Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Immunity ; 54(1): 132-150.e9, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33271119

RESUMO

HLA class I (HLA-I) glycoproteins drive immune responses by presenting antigens to cognate CD8+ T cells. This process is often hijacked by tumors and pathogens for immune evasion. Because options for restoring HLA-I antigen presentation are limited, we aimed to identify druggable HLA-I pathway targets. Using iterative genome-wide screens, we uncovered that the cell surface glycosphingolipid (GSL) repertoire determines effective HLA-I antigen presentation. We show that absence of the protease SPPL3 augmented B3GNT5 enzyme activity, resulting in upregulation of surface neolacto-series GSLs. These GSLs sterically impeded antibody and receptor interactions with HLA-I and diminished CD8+ T cell activation. Furthermore, a disturbed SPPL3-B3GNT5 pathway in glioma correlated with decreased patient survival. We show that the immunomodulatory effect could be reversed through GSL synthesis inhibition using clinically approved drugs. Overall, our study identifies a GSL signature that inhibits immune recognition and represents a potential therapeutic target in cancer, infection, and autoimmunity.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Linfócitos T CD8-Positivos/imunologia , Glioma/imunologia , Glicoesfingolipídeos/metabolismo , Glicosiltransferases/metabolismo , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoterapia/métodos , Apresentação de Antígeno , Ácido Aspártico Endopeptidases/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioma/mortalidade , Glicoesfingolipídeos/imunologia , Antígenos HLA/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Ativação Linfocitária , Transdução de Sinais , Análise de Sobrevida , Evasão Tumoral
3.
Nature ; 546(7657): 307-311, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28562590

RESUMO

As key executers of biological functions, the activity and abundance of proteins are subjected to extensive regulation. Deciphering the genetic architecture underlying this regulation is critical for understanding cellular signalling events and responses to environmental cues. Using random mutagenesis in haploid human cells, we apply a sensitive approach to directly couple genomic mutations to protein measurements in individual cells. Here we use this to examine a suite of cellular processes, such as transcriptional induction, regulation of protein abundance and splicing, signalling cascades (mitogen-activated protein kinase (MAPK), G-protein-coupled receptor (GPCR), protein kinase B (AKT), interferon, and Wingless and Int-related protein (WNT) pathways) and epigenetic modifications (histone crotonylation and methylation). This scalable, sequencing-based procedure elucidates the genetic landscapes that control protein states, identifying genes that cause very narrow phenotypic effects and genes that lead to broad phenotypic consequences. The resulting genetic wiring map identifies the E3-ligase substrate adaptor KCTD5 (ref. 1) as a negative regulator of the AKT pathway, a key signalling cascade frequently deregulated in cancer. KCTD5-deficient cells show elevated levels of phospho-AKT at S473 that could not be attributed to effects on canonical pathway components. To reveal the genetic requirements for this phenotype, we iteratively analysed the regulatory network linked to AKT activity in the knockout background. This genetic modifier screen exposes suppressors of the KCTD5 phenotype and mechanistically demonstrates that KCTD5 acts as an off-switch for GPCR signalling by triggering proteolysis of Gßγ heterodimers dissociated from the Gα subunit. Although biological networks have previously been constructed on the basis of gene expression, protein-protein associations, or genetic interaction profiles, we foresee that the approach described here will enable the generation of a comprehensive genetic wiring map for human cells on the basis of quantitative protein states.


Assuntos
Canais de Potássio/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/genética , Análise de Célula Única/métodos , Células Cultivadas , Haploidia , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Interferons/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutagênese , Fenótipo , Fosforilação/genética , Canais de Potássio/deficiência , Canais de Potássio/genética , Proteólise , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Via de Sinalização Wnt
4.
J Cell Sci ; 131(15)2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076240

RESUMO

In order to replicate, most pathogens need to enter their target cells. Many viruses enter the host cell through an endocytic pathway and hijack endosomes for their journey towards sites of replication. For delivery of their genome to the host cell cytoplasm and to avoid degradation, viruses have to escape this endosomal compartment without host detection. Viruses have developed complex mechanisms to penetrate the endosomal membrane and have evolved to co-opt several host factors to facilitate endosomal escape. Conversely, there is an extensive variety of cellular mechanisms to counteract or impede viral replication. At the level of cell entry, there are cellular defense mechanisms that recognize endosomal membrane damage caused by virus-induced membrane fusion and pore formation, as well as restriction factors that block these processes. In this Cell Science at a Glance article and accompanying poster, we describe the different mechanisms that viruses have evolved to escape the endosomal compartment, as well as the counteracting cellular protection mechanisms. We provide examples for enveloped and non-enveloped viruses, for which we discuss some unique and unexpected cellular responses to virus-entry-induced membrane damage.


Assuntos
Endossomos/virologia , Animais , Humanos , Membranas Intracelulares/virologia , Internalização do Vírus , Replicação Viral/fisiologia , Vírus/patogenicidade
5.
PLoS Pathog ; 14(8): e1007123, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30080900

RESUMO

Endogenous retroviruses (ERVs), remnants of ancient germline infections, comprise 8% of the human genome. The most recently integrated includes human ERV-K (HERV-K) where several envelope (env) sequences remain intact. Viral pseudotypes decorated with one of those Envs are infectious. Using a recombinant vesicular stomatitis virus encoding HERV-K Env as its sole attachment and fusion protein (VSV-HERVK) we conducted a genome-wide haploid genetic screen to interrogate the host requirements for infection. This screen identified 11 genes involved in heparan sulfate biosynthesis. Genetic inhibition or chemical removal of heparan sulfate and addition of excess soluble heparan sulfate inhibit infection. Direct binding of heparin to soluble HERV-K Env and purified VSV-HERVK defines it as critical for viral attachment. Cell surface bound VSV-HERVK particles are triggered to infect on exposure to acidic pH, whereas acid pH pretreatment of virions blocks infection. Testing of additional endogenous HERV-K env sequences reveals they bind heparin and mediate acid pH triggered fusion. This work reconstructs and defines key steps in the infectious entry pathway of an extinct virus.


Assuntos
Retrovirus Endógenos/fisiologia , Heparitina Sulfato/metabolismo , Proteínas do Envelope Viral/metabolismo , Tropismo Viral/fisiologia , Internalização do Vírus , Humanos
6.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29899088

RESUMO

Cellular antiviral programs can efficiently inhibit viral infection. These programs are often initiated through signaling cascades induced by secreted proteins, such as type I interferons, interleukin-6 (IL-6), or tumor necrosis factor alpha (TNF-α). In the present study, we generated an arrayed library of 756 human secreted proteins to perform a secretome screen focused on the discovery of novel modulators of viral entry and/or replication. The individual secreted proteins were tested for the capacity to inhibit infection by two replication-competent recombinant vesicular stomatitis viruses (VSVs) with distinct glycoproteins utilizing different entry pathways. Fibroblast growth factor 16 (FGF16) was identified and confirmed as the most prominent novel inhibitor of both VSVs and therefore of viral replication, not entry. Importantly, an antiviral interferon signature was completely absent in FGF16-treated cells. Nevertheless, the antiviral effect of FGF16 is broad, as it was evident on multiple cell types and also on infection by coxsackievirus. In addition, other members of the FGF family also inhibited viral infection. Thus, our unbiased secretome screen revealed a novel protein family capable of inducing a cellular antiviral state. This previously unappreciated role of the FGF family may have implications for the development of new antivirals and the efficacy of oncolytic virus therapy.IMPORTANCE Viruses infect human cells in order to replicate, while human cells aim to resist infection. Several cellular antiviral programs have therefore evolved to resist infection. Knowledge of these programs is essential for the design of antiviral therapeutics in the future. The induction of antiviral programs is often initiated by secreted proteins, such as interferons. We hypothesized that other secreted proteins may also promote resistance to viral infection. Thus, we tested 756 human secreted proteins for the capacity to inhibit two pseudotypes of vesicular stomatitis virus (VSV). In this secretome screen on viral infection, we identified fibroblast growth factor 16 (FGF16) as a novel antiviral against multiple VSV pseudotypes as well as coxsackievirus. Subsequent testing of other FGF family members revealed that FGF signaling generally inhibits viral infection. This finding may lead to the development of new antivirals and may also be applicable for enhancing oncolytic virus therapy.


Assuntos
Fatores de Crescimento de Fibroblastos/farmacologia , Vírus da Estomatite Vesicular Indiana/fisiologia , Replicação Viral/efeitos dos fármacos , Técnicas de Cultura de Células , Linhagem Celular , Meios de Cultivo Condicionados/metabolismo , Biblioteca Gênica , Células HEK293 , Células Hep G2 , Humanos , Biossíntese de Proteínas , Vírus da Estomatite Vesicular Indiana/efeitos dos fármacos , Internalização do Vírus
7.
Arterioscler Thromb Vasc Biol ; 37(11): 2064-2074, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28882874

RESUMO

OBJECTIVE: The cellular demand for cholesterol requires control of its biosynthesis by the mevalonate pathway. Regulation of HMGCR (3-hydroxy-3-methylglutaryl coenzyme A reductase), a rate-limiting enzyme in this pathway and the target of statins, is a key control point herein. Accordingly, HMGCR is subject to negative and positive regulation. In particular, the ability of oxysterols and intermediates of the mevalonate pathway to stimulate its proteasomal degradation is an exquisite example of metabolically controlled feedback regulation. To define the genetic determinants that govern this process, we conducted an unbiased haploid mammalian genetic screen. APPROACH AND RESULTS: We generated human haploid cells with mNeon fused to endogenous HMGCR using CRISPR/Cas9 and used these cells to interrogate regulation of HMGCR abundance in live cells. This resulted in identification of known and new regulators of HMGCR, and among the latter, UBXD8 (ubiquitin regulatory X domain-containing protein 8), a gene that has not been previously implicated in this process. We demonstrate that UBXD8 is an essential determinant of metabolically stimulated degradation of HMGCR and of cholesterol biosynthesis in multiple cell types. Accordingly, UBXD8 ablation leads to aberrant cholesterol synthesis due to loss of feedback control. Mechanistically, we show that UBXD8 is necessary for sterol-stimulated dislocation of ubiquitylated HMGCR from the endoplasmic reticulum membrane en route to proteasomal degradation, a function dependent on its UBX domain. CONCLUSIONS: We establish UBXD8 as a previously unrecognized determinant that couples flux across the mevalonate pathway to control of cholesterol synthesis and demonstrate the feasibility of applying mammalian haploid genetics to study metabolic traits.


Assuntos
Proteínas Sanguíneas/metabolismo , Colesterol/biossíntese , Haploidia , Hidroximetilglutaril-CoA Redutases/metabolismo , Proteínas de Membrana/metabolismo , Animais , Proteínas Sanguíneas/genética , Sistemas CRISPR-Cas , Retículo Endoplasmático/enzimologia , Estabilidade Enzimática , Retroalimentação Fisiológica , Regulação Enzimológica da Expressão Gênica , Células Hep G2 , Hepatócitos/enzimologia , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Proteínas de Membrana/genética , Ácido Mevalônico/metabolismo , Microscopia Confocal , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico , Proteólise , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Ubiquitinação
8.
Nature ; 477(7364): 340-3, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21866103

RESUMO

Infections by the Ebola and Marburg filoviruses cause a rapidly fatal haemorrhagic fever in humans for which no approved antivirals are available. Filovirus entry is mediated by the viral spike glycoprotein (GP), which attaches viral particles to the cell surface, delivers them to endosomes and catalyses fusion between viral and endosomal membranes. Additional host factors in the endosomal compartment are probably required for viral membrane fusion; however, despite considerable efforts, these critical host factors have defied molecular identification. Here we describe a genome-wide haploid genetic screen in human cells to identify host factors required for Ebola virus entry. Our screen uncovered 67 mutations disrupting all six members of the homotypic fusion and vacuole protein-sorting (HOPS) multisubunit tethering complex, which is involved in the fusion of endosomes to lysosomes, and 39 independent mutations that disrupt the endo/lysosomal cholesterol transporter protein Niemann-Pick C1 (NPC1). Cells defective for the HOPS complex or NPC1 function, including primary fibroblasts derived from human Niemann-Pick type C1 disease patients, are resistant to infection by Ebola virus and Marburg virus, but remain fully susceptible to a suite of unrelated viruses. We show that membrane fusion mediated by filovirus glycoproteins and viral escape from the vesicular compartment require the NPC1 protein, independent of its known function in cholesterol transport. Our findings uncover unique features of the entry pathway used by filoviruses and indicate potential antiviral strategies to combat these deadly agents.


Assuntos
Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Ebolavirus/fisiologia , Glicoproteínas de Membrana/metabolismo , Internalização do Vírus , Animais , Transporte Biológico , Proteínas de Transporte/genética , Linhagem Celular , Endossomos/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/virologia , Genoma Humano/genética , Glicoproteínas/metabolismo , Haploidia , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lisossomos/metabolismo , Doença do Vírus de Marburg/tratamento farmacológico , Doença do Vírus de Marburg/metabolismo , Marburgvirus/fisiologia , Fusão de Membrana/genética , Fusão de Membrana/fisiologia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/deficiência , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação/genética , Proteína C1 de Niemann-Pick , Doenças de Niemann-Pick/patologia , Doenças de Niemann-Pick/virologia , Receptores Virais/metabolismo , Proteínas de Transporte Vesicular , Proteínas Virais de Fusão/metabolismo
9.
EMBO J ; 31(8): 1947-60, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22395071

RESUMO

Ebola and Marburg filoviruses cause deadly outbreaks of haemorrhagic fever. Despite considerable efforts, no essential cellular receptors for filovirus entry have been identified. We showed previously that Niemann-Pick C1 (NPC1), a lysosomal cholesterol transporter, is required for filovirus entry. Here, we demonstrate that NPC1 is a critical filovirus receptor. Human NPC1 fulfills a cardinal property of viral receptors: it confers susceptibility to filovirus infection when expressed in non-permissive reptilian cells. The second luminal domain of NPC1 binds directly and specifically to the viral glycoprotein, GP, and a synthetic single-pass membrane protein containing this domain has viral receptor activity. Purified NPC1 binds only to a cleaved form of GP that is generated within cells during entry, and only viruses containing cleaved GP can utilize a receptor retargeted to the cell surface. Our findings support a model in which GP cleavage by endosomal cysteine proteases unmasks the binding site for NPC1, and GP-NPC1 engagement within lysosomes promotes a late step in entry proximal to viral escape into the host cytoplasm. NPC1 is the first known viral receptor that recognizes its ligand within an intracellular compartment and not at the plasma membrane.


Assuntos
Proteínas de Transporte/metabolismo , Ebolavirus/fisiologia , Glicoproteínas de Membrana/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Biológicos , Modelos Moleculares , Proteína C1 de Niemann-Pick , Ligação Proteica , Viperidae , Proteínas do Envelope Viral/química
10.
PLoS Pathog ; 8(5): e1002710, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615569

RESUMO

Immunological checkpoints, such as the inhibitory CD200 receptor (CD200R), play a dual role in balancing the immune system during microbial infection. On the one hand these inhibitory signals prevent excessive immune mediated pathology but on the other hand they may impair clearance of the pathogen. We studied the influence of the inhibitory CD200-CD200R axis on clearance and pathology in two different virus infection models. We find that lack of CD200R signaling strongly enhances type I interferon (IFN) production and viral clearance and improves the outcome of mouse hepatitis corona virus (MHV) infection, particularly in female mice. MHV clearance is known to be dependent on Toll like receptor 7 (TLR7)-mediated type I IFN production and sex differences in TLR7 responses previously have been reported for humans. We therefore hypothesize that CD200R ligation suppresses TLR7 responses and that release of this inhibition enlarges sex differences in TLR7 signaling. This hypothesis is supported by our findings that in vivo administration of synthetic TLR7 ligand leads to enhanced type I IFN production, particularly in female Cd200(-/-) mice and that CD200R ligation inhibits TLR7 signaling in vitro. In influenza A virus infection we show that viral clearance is determined by sex but not by CD200R signaling. However, absence of CD200R in influenza A virus infection results in enhanced lung neutrophil influx and pathology in females. Thus, CD200-CD200R and sex are host factors that together determine the outcome of viral infection. Our data predict a sex bias in both beneficial and pathological immune responses to virus infection upon therapeutic targeting of CD200-CD200R.


Assuntos
Antígenos CD/metabolismo , Infecções por Coronavirus/imunologia , Vírus da Influenza A/imunologia , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Infecções por Orthomyxoviridae/imunologia , Receptor 7 Toll-Like/imunologia , Receptor 7 Toll-Like/metabolismo , Animais , Antígenos CD/genética , Feminino , Vírus da Influenza A/patogenicidade , Interferon Tipo I/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus da Hepatite Murina , Infiltração de Neutrófilos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Caracteres Sexuais , Transdução de Sinais
11.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895439

RESUMO

Lysosomes catabolize lipids and other biological molecules, a function essential for cellular and organismal homeostasis. Key to lipid catabolism in the lysosome is bis(monoacylglycero)phosphate (BMP), a major lipid constituent of intralysosomal vesicles (ILVs) and a stimulator of lipid-degrading enzymes. BMP levels are altered in a broad spectrum of human conditions, including neurodegenerative diseases. Although BMP synthase was recently discovered, it has long been thought that BMP's unique stereochemistry confers resistance to acid phospholipases, a requirement for its role in the lysosome. Here, we demonstrate that PLA2G15, a major lysosomal phospholipase, efficiently hydrolyzes BMP with primary esters regardless of stereochemistry. Interestingly, we discover that BMP's unique esterification position is what confers resistance to hydrolysis. Purified PLA2G15 catabolizes most BMP species derived from cell and tissue lysosomes under acidic conditions. Furthermore, PLA2G15 catalytic activity against synthesized BMP stereoisomers with primary esters was comparable to its canonical substrates. Conversely, BMP with secondary esters is intrinsically stable in vitro and requires acyl migration for hydrolysis in lysosomes. Consistent with our biochemical data, PLA2G15-deficient tissues and cells accumulate multiple BMP species, a phenotype reversible by supplementing wildtype PLA2G15 but not its catalytically dead mutant. Increasing BMP levels by targeting PLA2G15 reverses the cholesterol accumulation phenotype in Niemann Pick Disease Type C (NPC1) patient fibroblasts and significantly ameliorate disease pathologies in NPC1-deficient mice leading to extended lifespan. Our findings establish the rules that govern the stability of BMP in the lysosome and identify PLA2G15 as a lysosomal BMP hydrolase and as a potential target for modulating BMP levels for therapeutic intervention.

12.
J Virol ; 84(15): 7880-5, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20484516

RESUMO

Many viruses, including coronaviruses (CoVs), depend on a functional cellular proteasome for efficient infection in vitro. Hence, the proteasome inhibitor Velcade (bortezomib), a clinically approved anticancer drug, shown in an accompanying study (M. Raaben et al., J. Virol. 84:7869-7879, 2010) to strongly inhibit mouse hepatitis CoV (MHV) infection in cultured cells, seemed an attractive candidate for testing its antiviral properties in vivo. Surprisingly, however, the drug did not reduce replication of the virus in mice. Rather, inhibition of the proteasome caused enhanced infection with lethal outcome, calling for caution when using this type of drug during infection.


Assuntos
Antivirais/uso terapêutico , Ácidos Borônicos/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Hepatite Viral Animal/tratamento farmacológico , Vírus da Hepatite Murina/efeitos dos fármacos , Inibidores de Proteases/uso terapêutico , Pirazinas/uso terapêutico , Animais , Bortezomib , Infecções por Coronavirus/virologia , Hepatite Viral Animal/patologia , Hepatite Viral Animal/virologia , Camundongos , Camundongos Endogâmicos C57BL , Vírus da Hepatite Murina/patogenicidade , Análise de Sobrevida
13.
J Virol ; 84(15): 7869-79, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20484504

RESUMO

The ubiquitin-proteasome system (UPS) is a key player in regulating the intracellular sorting and degradation of proteins. In this study we investigated the role of the UPS in different steps of the coronavirus (CoV) infection cycle. Inhibition of the proteasome by different chemical compounds (i.e., MG132, epoxomicin, and Velcade) appeared to not only impair entry but also RNA synthesis and subsequent protein expression of different CoVs (i.e., mouse hepatitis virus [MHV], feline infectious peritonitis virus, and severe acute respiratory syndrome CoV). MHV assembly and release were, however, not appreciably affected by these compounds. The inhibitory effect on CoV protein expression did not appear to result from a general inhibition of translation due to induction of a cellular stress response by the inhibitors. Stress-induced phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha) generally results in impaired initiation of protein synthesis, but the sensitivity of MHV infection to proteasome inhibitors was unchanged in cells lacking a phosphorylatable eIF2alpha. MHV infection was affected not only by inhibition of the proteasome but also by interfering with protein ubiquitination. Viral protein expression was reduced in cells expressing a temperature-sensitive ubiquitin-activating enzyme E1 at the restrictive temperature, as well as in cells in which ubiquitin was depleted by using small interfering RNAs. Under these conditions, the susceptibility of the cells to virus infection was, however, not affected, excluding an important role of ubiquitination in virus entry. Our observations reveal an important role of the UPS in multiple steps of the CoV infection cycle and identify the UPS as a potential drug target to modulate the impact of CoV infection.


Assuntos
Infecções por Coronavirus/virologia , Coronavirus Felino/patogenicidade , Vírus da Hepatite Murina/patogenicidade , Complexo de Endopeptidases do Proteassoma/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Ubiquitina/metabolismo , Animais , Ácidos Borônicos/farmacologia , Bortezomib , Gatos , Linhagem Celular , Chlorocebus aethiops , Leupeptinas/farmacologia , Camundongos , Oligopeptídeos/farmacologia , Inibidores de Proteases/farmacologia , Inibidores de Proteassoma , Pirazinas/farmacologia , Internalização do Vírus , Liberação de Vírus , Replicação Viral
14.
PLoS Pathog ; 4(6): e1000088, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18551169

RESUMO

Coronaviruses induce in infected cells the formation of double membrane vesicles, which are the sites of RNA replication. Not much is known about the formation of these vesicles, although recent observations indicate an important role for the endoplasmic reticulum in the formation of the mouse hepatitis coronavirus (MHV) replication complexes (RCs). We now show that MHV replication is sensitive to brefeldin A (BFA). Consistently, expression of a dominant-negative mutant of ARF1, known to mimic the action of the drug, inhibited MHV infection profoundly. Immunofluorescence analysis and quantitative electron microscopy demonstrated that BFA did not block the formation of RCs per se, but rather reduced their number. MHV RNA replication was not sensitive to BFA in MDCK cells, which are known to express the BFA-resistant guanine nucleotide exchange factor GBF1. Accordingly, individual knockdown of the Golgi-resident targets of BFA by transfection of small interfering RNAs (siRNAs) showed that GBF1, but not BIG1 or BIG2, was critically involved in MHV RNA replication. ARF1, the cellular effector of GBF1, also appeared to be involved in MHV replication, as siRNAs targeting this small GTPase inhibited MHV infection significantly. Collectively, our results demonstrate that GBF1-mediated ARF1 activation is required for efficient MHV RNA replication and reveal that the early secretory pathway and MHV replication complex formation are closely connected.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Vírus da Hepatite Murina/fisiologia , RNA Viral/biossíntese , Fator 1 de Ribosilação do ADP/genética , Animais , Brefeldina A/farmacologia , Linhagem Celular , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Cães , Humanos , Camundongos , Mutação , RNA Interferente Pequeno/farmacologia
15.
Cell Microbiol ; 11(5): 825-41, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19215224

RESUMO

Bioluminescence imaging (BLI) is a powerful new method to study virus dissemination in the live animal. Here we used this method to monitor the spatial and temporal progression of mouse hepatitis coronavirus (MHV) infection in mice using luciferase-expressing viruses. Upon intranasal inoculation, virus replication could initially be observed in the nasal cavity and the cervical lymph nodes, after which the infection spread to the brain and frequently to the eyes. The kinetics of virus spread to and clearance from the brain appeared to depend on the inoculation dose. After intraperitoneal inoculation, virus replication was predominantly observed in the liver and occasionally in the intestines, but interestingly also in the tail and paws. BLI thus elucidated new anatomic locations of virus replication. Furthermore, MHV dissemination was shown to be critically depended on the viral spike protein, but also on the mouse strain used. Widespread dissemination was observed in mice lacking a functional type I interferon response. The importance of the type I interferon system in limiting viral spread was also demonstrated by the administration of type I interferons to mice. Our results provide new insights in coronavirus pathogenesis and demonstrate the potential of BLI to study coronavirus-host interactions in vivo.


Assuntos
Infecções por Coronavirus/virologia , Vírus da Hepatite Murina/fisiologia , Replicação Viral , Animais , Infecções por Coronavirus/genética , Infecções por Coronavirus/patologia , Diagnóstico por Imagem/métodos , Heparitina Sulfato/farmacologia , Interferon Tipo I/farmacologia , Proteínas Luminescentes/análise , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vírus da Hepatite Murina/efeitos dos fármacos , Vírus da Hepatite Murina/patogenicidade , Proteínas Recombinantes
16.
Nat Commun ; 11(1): 1128, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111832

RESUMO

The sterol-regulatory element binding proteins (SREBP) are central transcriptional regulators of lipid metabolism. Using haploid genetic screens we identify the SREBP Regulating Gene (SPRING/C12ORF49) as a determinant of the SREBP pathway. SPRING is a glycosylated Golgi-resident membrane protein and its ablation in Hap1 cells, Hepa1-6 hepatoma cells, and primary murine hepatocytes reduces SREBP signaling. In mice, Spring deletion is embryonic lethal yet silencing of hepatic Spring expression also attenuates the SREBP response. Mechanistically, attenuated SREBP signaling in SPRINGKO cells results from reduced SREBP cleavage-activating protein (SCAP) and its mislocalization to the Golgi irrespective of the cellular sterol status. Consistent with limited functional SCAP in SPRINGKO cells, reintroducing SCAP restores SREBP-dependent signaling and function. Moreover, in line with the role of SREBP in tumor growth, a wide range of tumor cell lines display dependency on SPRING expression. In conclusion, we identify SPRING as a previously unrecognized modulator of SREBP signaling.


Assuntos
Colesterol/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Linhagem Celular , Desenvolvimento Embrionário/genética , Retículo Endoplasmático/metabolismo , Expressão Gênica , Complexo de Golgi/metabolismo , Haploidia , Hepatócitos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Elemento Regulador de Esterol/genética
17.
BMC Genomics ; 10: 350, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19650917

RESUMO

BACKGROUND: The role of type I IFNs in protecting against coronavirus (CoV) infections is not fully understood. While CoVs are poor inducers of type I IFNs in tissue culture, several studies have demonstrated the importance of the type I IFN response in controlling MHV infection in animals. The protective effectors against MHV infection are, however, still unknown. RESULTS: In order to get more insight into the antiviral gene expression induced in the brains of MHV-infected mice, we performed whole-genome expression profiling. Three different mouse strains, differing in their susceptibility to infection with MHV, were used. In BALB/c mice, which display high viral loads but are able to control the infection, 57 and 121 genes were significantly differentially expressed (> or = 1.5 fold change) upon infection at 2 and 5 days post infection, respectively. Functional association network analyses demonstrated a strong type I IFN response, with Irf1 and Irf7 as the central players. At 5 days post infection, a type II IFN response also becomes apparent. Both the type I and II IFN response, which were more pronounced in mice with a higher viral load, were not observed in 129SvEv mice, which are much less susceptible to infection with MHV. 129SvEv mice lacking the type I interferon receptor (IFNAR-/-), however, were not able to control the infection. Gene expression profiling of these mice identified type I IFN-independent responses to infection, with IFN-gamma as the central player. As the BALB/c and the IFNAR-/- 129SvEv mice demonstrated very similar viral loads in their brains, we also compared their gene expression profiles upon infection with MHV in order to identify type I IFN-dependent transcriptional responses. Many known IFN-inducible genes were detected, several of which have previously been shown to play an important protective role against virus infections. We speculate that the additional type I IFN-dependent genes that we discovered may also be important for protection against MHV infection. CONCLUSION: Transcriptional profiling of mice infected with MHV demonstrated the induction of a robust IFN response, which correlated with the viral load. Profiling of IFNAR-/- mice allowed us to identify type I IFN-independent and -dependent responses. Overall, this study broadens our present knowledge of the type I and II IFN-mediated effector responses during CoV infection in vivo.


Assuntos
Infecções por Coronavirus/genética , Infecções por Coronavirus/metabolismo , Vírus da Hepatite Murina/fisiologia , Receptor de Interferon alfa e beta/metabolismo , Transcrição Gênica , Animais , Infecções por Coronavirus/virologia , Expressão Gênica , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Genoma , Camundongos , Camundongos Knockout , RNA Viral/genética , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética
18.
Nat Med ; 25(4): 612-619, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833751

RESUMO

Cancer cells can evade immune surveillance through the expression of inhibitory ligands that bind their cognate receptors on immune effector cells. Expression of programmed death ligand 1 in tumor microenvironments is a major immune checkpoint for tumor-specific T cell responses as it binds to programmed cell death protein-1 on activated and dysfunctional T cells1. The activity of myeloid cells such as macrophages and neutrophils is likewise regulated by a balance between stimulatory and inhibitory signals. In particular, cell surface expression of the CD47 protein creates a 'don't eat me' signal on tumor cells by binding to SIRPα expressed on myeloid cells2-5. Using a haploid genetic screen, we here identify glutaminyl-peptide cyclotransferase-like protein (QPCTL) as a major component of the CD47-SIRPα checkpoint. Biochemical analysis demonstrates that QPCTL is critical for pyroglutamate formation on CD47 at the SIRPα binding site shortly after biosynthesis. Genetic and pharmacological interference with QPCTL activity enhances antibody-dependent cellular phagocytosis and cellular cytotoxicity of tumor cells. Furthermore, interference with QPCTL expression leads to a major increase in neutrophil-mediated killing of tumor cells in vivo. These data identify QPCTL as a novel target to interfere with the CD47 pathway and thereby augment antibody therapy of cancer.


Assuntos
Aminoaciltransferases/metabolismo , Antígenos de Diferenciação/metabolismo , Antígeno CD47/metabolismo , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Receptores Imunológicos/metabolismo , Aminoaciltransferases/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Camundongos Transgênicos , Neoplasias/patologia , Proteínas Opsonizantes/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo
19.
BMC Genomics ; 9: 221, 2008 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-18479515

RESUMO

BACKGROUND: Sensitivity and accuracy are key points when using microarrays to detect alterations in gene expression under different conditions. Critical to the acquisition of reliable results is the preparation of the RNA. In the field of virology, when analyzing the host cell's reaction to infection, the often high representation of viral RNA (vRNA) within total RNA preparations from infected cells is likely to interfere with microarray analysis. Yet, this effect has not been investigated despite the many reports that describe gene expression profiling of virus-infected cells using microarrays. RESULTS: In this study we used coronaviruses as a model to show that vRNA indeed interferes with microarray analysis, decreasing both sensitivity and accuracy. We also demonstrate that the removal of vRNA from total RNA samples, by means of virus-specific oligonucleotide capturing, significantly reduced the number of false-positive hits and increased the sensitivity of the method as tested on different array platforms. CONCLUSION: We therefore recommend the specific removal of vRNA, or of any other abundant 'contaminating' RNAs, from total RNA samples to improve the quality and reliability of microarray analyses.


Assuntos
Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Perfilação da Expressão Gênica/métodos , Hepatite Viral Animal/genética , Hepatite Viral Animal/virologia , Vírus da Hepatite Murina/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Viral/genética , RNA Viral/isolamento & purificação , Animais , Sequência de Bases , Linhagem Celular , Perfilação da Expressão Gênica/estatística & dados numéricos , Camundongos , Vírus da Hepatite Murina/patogenicidade , Análise de Sequência com Séries de Oligonucleotídeos/estatística & dados numéricos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade
20.
Cell Host Microbe ; 23(5): 636-643.e5, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29681460

RESUMO

Human type A Enteroviruses (EV-As) cause diseases ranging from hand-foot-and-mouth disease to poliomyelitis-like disease. Although cellular receptors are identified for some EV-As, they remain elusive for the majority of EV-As. We identify the cell surface molecule KREMEN1 as an entry receptor for coxsackievirus A10 (CV-A10). Whereas loss of KREMEN1 renders cells resistant to CV-A10 infection, KREMEN1 overexpression enhances CV-A10 binding to the cell surface and increases susceptibility to infection, indicating that KREMEN1 is a rate-limiting factor for CV-A10 infection. Furthermore, the extracellular domain of KREMEN1 binds CV-A10 and functions as a neutralizing agent during infection. Kremen-deficient mice are resistant to CV-A10-induced lethal paralysis, emphasizing the relevance of Kremen for infection in vivo. KREMEN1 is also essential for infection by a phylogenetic and pathogenic related group of EV-As. Collectively these findings highlight the importance of KREMEN1 for these emerging pathogens and its potential as an antiviral therapeutic target.


Assuntos
Enterovirus Humano A/metabolismo , Enterovirus Humano A/patogenicidade , Infecções por Enterovirus/metabolismo , Proteínas de Membrana/metabolismo , Internalização do Vírus , Animais , Antígenos de Superfície , Linhagem Celular , Linhagem Celular Tumoral , Enterovirus/patogenicidade , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/virologia , Feminino , Técnicas de Inativação de Genes , Células HCT116 , Células HEK293 , Doença de Mão, Pé e Boca/virologia , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Mutagênese , Filogenia , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA