy for OA treatment and drug development, but also potentially offers a promising C5 target therapy for other associated diseases.


Assuntos
Sulfatos de Condroitina , Osteoartrite , Sulfatos de Condroitina/farmacologia , Complemento C5 , Inativadores do Complemento , Humanos , Oligossacarídeos/farmacologia , Osteoartrite/tratamento farmacológico
7.
Adv Nutr ; 12(5): 1877-1892, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33873200

RESUMO

With the increasing maternal age and the use of assisted reproductive technology in various countries worldwide, the influence of epigenetic modification on embryonic development is increasingly notable and prominent. Epigenetic modification disorders caused by various nutritional imbalance would cause embryonic development abnormalities and even have an indelible impact on health in adulthood. In this scoping review, we summarize the main epigenetic modifications in mammals and the synergies among different epigenetic modifications, especially DNA methylation, histone acetylation, and histone methylation. We performed an in-depth analysis of the regulation of various epigenetic modifications on mammals from zygote formation to cleavage stage and blastocyst stage, and reviewed the modifications of key sites and their potential molecular mechanisms. In addition, we discuss the effects of nutrition (protein, lipids, and one-carbon metabolism) on epigenetic modification in embryos and emphasize the importance of various nutrients in embryonic development and epigenetics during pregnancy. Failures in epigenetic regulation have been implicated in mammalian and human early embryo loss and disease. With the use of reproductive technologies, it is becoming even more important to establish developmentally competent embryos. Therefore, it is essential to evaluate the extent to which embryos are sensitive to these epigenetic modifications and nutrition status. Understanding the epigenetic regulation of early embryo development will help us make better use of reproductive technologies and nutrition regulation to improve reproductive health in mammals.


Assuntos
Epigênese Genética , Estado Nutricional , Adulto , Animais , Blastocisto/metabolismo , Metilação de DNA , Embrião de Mamíferos/metabolismo , Feminino , Humanos , Gravidez
8.
Mol Nutr Food Res ; 65(2): e2000734, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33226182

RESUMO

One-carbon metabolism is involved in varieties of physiological processes in mammals, including nucleic acid synthesis, amino acid homeostasis, epigenetic regulation, redox balance and neurodevelopment. The current evidence linking levels of one-carbon nutrients during pregnancy to the development of oocytes, embryos, and placentas, as well as maternal and offspring health, is reviewed. The sources of mammalian one-carbon units, the pathways active in mammalian one-carbon metabolism, the maternal and fetal needs for one-carbon units and their functions during pregnancy are described. The demand for one-carbon metabolism is highest during pregnancy compared to the entire lifetime of a mammal. The primary types of one-carbon metabolism in mammals are the folate cycle, methionine cycle and transsulfuration pathway, which varies at different pregnancy stages (e.g., methylation programming of embryo, neural development of fetus, fetal growth and placenta development). Therefore, an overall consideration of one-carbon metabolism requirements for different pregnancy stages, is called for, specifically, the balance of all nutrients involved, not just one single nutrient in one-carbon metabolism. Moreover, the establishment of an ideal one-carbon metabolism requirement model is suggested according to the requirements for different pregnancy stages to support optimal pregnancy outcomes and maternal and offspring health.


Assuntos
Carbono/metabolismo , Mamíferos/metabolismo , Prenhez/metabolismo , Animais , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Epigênese Genética , Feminino , Ácido Fólico/metabolismo , Humanos , Metionina , Gravidez , Resultado da Gravidez
9.
Cell Prolif ; 54(1): e12950, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33179842

RESUMO

OBJECTIVES: Early pregnancy loss is a major clinical concern in animal and human reproduction, which is largely influenced by embryo implantation. The importance of methionine for embryo implantation is widely neglected. MATERIALS AND METHODS: We performed a series of experiments with primiparous rats fed diets containing different levels of methionine during early pregnancy to investigate the role of methionine in embryonic implantation and pregnancy outcomes, and used them to perform in vivo metabolic assessments and in vitro uterine explant culture. In addition, through transcriptome analysis and silencing the expression of cystathionine ß-synthase (CBS, the key enzyme in transsulfuration pathway) and cell adhesion assay, we measured signalling within Ishikawa, pTr and JAR cells. RESULTS: We determined the relevance and underlying mechanism of methionine on embryo implantation. We showed that methionine deprivation sharply decreased embryo implantation sites, expression of CBS and transsulfuration pathway end products, which were reversed by maternal methionine supplementation during early pregnancy. Moreover, we found CBS improved methionine-mediated cell proliferation and DNA synthesis by CBS inhibition or interference. In addition, transcriptome analysis also revealed that CBS influenced the signalling pathway-associated cell proliferation and DNA synthesis, as well as a correlation between CBS and methionine adenosyltransferase 2A (MAT2A), implying that MAT2A was possibly involved in cell proliferation and DNA synthesis. Further analysis revealed that MAT2A influenced S-adenosylmethionine receptor SAMTOR expression, and SAMTOR activated mTORC1 and its downstream S6K1 and CAD, ultimately enhancing DNA synthesis in the embryo and uterus. CONCLUSIONS: Taken together, these studies demonstrate that CBS and MAT2A improve methionine-mediated DNA synthesis through SAMTOR/mTORC1/S6K1/CAD pathway during embryo implantation.


Assuntos
Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Cistationina beta-Sintase/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metionina Adenosiltransferase/metabolismo , Metionina/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Animais , Células Cultivadas , DNA/biossíntese , Feminino , Humanos , Metionina/análogos & derivados , Ratos , Ratos Sprague-Dawley
10.
ACS Omega ; 5(46): 29864-29871, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33251421

RESUMO

Raw material identification (RMID) is necessary and important to fulfill the quality and safety requirements in the pharmaceutical industry. Near-infrared (NIR) spectroscopy is a rapid, nondestructive, and commonly used analytical technique that could offer great advantages for RMID. In this study, two brand new similarity methods S1 and S2, which could reflect the similarity from the perspective of the inner product of the two vectors and the closeness with the cosine of the vectorial angle or correlation coefficient, were proposed. The ability of u and v factors to distinguish the difference between small peaks was investigated with the spectra of NIR. The results showed that the distinguishing ability of u is greater than v, and the distinguishing ability of S2 is greater than S1. Adjusting exponents u and v in these methods, which are variable and configurable parameters greater than 0 and less than infinity, could identify small peaks in different situations. Meanwhile, S1 and S2 could rapidly identify raw materials, suggesting that the on-site and in situ pharmaceutical RMID for large-volume applications can be highly achievable. The methods provided in this study are accurate and easier to use than traditional chemometric methods, which are important for the pharmaceutical RMID or other analysis.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 217: 256-262, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30947134

RESUMO

Though near infrared spectroscopy (NIRS) has been applied widely in the field of pharmaceutical, there is still a bottleneck which limits its development. The main barrier is that conventional NIRS calibration method is based on experiences and trials, which causes the established model is not stable and difficult to explain. Therefore, a new strategy which was based on design of experiment (DoE) combined with statistical analysis was provided to solve the limitations. A pre-processing method library was set up first and orthogonal experiment design was then introduced to investigate the effects and interactions of different pre-processing methods. Paired t-test was used to select the most suitable pre-processing method. Finally, the pre-processing method selected above and three commonly used variable selection methods (CARS, UVE, VIP) were combined randomly to select the best calibration model. The results showed that the new calibration approach could provide a reasonable way for researchers to establish a more stable, objective calibration model.


Assuntos
Albumina Sérica Humana/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Calibragem , Humanos , Análise dos Mínimos Quadrados
12.
Artigo em Inglês | MEDLINE | ID: mdl-30818218

RESUMO

For the modeling of near infrared spectroscopy (NIRS), the accuracy of the basic data, the stability of the spectra and the optimality of variables selection method were the important factors. In this paper, a novel optimization strategy for NIRS modeling was proposed, which was formed by data mean and ratio of absorbance to concentration (RATC) methods. The data mean method was aim to obtain accurate basic data and stable spectra, the RATC method was aim to select the optimal variables and compared with other variables selection methods (FiPLS, BiPLS, CC, UVE). The experimental subject was raw human plasma, with this novel optimization strategy, the predictive capability of NIRS model of its total protein (TP) content had been improved. At the same time, the public NIRS testing data (water, protein, oil, starch of corn and octane of gasoline) were used to verify the proposed variables selection method, and the predictive capability of these models of different parameters were also improved. To some extent, the optimization strategy of NIRS modeling provided theoretical supports for the development of protein content analyzer of NIRS and the quick determination of parameters of biologics and other materials.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho/métodos , Espectroscopia de Luz Próxima ao Infravermelho/normas , Absorção Fisico-Química , Proteínas Sanguíneas/análise , Calibragem , Gasolina/análise , Humanos , Modelos Químicos , Zea mays/química
13.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 28(9): 975-8, 2012 Sep.
Artigo em Zh | MEDLINE | ID: mdl-22980664

RESUMO

AIM: To investigate the expression level of monocyte chemoattractant protein-1 (MCP-1) in the liver of the patients with chronic hepatitis B (CHB) complicated with non-alcoholic fatty liver diseases (NAFLD). METHODS: The study enrolled 21 CHB with NAFLD patients and 46 CHB without NAFLD patients as the controls. Real-time quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) and immunohistochemistry (IHC) were applied to detect the expression of MCP-1 at the mRNA and protein levels in the liver tissues, respectively. Non-parametric Mann-Whitney test was used to analyze the difference between the CHB patients with and without NAFLD. RESULTS: The mRNA relative expression level of MCP-1 in CHB+NAFLD group was 0.034 (0.024-0.058), higher than that in the control group 0.016 (0.012-0.024). The immunohistochemical score was 8.7±2.5 in CHB+NAFLD group and 6.2±3.5 in the control group. The difference in MCP-1 expression at the both protein and mRNA levels was significant statistically between the two groups (P<0.01). CONCLUSION: MCP-1 expression level in the liver is higher in CHB with NAFLD patients than that in CHB without NAFLD patients.


Assuntos
Quimiocina CCL2/fisiologia , Fígado Gorduroso/etiologia , Hepatite B Crônica/complicações , Hepatite B Crônica/metabolismo , Quimiocina CCL2/análise , Quimiocina CCL2/genética , Humanos , Imuno-Histoquímica , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA