Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(18): 3356-3374.e22, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055199

RESUMO

Drug-tolerant persister cells (persisters) evade apoptosis upon targeted and conventional cancer therapies and represent a major non-genetic barrier to effective cancer treatment. Here, we show that cells that survive treatment with pro-apoptotic BH3 mimetics display a persister phenotype that includes colonization and metastasis in vivo and increased sensitivity toward ferroptosis by GPX4 inhibition. We found that sublethal mitochondrial outer membrane permeabilization (MOMP) and holocytochrome c release are key requirements for the generation of the persister phenotype. The generation of persisters is independent of apoptosome formation and caspase activation, but instead, cytosolic cytochrome c induces the activation of heme-regulated inhibitor (HRI) kinase and engagement of the integrated stress response (ISR) with the consequent synthesis of ATF4, all of which are required for the persister phenotype. Our results reveal that sublethal cytochrome c release couples sublethal MOMP to caspase-independent initiation of an ATF4-dependent, drug-tolerant persister phenotype.


Assuntos
Citocromos c , Neoplasias/tratamento farmacológico , Animais , Apoptose , Proteínas de Transporte , Caspases/metabolismo , Citocromos c/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Camundongos , Mitocôndrias/metabolismo
2.
Cell ; 180(6): 1115-1129.e13, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32200799

RESUMO

Influenza A virus (IAV) is a lytic RNA virus that triggers receptor-interacting serine/threonine-protein kinase 3 (RIPK3)-mediated pathways of apoptosis and mixed lineage kinase domain-like pseudokinase (MLKL)-dependent necroptosis in infected cells. ZBP1 initiates RIPK3-driven cell death by sensing IAV RNA and activating RIPK3. Here, we show that replicating IAV generates Z-RNAs, which activate ZBP1 in the nucleus of infected cells. ZBP1 then initiates RIPK3-mediated MLKL activation in the nucleus, resulting in nuclear envelope disruption, leakage of DNA into the cytosol, and eventual necroptosis. Cell death induced by nuclear MLKL was a potent activator of neutrophils, a cell type known to drive inflammatory pathology in virulent IAV disease. Consequently, MLKL-deficient mice manifest reduced nuclear disruption of lung epithelia, decreased neutrophil recruitment into infected lungs, and increased survival following a lethal dose of IAV. These results implicate Z-RNA as a new pathogen-associated molecular pattern and describe a ZBP1-initiated nucleus-to-plasma membrane "inside-out" death pathway with potentially pathogenic consequences in severe cases of influenza.


Assuntos
Vírus da Influenza A/genética , Necroptose/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Apoptose/genética , Morte Celular/genética , Linhagem Celular Tumoral , Feminino , Vírus da Influenza A/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Necrose/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , RNA/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia
3.
Cell ; 175(2): 429-441.e16, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30245008

RESUMO

Targeting autophagy in cancer cells and in the tumor microenvironment are current goals of cancer therapy. However, components of canonical autophagy play roles in other biological processes, adding complexity to this goal. One such alternative function of autophagy proteins is LC3-associated phagocytosis (LAP), which functions in phagosome maturation and subsequent signaling events. Here, we show that impairment of LAP in the myeloid compartment, rather than canonical autophagy, induces control of tumor growth by tumor-associated macrophages (TAM) upon phagocytosis of dying tumor cells. Single-cell RNA sequencing (RNA-seq) analysis revealed that defects in LAP induce pro-inflammatory gene expression and trigger STING-mediated type I interferon responses in TAM. We found that the anti-tumor effects of LAP impairment require tumor-infiltrating T cells, dependent upon STING and the type I interferon response. Therefore, autophagy proteins in the myeloid cells of the tumor microenvironment contribute to immune suppression of T lymphocytes by effecting LAP.


Assuntos
Tolerância Imunológica/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Fagocitose/fisiologia , Animais , Autofagia/imunologia , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Tolerância Imunológica/imunologia , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Células Mieloides/metabolismo , Fagossomos/fisiologia , Linfócitos T/metabolismo , Microambiente Tumoral/fisiologia
4.
Cell ; 157(5): 1189-202, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24813850

RESUMO

Receptor-interacting protein kinase (RIPK)-1 is involved in RIPK3-dependent and -independent signaling pathways leading to cell death and/or inflammation. Genetic ablation of ripk1 causes postnatal lethality, which was not prevented by deletion of ripk3, caspase-8, or fadd. However, animals that lack RIPK1, RIPK3, and either caspase-8 or FADD survived weaning and matured normally. RIPK1 functions in vitro to limit caspase-8-dependent, TNFR-induced apoptosis, and animals lacking RIPK1, RIPK3, and TNFR1 survive to adulthood. The role of RIPK3 in promoting lethality in ripk1(-/-) mice suggests that RIPK3 activation is inhibited by RIPK1 postbirth. Whereas TNFR-induced RIPK3-dependent necroptosis requires RIPK1, cells lacking RIPK1 were sensitized to necroptosis triggered by poly I:C or interferons. Disruption of TLR (TRIF) or type I interferon (IFNAR) signaling delayed lethality in ripk1(-/-)tnfr1(-/-) mice. These results clarify the complex roles for RIPK1 in postnatal life and provide insights into the regulation of FADD-caspase-8 and RIPK3-MLKL signaling by RIPK1.


Assuntos
Caspase 8/metabolismo , Genes Letais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Caspase 8/genética , Morte Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Fibroblastos/metabolismo , Inflamação/metabolismo , Interferons/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/metabolismo
5.
Immunity ; 44(1): 88-102, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26795252

RESUMO

The role of apoptosis inducing factor (AIF) in promoting cell death versus survival remains controversial. We report that the loss of AIF in fibroblasts led to mitochondrial electron transport chain defects and loss of proliferation that could be restored by ectopic expression of the yeast NADH dehydrogenase Ndi1. Aif-deficiency in T cells led to decreased peripheral T cell numbers and defective homeostatic proliferation, but thymic T cell development was unaffected. In contrast, Aif-deficient B cells developed and functioned normally. The difference in the dependency of T cells versus B cells on AIF for function and survival correlated with their metabolic requirements. Ectopic Ndi1 expression rescued homeostatic proliferation of Aif-deficient T cells. Despite its reported roles in cell death, fibroblasts, thymocytes and B cells lacking AIF underwent normal death. These studies suggest that the primary role of AIF relates to complex I function, with differential effects on T and B cells.


Assuntos
Fator de Indução de Apoptose/metabolismo , Linfócitos B/metabolismo , Mitocôndrias/fisiologia , Linfócitos T/metabolismo , Animais , Apoptose , Respiração Celular/fisiologia , Complexo I de Transporte de Elétrons/metabolismo , Fibroblastos/metabolismo , Glicólise/fisiologia , Camundongos , Camundongos Knockout , Camundongos Mutantes
6.
Proc Natl Acad Sci U S A ; 119(41): e2207240119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191211

RESUMO

The absence of Caspase-8 or its adapter, Fas-associated death domain (FADD), results in activation of receptor interacting protein kinase-3 (RIPK3)- and mixed-lineage kinase-like (MLKL)-dependent necroptosis in vivo. Here, we show that spontaneous activation of RIPK3, phosphorylation of MLKL, and necroptosis in Caspase-8- or FADD-deficient cells was dependent on the nucleic acid sensor, Z-DNA binding protein-1 (ZBP1). We genetically engineered a mouse model by a single insertion of FLAG tag onto the N terminus of endogenous MLKL (MlklFLAG/FLAG), creating an inactive form of MLKL that permits monitoring of phosphorylated MLKL without activating necroptotic cell death. Casp8-/-MlklFLAG/FLAG mice were viable and displayed phosphorylated MLKL in a variety of tissues, together with dramatically increased expression of ZBP1 compared to Casp8+/+ mice. Studies in vitro revealed an increased expression of ZBP1 in cells lacking FADD or Caspase-8, which was suppressed by reconstitution of Caspase-8 or FADD. Ablation of ZBP1 in Casp8-/-MlklFLAG/FLAG mice suppressed spontaneous MLKL phosphorylation in vivo. ZBP1 expression and downstream activation of RIPK3 and MLKL in cells lacking Caspase-8 or FADD relied on a positive feedback mechanism requiring the nucleic acid sensors cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and TBK1 signaling pathways. Our study identifies a molecular mechanism whereby Caspase-8 and FADD suppress spontaneous necroptotic cell death.


Assuntos
Necroptose , Ácidos Nucleicos , Animais , Apoptose/fisiologia , Caspase 8/genética , Caspase 8/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína de Domínio de Morte Associada a Fas/genética , Interferons/metabolismo , Camundongos , Nucleotidiltransferases/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
7.
Mol Cell ; 61(4): 589-601, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26853145

RESUMO

Necroptosis is a cell death pathway regulated by the receptor interacting protein kinase 3 (RIPK3) and the mixed lineage kinase domain-like (MLKL) pseudokinase. How MLKL executes plasma membrane rupture upon phosphorylation by RIPK3 remains controversial. Here, we characterize the hierarchical transduction of structural changes in MLKL that culminate in necroptosis. The MLKL brace, proximal to the N-terminal helix bundle (NB), is involved in oligomerization to facilitate plasma membrane targeting through the low-affinity binding of NB to phosphorylated inositol polar head groups of phosphatidylinositol phosphate (PIP) phospholipids. At the membrane, the NB undergoes a "rolling over" mechanism to expose additional higher-affinity PIP-binding sites responsible for robust association to the membrane and displacement of the brace from the NB. PI(4,5)P2 is the preferred PIP-binding partner. We investigate the specific association of MLKL with PIPs and subsequent structural changes during necroptosis.


Assuntos
Fibroblastos/citologia , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Apoptose , Sítios de Ligação , Linhagem Celular , Membrana Celular/metabolismo , Fibroblastos/metabolismo , Humanos , Camundongos , Modelos Moleculares , Fosforilação , Proteínas Quinases/genética , Multimerização Proteica , Estrutura Terciária de Proteína , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
8.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894823

RESUMO

The current view of the mitochondrial respiratory chain complexes I, III and IV foresees the occurrence of their assembly in supercomplexes, providing additional functional properties when compared with randomly colliding isolated complexes. According to the plasticity model, the two structural states of the respiratory chain may interconvert, influenced by the intracellular prevailing conditions. In previous studies, we suggested the mitochondrial membrane potential as a factor for controlling their dynamic balance. Here, we investigated if and how the cAMP/PKA-mediated signalling influences the aggregation state of the respiratory complexes. An analysis of the inhibitory titration profiles of the endogenous oxygen consumption rates in intact HepG2 cells with specific inhibitors of the respiratory complexes was performed to quantify, in the framework of the metabolic flux theory, the corresponding control coefficients. The attained results, pharmacologically inhibiting either PKA or sAC, indicated that the reversible phosphorylation of the respiratory chain complexes/supercomplexes influenced their assembly state in response to the membrane potential. This conclusion was supported by the scrutiny of the available structure of the CI/CIII2/CIV respirasome, enabling us to map several PKA-targeted serine residues exposed to the matrix side of the complexes I, III and IV at the contact interfaces of the three complexes.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Transporte de Elétrons , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Fosforilação
9.
EMBO J ; 37(17)2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30049712

RESUMO

During apoptosis, pro-apoptotic BAX and BAK are activated, causing mitochondrial outer membrane permeabilisation (MOMP), caspase activation and cell death. However, even in the absence of caspase activity, cells usually die following MOMP Such caspase-independent cell death is accompanied by inflammation that requires mitochondrial DNA (mtDNA) activation of cGAS-STING signalling. Because the mitochondrial inner membrane is thought to remain intact during apoptosis, we sought to address how matrix mtDNA could activate the cytosolic cGAS-STING signalling pathway. Using super-resolution imaging, we show that mtDNA is efficiently released from mitochondria following MOMP In a temporal manner, we find that following MOMP, BAX/BAK-mediated mitochondrial outer membrane pores gradually widen. This allows extrusion of the mitochondrial inner membrane into the cytosol whereupon it permeablises allowing mtDNA release. Our data demonstrate that mitochondrial inner membrane permeabilisation (MIMP) can occur during cell death following BAX/BAK-dependent MOMP Importantly, by enabling the cytosolic release of mtDNA, inner membrane permeabilisation underpins the immunogenic effects of caspase-independent cell death.


Assuntos
Apoptose , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Animais , Linhagem Celular Tumoral , DNA Mitocondrial/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Permeabilidade
10.
EMBO J ; 35(7): 724-42, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26848154

RESUMO

Cell senescence is an important tumour suppressor mechanism and driver of ageing. Both functions are dependent on the development of the senescent phenotype, which involves an overproduction of pro-inflammatory and pro-oxidant signals. However, the exact mechanisms regulating these phenotypes remain poorly understood. Here, we show the critical role of mitochondria in cellular senescence. In multiple models of senescence, absence of mitochondria reduced a spectrum of senescence effectors and phenotypes while preserving ATP production via enhanced glycolysis. Global transcriptomic analysis by RNA sequencing revealed that a vast number of senescent-associated changes are dependent on mitochondria, particularly the pro-inflammatory phenotype. Mechanistically, we show that the ATM, Akt and mTORC1 phosphorylation cascade integrates signals from the DNA damage response (DDR) towards PGC-1ß-dependent mitochondrial biogenesis, contributing to aROS-mediated activation of the DDR and cell cycle arrest. Finally, we demonstrate that the reduction in mitochondrial content in vivo, by either mTORC1 inhibition or PGC-1ß deletion, prevents senescence in the ageing mouse liver. Our results suggest that mitochondria are a candidate target for interventions to reduce the deleterious impact of senescence in ageing tissues.


Assuntos
Envelhecimento/fisiologia , Mitocôndrias/fisiologia , Animais , Linhagem Celular , Humanos , Camundongos , Modelos Biológicos , Fenótipo
11.
Genes Dev ; 26(10): 1041-54, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22588718

RESUMO

Autophagy is a lysosomal degradation pathway that converts macromolecules into substrates for energy production during nutrient-scarce conditions such as those encountered in tumor microenvironments. Constitutive mitochondrial uptake of endoplasmic reticulum (ER) Ca²âº mediated by inositol triphosphate receptors (IP3Rs) maintains cellular bioenergetics, thus suppressing autophagy. We show that the ER membrane protein Bax inhibitor-1 (BI-1) promotes autophagy in an IP3R-dependent manner. By reducing steady-state levels of ER Ca²âº via IP3Rs, BI-1 influences mitochondrial bioenergetics, reducing oxygen consumption, impacting cellular ATP levels, and stimulating autophagy. Furthermore, BI-1-deficient mice show reduced basal autophagy, and experimentally reducing BI-1 expression impairs tumor xenograft growth in vivo. BI-1's ability to promote autophagy could be dissociated from its known function as a modulator of IRE1 signaling in the context of ER stress. The results reveal BI-1 as a novel autophagy regulator that bridges Ca²âº signaling between ER and mitochondria, reducing cellular oxygen consumption and contributing to cellular resilience in the face of metabolic stress.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/imunologia , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Metabolismo Energético , Proteínas de Membrana/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Autofagia/genética , Linhagem Celular Tumoral , Endorribonucleases/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Consumo de Oxigênio , Proteínas Serina-Treonina Quinases/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Infecções Estreptocócicas/imunologia , Streptococcus/imunologia , Estresse Fisiológico , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Biochim Biophys Acta ; 1857(8): 1344-1351, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27060253

RESUMO

In the past few years mounting evidences have highlighted the tight correlation between circadian rhythms and metabolism. Although at the organismal level the central timekeeper is constituted by the hypothalamic suprachiasmatic nuclei practically all the peripheral tissues are equipped with autonomous oscillators made up by common molecular clockworks represented by circuits of gene expression that are organized in interconnected positive and negative feed-back loops. In this study we exploited a well-established in vitro synchronization model to investigate specifically the linkage between clock gene expression and the mitochondrial oxidative phosphorylation (OxPhos). Here we show that synchronized cells exhibit an autonomous ultradian mitochondrial respiratory activity which is abrogated by silencing the master clock gene ARNTL/BMAL1. Surprisingly, pharmacological inhibition of the mitochondrial OxPhos system resulted in dramatic deregulation of the rhythmic clock-gene expression and a similar result was attained with mtDNA depleted cells (Rho0). Our findings provide a novel level of complexity in the interlocked feedback loop controlling the interplay between cellular bioenergetics and the molecular clockwork. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Assuntos
Fatores de Transcrição ARNTL/genética , Relógios Circadianos/genética , Retroalimentação Fisiológica , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Fatores de Transcrição ARNTL/antagonistas & inibidores , Fatores de Transcrição ARNTL/metabolismo , Antimicina A/farmacologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células Hep G2 , Humanos , Lentivirus/genética , Luciferases/genética , Luciferases/metabolismo , Mitocôndrias/efeitos dos fármacos , Oligomicinas/farmacologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Rotenona/farmacologia , Transdução de Sinais
13.
Hum Mol Genet ; 22(6): 1218-32, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23257287

RESUMO

Trisomy of chromosome 21 is associated to congenital heart defects in ∼50% of affected newborns. Transcriptome analysis of hearts from trisomic human foeti demonstrated that genes involved in mitochondrial function are globally downregulated with respect to controls, suggesting an impairment of mitochondrial function. We investigated here the properties of mitochondria in fibroblasts from trisomic foeti with and without cardiac defects. Together with the upregulation of Hsa21 genes and the downregulation of nuclear encoded mitochondrial genes, an abnormal mitochondrial cristae morphology was observed in trisomic samples. Furthermore, impairment of mitochondrial respiratory activity, specific inhibition of complex I, enhanced reactive oxygen species production and increased levels of intra-mitochondrial calcium were demonstrated. Seemingly, mitochondrial dysfunction was more severe in fibroblasts from cardiopathic trisomic foeti that presented a more pronounced pro-oxidative state. The data suggest that an altered bioenergetic background in trisomy 21 foeti might be among the factors responsible for a more severe phenotype. Since the mitochondrial functional alterations might be rescued following pharmacological treatments, these results are of interest in the light of potential therapeutic interventions.


Assuntos
Feto Abortado/metabolismo , Síndrome de Down/metabolismo , Fibroblastos/metabolismo , Cardiopatias Congênitas/metabolismo , Mitocôndrias/metabolismo , Síndrome de Down/complicações , Síndrome de Down/embriologia , Síndrome de Down/genética , Feminino , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/genética , Humanos , Masculino , Mitocôndrias/genética , Oxirredução , Estresse Oxidativo , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Trissomia
14.
Stem Cells ; 32(5): 1267-77, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24446190

RESUMO

Oxidative metabolism and redox signaling prove to play a decisional role in controlling adult hematopoietic stem/progenitor cells (HSPCs) biology. However, HSPCs reside in a hypoxic bone marrow microenvironment raising the question of how oxygen metabolism might be ensued. In this study, we provide for the first time novel functional and molecular evidences that human HSPCs express myoglobin (Mb) at level comparable with that of a muscle-derived cell line. Optical spectroscopy and oxymetry enabled to estimate an O2-sensitive heme-containing protein content of approximately 180 ng globin per 10(6) HSPC and a P50 of approximately 3 µM O2. Noticeably, expression of Mb mainly occurs through a HIF-1-induced alternative transcript (Mb-V/Mb-N = 35 ± 15, p < .01). A search for other Mb-related globins unveiled significant expression of neuroglobin (Ngb) but not of cytoglobin. Confocal microscopy immune detection of Mb in HSPCs strikingly revealed nuclear localization in cell subsets expressing high level of CD34 (nuclear/cytoplasmic Mb ratios 1.40 ± 0.02 vs. 0.85 ± 0.05, p < .01) whereas Ngb was homogeneously distributed in all the HSPC population. Dual-color fluorescence flow cytometry indicated that while the Mb content was homogeneously distributed in all the HSPC subsets that of Ngb was twofold higher in more immature HSPC. Moreover, we show that HSPCs exhibit a hypoxic nitrite reductase activity releasing NO consistent with described noncanonical functions of globins. Our finding extends the notion that Mb and Ngb can be expressed in nonmuscle and non-neural contexts, respectively, and is suggestive of a differential role of Mb in HSPC in controlling oxidative metabolism at different stages of commitment.


Assuntos
Expressão Gênica , Globinas/genética , Células-Tronco Hematopoéticas/metabolismo , Mioglobina/genética , Proteínas do Tecido Nervoso/genética , Adaptação Fisiológica , Antígenos CD34/metabolismo , Globinas/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Hipóxia/fisiopatologia , Immunoblotting , Microscopia Confocal , Mioglobina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglobina , Óxido Nítrico/metabolismo , Nitrito Redutases/metabolismo , Estresse Oxidativo/fisiologia , Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Cell Rep ; 43(6): 114335, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38850531

RESUMO

Perturbation of the apoptosis and necroptosis pathways critically influences embryogenesis. Receptor-associated protein kinase-1 (RIPK1) interacts with Fas-associated via death domain (FADD)-caspase-8-cellular Flice-like inhibitory protein long (cFLIPL) to regulate both extrinsic apoptosis and necroptosis. Here, we describe Ripk1-mutant animals (Ripk1R588E [RE]) in which the interaction between FADD and RIPK1 is disrupted, leading to embryonic lethality. This lethality is not prevented by further removal of the kinase activity of Ripk1 (Ripk1R588E K45A [REKA]). Both Ripk1RE and Ripk1REKA animals survive to adulthood upon ablation of Ripk3. While embryonic lethality of Ripk1RE mice is prevented by ablation of the necroptosis effector mixed lineage kinase-like (MLKL), animals succumb to inflammation after birth. In contrast, Mlkl ablation does not prevent the death of Ripk1REKA embryos, but animals reach adulthood when both MLKL and caspase-8 are removed. Ablation of the nucleic acid sensor Zbp1 largely prevents lethality in both Ripk1RE and Ripk1REKA embryos. Thus, the RIPK1-FADD interaction prevents Z-DNA binding protein-1 (ZBP1)-induced, RIPK3-caspase-8-mediated embryonic lethality, affected by the kinase activity of RIPK1.


Assuntos
Caspase 8 , Proteína de Domínio de Morte Associada a Fas , Inflamação , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Caspase 8/metabolismo , Proteínas Quinases/metabolismo , Apoptose , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Necroptose , Ligação Proteica , Camundongos Endogâmicos C57BL
16.
Hepatology ; 55(5): 1333-43, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22135208

RESUMO

UNLABELLED: Alisporivir (Debio-025) is an analogue of cyclosporine A and represents the prototype of a new class of non-immunosuppressive cyclophilin inhibitors. In vitro and in vivo studies have shown that alisporivir inhibits hepatitis C virus (HCV) replication, and ongoing clinical trials are exploring its therapeutic potential in patients with chronic hepatitis C. Recent data suggest that the antiviral effect is mediated by inhibition of cyclophilin A, which is an essential host factor in the HCV life cycle. However, alisporivir also inhibits mitochondrial permeability transition by binding to cyclophilin D. Because HCV is known to affect mitochondrial function, we explored the effect of alisporivir on HCV protein-mediated mitochondrial dysfunction. Through the use of inducible cell lines, which allow to investigate the effects of HCV polyprotein expression independent from viral RNA replication and which recapitulate the major alterations of mitochondrial bioenergetics observed in infectious cell systems, we show that alisporivir prevents HCV protein-mediated decrease of cell respiration, collapse of mitochondrial membrane potential, overproduction of reactive oxygen species and mitochondrial calcium overload. Strikingly, some of the HCV-mediated mitochondrial dysfunctions could even be rescued by alisporivir. CONCLUSION: These observations provide new insights into the pathogenesis of HCV-related liver disease and reveal an additional mechanism of action of alisporivir that is likely beneficial in the treatment of chronic hepatitis C.


Assuntos
Ciclosporina/farmacologia , Hepacivirus/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Respiração Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Ciclofilinas/antagonistas & inibidores , Hepacivirus/fisiologia , Humanos , Imuno-Histoquímica , Potenciais da Membrana , Mitocôndrias Hepáticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sensibilidade e Especificidade
17.
Sci Adv ; 9(21): eadg8156, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37224250

RESUMO

Degradation of defective mitochondria is an essential process to maintain cellular homeostasis and it is strictly regulated by the ubiquitin-proteasome system (UPS) and lysosomal activities. Here, using genome-wide CRISPR and small interference RNA screens, we identified a critical contribution of the lysosomal system in controlling aberrant induction of apoptosis following mitochondrial damage. After treatment with mitochondrial toxins, activation of the PINK1-Parkin axis triggered a BAX- and BAK-independent process of cytochrome c release from mitochondria followed by APAF1 and caspase 9-dependent apoptosis. This phenomenon was mediated by UPS-dependent outer mitochondrial membrane (OMM) degradation and was reversed using proteasome inhibitors. We found that the subsequent recruitment of the autophagy machinery to the OMM protected cells from apoptosis, mediating the lysosomal degradation of dysfunctional mitochondria. Our results underscore a major role of the autophagy machinery in counteracting aberrant noncanonical apoptosis and identified autophagy receptors as key elements in the regulation of this process.


Assuntos
Apoptose , Mitofagia , Proteína X Associada a bcl-2/genética , Autofagia , Mitocôndrias , Ubiquitina
18.
Biochim Biophys Acta ; 1807(9): 1114-24, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21565165

RESUMO

The metabolic control analysis was applied to digitonin-permeabilized HepG2 cell line to assess the flux control exerted by cytochrome c oxidase on the mitochondrial respiration. Experimental conditions eliciting different energy/respiratory states in mitochondria were settled. The results obtained show that the mitochondrial electrochemical potential accompanies a depressing effect on the control coefficient exhibited by the cytochrome c oxidase. Both the components of the protonmotive force, i.e. the voltage (ΔΨ(m)) and the proton (ΔpH(m)) gradient, displayed a similar effect. Quantitative estimation of the ΔΨ(m) unveiled that the voltage-dependent effect on the control coefficient of cytochrome c oxidase takes place sharply in a narrow range of membrane potential from 170-180 to 200-210mV consistent with the physiologic transition from state 3 to state 4 of respiration. Extension of the metabolic flux control analysis to the NADH dehydrogenase and bc(1) complexes of the mitochondrial respiratory chain resulted in a similar effect. A mechanistic model is put forward whereby the respiratory chain complexes are proposed to exist in a voltage-mediated threshold-controlled dynamic equilibrium between supercomplexed and isolated states.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Transporte de Elétrons , Linhagem Celular Tumoral , Humanos , Mitocôndrias/enzimologia , Prótons
19.
Cell Death Differ ; 29(7): 1318-1334, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35726022

RESUMO

The ability of mitochondria to buffer a rapid rise in cytosolic Ca2+ is a hallmark of proper cell homeostasis. Here, we employed m-3M3FBS, a putative phospholipase C (PLC) agonist, to explore the relationships between intracellular Ca2+ imbalance, mitochondrial physiology, and cell death. m-3M3FBS induced a potent dose-dependent Ca2+ release from the endoplasmic reticulum (ER), followed by a rise in intra-mitochondrial Ca2+. When the latter exceeded the organelle buffering capacity, an abrupt mitochondrial inner membrane permeabilization (MIMP) occurred, releasing matrix contents into the cytosol. MIMP was followed by cell death that was independent of Bcl-2 family members and inhibitable by the intracellular Ca2+ chelator BAPTA-AM. Cyclosporin A (CsA), capable of blocking the mitochondrial permeability transition (MPT), completely prevented cell death induced by m-3M3FBS. However, CsA acted upstream of mitochondria by preventing Ca2+ release from ER stores. Therefore, loss of Ca2+ intracellular balance and mitochondrial Ca2+ overload followed by MIMP induced a cell death process that is distinct from Bcl-2 family-regulated mitochondrial outer membrane permeabilization (MOMP). Further, the inhibition of cell death by CsA or its analogues can be independent of effects on the MPT.


Assuntos
Cálcio , Membranas Mitocondriais , Apoptose , Cálcio/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteína X Associada a bcl-2/metabolismo
20.
Cell Rep ; 41(5): 111582, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323258

RESUMO

In "healthy" tumor cells, phosphatidylserine (PS) is predominately localized in the inner plasma membrane leaflet. During apoptosis, PS relocates to the outer leaflet. Herein, we established PSout tumor models with tumor cells lacking PS flippase component CDC50A, constantly exposing PS but alive. PSout tumors developed bigger than wild-type (WT) tumors, featuring M2 polarized tumor-associated macrophages (TAMs) and fewer tumor-antigen-specific T cells. The PS receptor TIM-3 is responsible for PS recognition. Employing an opposite tumor model, PSin, with tumor cells lacking the PS scramblase Xkr8 and unable to expose PS during otherwise normal apoptosis, we find that the accumulated apoptotic tumor cells produce and release cyclic GAMP (cGAMP) to immune cells to activate the STING pathway, leading to TAM M1 polarization, suppressed interleukin (IL)-10 secretion, and natural killer (NK) cell cytotoxicity. Silencing Xkr8 in vivo by either short hairpin RNA (shRNA) or small interfering RNA (siRNA) to achieve a PS externalization blockade provides robust therapeutic anti-tumor efficiency.


Assuntos
Neoplasias , Fosfatidilserinas , Humanos , Fosfatidilserinas/metabolismo , Fosfolipídeos/metabolismo , Membrana Celular/metabolismo , Apoptose/fisiologia , Neoplasias/terapia , Neoplasias/metabolismo , Imunoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA