Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Public Health Rep ; 134(2_suppl): 43S-52S, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31682557

RESUMO

The emergence of Zika virus in the Americas in 2015 and its association with birth defects and other adverse health outcomes triggered an unprecedented public health response and a demand for testing. In 2016, when Florida exceeded state public health laboratory capacity for diagnostic testing, the state formed partnerships with federal and commercial laboratories. Eighty-two percent of the testing (n = 33 802 of 41 008 specimens) by the laboratory partners, including Florida's Bureau of Public Health Laboratories (BPHL; n = 13 074), a commercial laboratory (n = 19 214), and the Centers for Disease Control and Prevention (CDC; n = 1514), occurred from July through November 2016, encompassing the peak period of local transmission. These partnerships allowed BPHL to maintain acceptable test turnaround times of 1 to 4 days for nucleic acid testing and 3 to 7 days for serologic testing. Lessons learned from this response to inform future outbreaks included the need for early planning to establish outside partnerships, adding specimen triage strategies to surge plans, and integrating state and CDC information systems.


Assuntos
Comportamento Cooperativo , Testes Diagnósticos de Rotina , Saúde Pública , Infecção por Zika virus , Zika virus/isolamento & purificação , Centers for Disease Control and Prevention, U.S. , Doenças Transmissíveis Emergentes/epidemiologia , Surtos de Doenças/prevenção & controle , Feminino , Florida/epidemiologia , Humanos , Masculino , Técnicas de Amplificação de Ácido Nucleico , Gravidez , Complicações Infecciosas na Gravidez/epidemiologia , Estados Unidos , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/prevenção & controle
2.
Water Res ; 41(1): 3-10, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17113123

RESUMO

Enterococci, a common fecal indicator, and Staphylococcus aureus, a common skin pathogen, can be shed by bathers affecting the quality of recreational waters and resulting in possible human health impacts. Due to limited information available concerning human shedding of these microbes, this study focused on estimating the amounts of enterococci and S. aureus shed by bathers directly off their skin and indirectly via sand adhered to skin. Two sets of experiments were conducted at a marine beach located in Miami-Dade County, Florida. The first study, referred to as the "large pool" study, involved 10 volunteers who immersed their bodies in 4700L during four 15min cycles with exposure to beach sand in cycles 3 and 4. The "small pool" study involved 10 volunteers who were exposed to beach sand for 30min before they individually entered a small tub. After each individual was rinsed with off-shore marine water, sand and rinse water were collected and analyzed for enterococci. Results from the "large pool" study showed that bathers shed concentrations of enterococci and S. aureus on the order of 6x10(5) and 6x10(6) colony forming units (CFU) per person in the first 15min exposure period, respectively. Significant reductions in the bacteria shed per bather (50% reductions for S. aureus and 40% for enterococci) were observed in the subsequent bathing cycles. The "small pool" study results indicated that the enterococci contribution from sand adhered to skin was small (about 2% of the total) in comparison with the amount shed directly from the bodies of the volunteers. Results indicated that bathers transport significant amounts of enterococci and S. aureus to the water column, and thus human microbial bathing load should be considered as a non-point source when designing recreational water quality models.


Assuntos
Praias , Enterococcus/isolamento & purificação , Água do Mar/microbiologia , Staphylococcus aureus/isolamento & purificação , Microbiologia da Água , Bactérias , Monitoramento Ambiental/métodos , Humanos , Dióxido de Silício , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA