Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(4): 1643-1658, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767289

RESUMO

The extent to which soil erosion is a net source or sink of carbon globally remains unresolved but has the potential to play a key role in determining the magnitude of CO2 emissions from land-use change in rapidly eroding landscapes. The effects of soil erosion on carbon storage in low-input agricultural systems, in acknowledged global soil erosion hotspots in developing countries, are especially poorly understood. Working in one such hotspot, the Indian Himalaya, we measured and modelled field-scale soil budgets, to quantify erosion-induced changes in soil carbon storage. In addition, we used long-term (1-year) incubations of separate and mixed soil horizons to better understand the mechanisms controlling erosion-induced changes in soil carbon cycling. We demonstrate that high rates of soil erosion did not promote a net carbon loss to the atmosphere at the field scale. Furthermore, our experiments showed that rates of decomposition in the organic matter-rich subsoil layers in depositional areas were lower per unit of soil carbon than from other landscape positions; however, these rates could be increased by mixing with topsoils. The results indicate that, the burial of soil carbon, and separation from fresh carbon inputs, led to reduced rates of decomposition offsetting potential carbon losses during soil erosion and transport within the cultivated fields. We conclude that the high rates of erosion experienced in these Himalayan soils do not, in isolation, drive substantial emissions of organic carbon, and there is the potential to promote carbon storage through sustainable agricultural practice.


Assuntos
Carbono , Solo , Agricultura/métodos , Atmosfera , Ciclo do Carbono
2.
Glob Chang Biol ; 27(8): 1627-1644, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33432697

RESUMO

Coastal wetlands are among the most productive ecosystems and store large amounts of organic carbon (C)-the so termed "blue carbon." However, wetlands in the tropics and subtropics have been invaded by smooth cordgrass (Spartina alterniflora) affecting storage of blue C. To understand how S. alterniflora affects soil organic carbon (SOC) stocks, sources, stability, and their spatial distribution, we sampled soils along a 2500 km coastal transect encompassing tropical to subtropical climate zones. This included 216 samplings within three coastal wetland types: a marsh (Phragmites australis) and two mangroves (Kandelia candel and Avicennia marina). Using δ13 C, C:nitrogen (N) ratios, and lignin biomarker composition, we traced changes in the sources, stability, and storage of SOC in response to S. alterniflora invasion. The contribution of S. alterniflora-derived C up to 40 cm accounts for 5.6%, 23%, and 12% in the P. australis, K. candel, and A. marina communities, respectively, with a corresponding change in SOC storage of +3.5, -14, and -3.9 t C ha-1 . SOC storage did not follow the trend in aboveground biomass from the native to invasive species, or with vegetation types and invasion duration (7-15 years). SOC storage decreased with increasing mean annual precipitation (1000-1900 mm) and temperature (15.3-23.4℃). Edaphic variables in P. australis marshes remained stable after S. alterniflora invasion, and hence, their effects on SOC content were absent. In mangrove wetlands, however, electrical conductivity, total N and phosphorus, pH, and active silicon were the main factors controlling SOC stocks. Mangrove wetlands were most strongly impacted by S. alterniflora invasion and efforts are needed to focus on restoring native vegetation. By understanding the mechanisms and consequences of invasion by S. alterniflora, changes in blue C sequestration can be predicted to optimize storage can be developed.


Assuntos
Carbono , Áreas Alagadas , Carbono/análise , China , Ecossistema , Espécies Introduzidas , Poaceae , Solo
4.
Sci Total Environ ; 806(Pt 3): 151324, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34749967

RESUMO

Due to the influence of climate change and extensive grazing, a large proportion of steppe grassland has been degraded worldwide. The Chinese government initiated a series of grassland restoration programs to reverse the degradation. However, the limiting factors and the restoration potential remain unknown. Here we present a process-based model to assess the restoration gap (RG) defined as maximum biomass differences between non-degraded and degraded grasslands with different degrees of soil and vegetation degradation. The process-based model Agricultural Production Systems Simulator (APSIM) was evaluated utilizing observation data from both typical and meadow steppes under natural conditions in terms of phenology, dynamics of above-ground biomass and soil water content. Scenario analysis and sensitivity analysis were subsequently performed to address the RG and controlling factors during 1969-2018. The results showed that the calibrated model performed well with r > 0.75 and model efficiency factor EF > 0.5 for all the simulation components. According to our model results, the RG was larger in typical steppe compared to that of meadow steppe and it increased with increasing soil and/or vegetation degradation, to ~60% under extremely degraded scenarios. Both soil and vegetation degradation led to reduced water use efficiency, with an elevated proportion of soil evaporation to evapotranspiration (Es/ET), however, the limiting factor for RG varied. The degradation of soil water holding capacity contributed more to RG regardless of climate conditions for typical steppe in all years and for meadow steppe in dry years. In wet years the importance of vegetation coverage reduction increased for RG in meadow steppe, where the relative importance of vegetation coverage (valued at 62.8%) was 25.6% higher than that of soil degradation. Our results demonstrated the importance of considering climate variations when developing protection and restoration programs for grassland ecosystems.


Assuntos
Ecossistema , Pradaria , Biomassa , China , Mudança Climática , Solo
5.
Sci Total Environ ; 769: 144297, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33486176

RESUMO

Understanding the impacts of climate change and human activities on vegetation is of great significance to the sustainable development of terrestrial ecosystems. However, most studies focused on the overall impact over a period and rarely examined the time-lag effect of vegetation's response to climatic factors when exploring the driving mechanisms of vegetation dynamics. In this study, we identified key areas driven by either positive or negative human activities and climate change. Taking the three karst provinces of southwest China as the case study area, a Leaf Area Index (LAI)-climate model was constructed by quantifying the time-lag effect. Then the associated residual threshold was calculated to identify the vegetation change areas dominated by human activities and climate change. The results showed that, during the implementation period of ecological restoration projects from 1999 to 2015, positive impact areas of human activities were mainly distributed among the implementation areas of ecological restoration projects, accounting for 5.61% of the total area. For another, the negative impact areas were mainly distributed across the mountainous area of Yunnan Province, accounting for 1.30% of the total area. Karst landform had the greatest influence on the areas dominated by positive human activities, whereas both topography and karst landform significantly affected the areas dominated by negative human activities. Urban development level had the greatest impact on the areas dominated by climate change. The outcomes of this study provided scientific supports for the sustainable development of ecological restoration projects in China's karst region.

6.
Sci Total Environ ; 761: 143945, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33360125

RESUMO

Carbon sequestration is a key soil function, and an increase in soil organic carbon (SOC) is an indicator of ecosystem recovery because it underpins other ecosystem services by acting as a substrate for the soil microbial community. The soil microbial community constitutes the active pool of SOC, and its necromass (microbial residue carbon, MRC) contributes strongly to the stable SOC pool. Therefore, we propose that the potential for restoration of degraded karst ecosystems lies in the abundance of soil microbial community and the persistence of its necromass, and may be measured by changes in its contribution to the active and stable SOC pools during recovery. We investigated changes in SOC stocks using an established space-for-time chronosequence along a perturbation gradient in the subtropical karst ecosystem: sloping cropland < abandoned cropland < shrubland < secondary forest < primary forest. Microbial biomarkers were extracted from soil profiles from surface to bedrock and used to measure the contributions of the soil microbial community composition (using phospholipid fatty acids, PLFAs) and MRC (using amino sugars) to SOC stocks at each recovery stage. The results showed that the SOC stocks ranged from 10.53 to 31.77 kg m-2 and increased with recovery stage, with total MRC accounting for 17-28% of SOC. Increasing PLFAs and MRC abundances were positively correlated with improved soil structure (decreased bulk density) and organic carbon, nitrogen and phosphorus nutrient. Bacterial MRC contributes more to SOC stocks than fungal residue carbon during vegetation recovery. The PLFA analysis indicated that Gram positive bacteria were the largest microbial group and were relatively more abundant in deeper soils, and biomarkers for saprophytic and ectomycorrhizal fungi were more abundant in soils under woody vegetation. In conclusion, this study suggests that the soil microbial community in karst soils have the potential to adapt to changing soil conditions and contribute substantially to building SOC stocks after abandonment of agriculture in degraded karst landscapes.


Assuntos
Ecossistema , Solo , Carbono/análise , China , Florestas , Nitrogênio/análise , Microbiologia do Solo
7.
Sci Total Environ ; 795: 148875, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34247087

RESUMO

Increasing temperature over recent decades is expected to positively impact tree growth in humid regions. However, high stand density could increase the negative effects of warming-induced drought through inter-tree competition. How neighborhood competition impacts tree growth responding to climate change remains unclear. Here, we utilized the Changbai Mountain region in northeastern Asia as our study area. We quantified individual tree growth using tree-ring samples collected from three dominant tree species growing in three forest stand density levels. We estimated the effects of climate warming and forest stand density on growth processes and tested for a species-specific response to climate. Our results demonstrated that overall 25% of Korean pine, but only ~3% of Mongolian oak and ~ 4% of Manchurian ash experienced growth reduction. Increased forest density can also exacerbate growth reduction. We identified a climate turning point in 1984, where warming rapidly increased, and defined two groups, "enhance group" (EG) and "decline group" (DG), according to the individual tree growth trend after 1984. For the EG, climate warming increased temperature sensitivity, but the temperature sensitivity declined with increasing stand density for the whole study period. For the DG, tree growth sensitivity shifted from temperature to precipitation after 1984, driven by increased competition pressure under climate warming. Our study concludes that growth decline from warming-induced drought might be amplified by high forest stand density, was especially pronounced in conifer trees.


Assuntos
Pinus , Traqueófitas , Ásia , Mudança Climática , Florestas , Árvores
8.
Sci Total Environ ; 748: 142381, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33113676

RESUMO

Extensive, progressive rock emergence causes localized variations in soil biogeochemical and microbial properties that may influence the capacity for the regeneration of degraded karst ecosystems. It is likely that karst ecosystem recovery relies on the persistence of soil functions at the microbial scale, and we aimed to explored the role of interactions between soil bacterial taxa and identify keystone species that deliver key biogeochemical functions, i.e. carbon (C) and nutrient (nitrogen, N and phosphorus, P) cycling. We applied high-throughput sequencing and phylogenetic molecular ecological network approaches to topsoils sampled at rock-soil interfaces and adjacent bulk soil along an established gradient of land-use intensity in the Chinese Karst Critical Zone Observatory. Bacterial α-diversity was greater under increased perturbation and at the rock-soil interface compared to bulk soils under intensive cultivation. However, bacterial ecological networks were less intricate and connected fewer keystone taxa as human disturbance increased and at the rock-soil interface. Co-occurrence within the bacterial community in natural primary forest soils was 13% larger than cultivated soils. The relative abundances of keystone taxa Acidobacteria, Bacteroidetes and Chloroflexi increased with land-use intensity, while Proteobacteria, Actinobacteria and Verrucomicrobia decreased by up to 6%. In general, Bacteroidetes, Verrucomicrobia and Chlorobi were related to C-cycling, Proteobacteria, Actinobacteria and Chloroflexi were related to N-cycling, and Actinobacteria and Nitrospirae were related to both N- and P-cycling. Proteobacteria and Chlorobi affected C-cycling and multiple functionality indexes in the abandoned land. We conclude that increasing land-use intensity changed the soil bacterial community structure and decreased bacterial interactions. However, increases in α-diversity at the rock-soil interface in cultivated soils indicated that major soil functions related to biogeochemical cycling were maintained within keystone taxa in this microenvironment. Our study provides foundations to test the success of different regeneration practices in restoring soil microbial diversity and the multifunctionality of karst ecosystems.


Assuntos
Ecossistema , Solo , Bactérias/genética , Filogenia , Microbiologia do Solo
9.
Nat Commun ; 11(1): 2392, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404911

RESUMO

Although low vegetation productivity has been observed in karst regions, whether and how bedrock geochemistry contributes to the low karstic vegetation productivity remain unclear. In this study, we address this knowledge gap by exploring the importance of bedrock geochemistry on vegetation productivity based on a critical zone investigation across a typical karst region in Southwest China. We show silicon and calcium concentrations in bedrock are strongly correlated with the regolith water loss rate (RWLR), while RWLR can predict vegetation productivity more effectively than previous models. Furthermore, the analysis based on 12 selected karst regions worldwide further suggest that lithological regulation has the potential to obscure and distort the influence of climate change. Our study implies that bedrock geochemistry could exert effects on vegetation growth in karst regions and highlights that the critical role of bedrock geochemistry for the karst region should not be ignored in the earth system model.

10.
Nat Commun ; 11(1): 2791, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32494057

RESUMO

Black carbon (BC) is a recalcitrant form of organic carbon (OC) produced by landscape fires. BC is an important component of the global carbon cycle because, compared to unburned biogenic OC, it is selectively conserved in terrestrial and oceanic pools. Here we show that the dissolved BC (DBC) content of dissolved OC (DOC) is twice greater in major (sub)tropical and high-latitude rivers than in major temperate rivers, with further significant differences between biomes. We estimate that rivers export 18 ± 4 Tg DBC year-1 globally and that, including particulate BC fluxes, total riverine export amounts to 43 ± 15 Tg BC year-1 (12 ± 5% of the OC flux). While rivers export ~1% of the OC sequestered by terrestrial vegetation, our estimates suggest that 34 ± 26% of the BC produced by landscape fires has an oceanic fate. Biogeochemical models require modification to account for the unique dynamics of BC and to predict the response of recalcitrant OC export to changing environmental conditions.

11.
Commun Biol ; 3(1): 405, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32733028

RESUMO

Tree allometry in semi-arid forests is characterized by short height but large canopy. This pattern may be important for maintaining water-use efficiency and carbon sequestration simultaneously, but still lacks quantification. Here we use terrestrial laser scanning to quantify allometry variations of Quercus mongolica in semi-arid forests. With tree height (Height) declining, canopy area (CA) decreases with substantial variations. The theoretical CA-Height relationship in dynamic global vegetation models (DGVMs) matches only the 5th percentile of our results because of CA underestimation and Height overestimation by breast height diameter (DBH). Water supply determines Height variation (P = 0.000) but not CA (P = 0.2 in partial correlation). The decoupled functions of stem, hydraulic conductance and leaf spatial arrangement, may explain the inconsistency, which may further ensure hydraulic safety and carbon assimilation, avoiding forest dieback. Works on tree allometry pattern and determinant will effectively supply tree drought tolerance studying and support DGVM improvements.


Assuntos
Carbono/metabolismo , Secas , Árvores/crescimento & desenvolvimento , Água/metabolismo , Florestas , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Árvores/metabolismo
12.
Sci Total Environ ; 737: 139723, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32554037

RESUMO

Carbon (C) present in lake sediments is an important global sink for CO2; however, an in-depth understanding of the impact of climate variability and the associated changes in vegetation on sediment C dynamics is still lacking. A total of 13 lakes were studied to quantify the influence of climate and vegetation on the reconstructed Holocene C accumulation rate (CAR) in lake sediments of the modern East Asian monsoonal margin. The corresponding paleoclimate information was assessed, including the temperature (30-90°N in the Northern Hemisphere) and precipitation (indicated by the δ18O of the Sanbao, Dongge, and Hulu caves). The Holocene vegetation conditions were inferred by pollen records, including arboreal pollen/non-arboreal pollen and pollen percentages. The results showed that the peak CAR occurred during the mid-Holocene, coinciding with the strongest period of the East Asian summer monsoon and expansion of forests. Lakes in the temperate steppe (TS) regions had a mean CAR of 13.41 ± 0.88 g C m-2 yr-1, which was significantly greater than the CARs of temperate desert (TD) and highland meadow/steppe (HMS; 6.76 ± 0.29 and 7.39 ± 0.73 g C m-2 yr-1, respectively). The major influencing factor for the TS sub-region was vegetation dynamics, especially the proportion of arboreal vegetation, while temperature and vegetation coverage were more important for the HMS. These findings indicate that C accumulation in lake sediments is linked with climate and vegetation changes over long timescales; however, there was notable spatial heterogeneity in the CARs, such as opposing temporal changes and different major influencing factors among the three sub-regions during the mid-Holocene. Aridification and forest loss would decrease C storage. However, prediction of C accumulation remains difficult because of the spatial heterogeneity in CARs and the interaction between the CAR and various factors under future climate change conditions.

13.
Commun Biol ; 3(1): 164, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246054

RESUMO

Soil is essential for sustaining life on land. Plant roots play a crucial role in stabilising soil and minimising erosion, although these mechanisms are still not completely understood. Consequently, identifying and breeding for plant traits to enhance erosion resistance is challenging. Root hair mutants in Arabidopsis thaliana were studied using three different quantitative methods to isolate their effect on root-soil cohesion. We present compelling evidence that micro-scale interactions of root hairs with surrounding soil increase soil cohesion and reduce erosion. Arabidopsis seedlings with root hairs were more difficult to detach from soil, compost and sterile gel media than those with hairless roots, and it was 10-times harder to erode soil from roots with than without hairs. We also developed a model that can consistently predict the impact root hairs make to soil erosion resistance. Our study thus provides new insight into the mechanisms by which roots maintain soil stability.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Erosão do Solo/prevenção & controle , Solo , Adesividade , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Mutação , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estações do Ano , Fatores de Tempo
14.
Sci Adv ; 5(8): eaax1396, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31453338

RESUMO

Atmospheric vapor pressure deficit (VPD) is a critical variable in determining plant photosynthesis. Synthesis of four global climate datasets reveals a sharp increase of VPD after the late 1990s. In response, the vegetation greening trend indicated by a satellite-derived vegetation index (GIMMS3g), which was evident before the late 1990s, was subsequently stalled or reversed. Terrestrial gross primary production derived from two satellite-based models (revised EC-LUE and MODIS) exhibits persistent and widespread decreases after the late 1990s due to increased VPD, which offset the positive CO2 fertilization effect. Six Earth system models have consistently projected continuous increases of VPD throughout the current century. Our results highlight that the impacts of VPD on vegetation growth should be adequately considered to assess ecosystem responses to future climate conditions.


Assuntos
Monitoramento Ambiental/métodos , Desenvolvimento Vegetal/fisiologia , Imagens de Satélites/métodos , Vapor/análise , Pressão de Vapor , Clima , Mudança Climática , Modelos Biológicos , Plantas
15.
Environ Sci Pollut Res Int ; 25(21): 20899-20910, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29766422

RESUMO

In karst areas, rock dissolution often results in the development of underground networks, which act as subterranean pathways for rapid water and nutrient (and possibly soil) loss during precipitation events. Loss of soluble nutrients degrades surface soils and decreases net primary productivity, so it is important to establish flow pathways and quantify nutrient loss during rainfall events of different magnitudes. We conducted a simulated rainfall experiment in karst and nonkarst areas to compare the concentration of nutrients in surface and subsurface flow water and effects on soil alkalinity in three lithologic soil formations under five different rainfall intensity treatments. Compared with the nonkarst area, the runoff in subsurface flows and the proportion of nutrient loss in the subsurface flow are larger in the karst area and less affected by rain intensity. The maximum loss loads of calcium (Ca2+) and magnesium (Mg2+) ions were 32.9 and 19.8 kg ha-1, respectively. With the estimate of base cation loss loads in the China southern karst area under the rainfall intensity of 45 mm h-1, more than 80% of the base cation loss load occurred in the limestone karst area. Although the alkalinity leaching value in nonkarst was similar to that in the karst area under simulated rainfall conditions, its impact on the ecological environment was quite different.


Assuntos
Água Doce/química , Sedimentos Geológicos/química , Água Subterrânea/química , Chuva , Solo/química , Movimentos da Água , Cálcio/análise , Cátions/análise , China , Clima , Magnésio/análise , Modelos Teóricos , Potássio/análise , Sódio/análise
16.
Ecol Evol ; 7(23): 10131-10142, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29238543

RESUMO

Karst topography covers more than 1/3 of the People's Republic of China in area. The porous, fissured, and soluble nature of the underlying karst bedrock (primarily dolomite and limestone) leads to the formation of underground drainage systems. Karst conduit networks dominate this system, and rainfall takes a crucial role on water cycle at China karst area. Nitrogen loss from the karst system is of particular concern, with regard to nutrient use efficiency as well as water quality, as much of the karst system, including steeply sloping terrain, is used for intensive agriculture. We use simulated rainfall experiments to determine the relationship between rainfall and nitrogen loss at typical karst slope land and then estimate nitrogen loss from the karst soil. The results show that both surface runoff and subsurface runoff have a significant linear correlation with rainfall at all studied sites. Subsurface runoff is larger than surface runoff at two karst sites, while the opposite is true at the non-karst site. Exponential function satisfactorily described the correlation between rainfall and nitrogen concentrations in runoff. Nitrates accounted for 60%-95% of the dissolved nitrogen loss (DN, an index of N-loss in this research). The estimated annual N-loss load varies between 1.05 and 1.67 Tg N/year in the whole karst regions of China from 1961 to 2014. Approximately, 90% of the N-loss load occurred during the wet season, and 90% of that passed through the subsurface. Understanding the processes and estimating N-loss is highly valuable in determining long-term soil security and sustainability in karst regions.

17.
Sci Rep ; 6: 35798, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27808169

RESUMO

Many studies have highlighted significant interactions between soil C reservoir dynamics and global climate and environmental change. However, in order to estimate the future soil organic carbon sequestration potential and related ecosystem services well, more spatially detailed predictions are needed. The present study made detailed predictions of future spatial evolution (at 250 m resolution) of topsoil SOC driven by climate change and land use change for France up to the year 2100 by taking interactions between climate, land use and soil type into account. We conclude that climate change will have a much bigger influence on future SOC losses in mid-latitude mineral soils than land use change dynamics. Hence, reducing CO2 emissions will be crucial to prevent further loss of carbon from our soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA