RESUMO
Formation of graphene on Ru(0001) by exposure to ethylene and subsequent annealing has been studied by low-energy electron diffraction, X-ray photoelectron spectroscopy, and ultraviolet photoelectron spectroscopy. The stability of graphene/intercalated oxygen/Ru(0001) has been investigated by temperature programmed desorption spectroscopy. Desorption of CO and CO2 was observed upon heating the samples to temperatures above 700 K. It was found that the graphene layer was partly intact after the desorption run and that the intercalated oxygen was removed. It was concluded that the oxygen-intercalated graphene layer was stable up to temperatures of about 700 K.
RESUMO
Infections related to orthopedic/stomatology surgery are widely recognized as a significant health concern. Therefore, the development of new materials with superior biological properties and good stability could represent a valuable alternative to the classical treatments. In this paper, the fluorine-substituted hydroxyapatite (FHAp) suspension, with the chemical formula Ca10(PO4)6(OH)2-2xF2x (where x = 0.05), was prepared using a modified coprecipitation technique. Stability studies were conducted by zeta potential and ultrasound measurements for the first time. The X-ray diffraction (XRD) patterns of FHAp powders displayed a hexagonal structure akin to that of pure hydroxyapatite (HAp). The XPS general spectrum revealed peaks corresponding to the constituent elements of fluorine-substituted hydroxyapatite such as calcium, phosphorus, oxygen, and fluorine. The purity of the obtained FHAp samples was confirmed by energy-dispersive X-ray spectroscopy (EDS) studies. The FHAp morphology was evaluated by scanning electron microscopy (SEM) measurements. Fourier-transform infrared spectroscopy (FTIR) studies were performed in order to study the vibrational properties of the FHAp samples. The FHAp suspensions were tested for antibacterial activity against reference strains such as Staphylococcus aureus 25923 ATCC, Escherichia coli ATCC 25922, and Candida albicans ATCC 10231. Additionally, the biocompatibility of the FHAp suspensions was assessed using human fetal osteoblastic cells (hFOB 1.19 cell line). The results of our biological tests suggest that FHAp suspensions are promising candidates for the future development of new biocompatible and antimicrobial agents for use in the biomedical field.
RESUMO
Background/Objectives: A biocomposite based on magnesium-doped hydroxyapatite and enriched with amoxicillin (MgHApOx) was synthesized using the coprecipitation method and is presented here for the first time. Methods: The stability of MgHAp and MgHApOx suspensions was evaluated by ultrasound measurements. The structure of the synthesized MgHAp and MgHApOx was examined with X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The crystalline structure was determined by X-ray diffraction. The FTIR data were collected in the range of 4000-400 cm-1. The morphology of the nanoparticles was evaluated by scanning electron microscopy (SEM). Furthermore, the biocompatible properties of MgHAp, MgHApOx and amoxicillin (Ox) suspensions were assessed using human fetal osteoblastic cells (hFOB 1.19 cell line). The antimicrobial properties of the MgHAp, MgHApOx and Ox suspension nanoparticles were assessed using the standard reference microbial strains Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922 and Candida albicans ATCC 10231. Results: X-ray studies have shown that the biocomposite retains the characteristics of HAp and amoxicillin. The SEM assessment exhibited that the apatite contains particles at nanometric scale with acicular flakes morphology. The XRD and SEM results exhibited crystalline nanoparticles. The average crystallite size calculated from XRD analysis increased from 15.31 nm for MgHAp to 17.79 nm in the case of the MgHApOx sample. The energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analysis highlighted the presence of the constituent elements of MgHAp and amoxicillin. Moreover, XPS confirmed the substitution of Ca2+ ions with Mg2+ and the presence of amoxicillin constituents in the MgHAp lattice. The results of the in vitro antimicrobial assay demonstrated that MgHAp, MgHApOx and Ox suspensions exhibited good antimicrobial activity against the tested microbial strains. The results showed that the antimicrobial activity of the samples was influenced by the presence of the antibiotic and also by the incubation time. Conclusions: The findings from the biological assays indicate that MgHAp and MgHApOx are promising candidates for the development of new biocompatible and antimicrobial agents for biomedical applications.
RESUMO
In this paper, we present for the first time the development of zinc-doped hydroxyapatite enriched with tetracycline (ZnHApTe) powders and provide a comprehensive evaluation of their physico-chemical and biological properties. Various techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) were used for the sample's complex evaluation. Moreover, the biocompatibility of zinc-doped hydroxyapatite (ZnHAp) and ZnHApTe nanoparticles was evaluated with the aid of human fetal osteoblastic cells (hFOB 1.19 cell line). The results of the biological assays suggested that these nanoparticles hold great promise as potential candidates for the future development of novel biocompatible and antimicrobial agents for biomedical applications. The antimicrobial properties of the ZnHAp and ZnHApTe nanoparticles were assessed using the standard reference microbial strains Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Candida albicans ATCC 10231. The results of the in vitro antimicrobial assay demonstrated that both tested materials exhibited good antimicrobial activity. Additionally, these data also indicated that the antimicrobial effects of the ZnHAp nanoparticles were intensified by the presence of tetracycline (Te). Furthermore, the results also suggested that the antimicrobial activity of the samples increased with the incubation time.
RESUMO
The hydroxyapatite and copper-doped hydroxyapatite coatings (Ca10-xCux(PO4)6(OH)2; xCu = 0, 0.03; HAp and 3CuHAp) were obtained by the vacuum deposition technique. Then, both coatings were analyzed by the X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and water contact angle techniques. Information regarding the in vitro antibacterial activity and biological evaluation were obtained. The XRD studies confirmed that the obtained thin films consist of a single phase associated with hydroxyapatite (HAp). The obtained 2D and 3D SEM images did not show cracks or other types of surface defects. The FTIR studies' results proved the presence of vibrational bands characteristic of the hydroxyapatite structure in the studied coating. Moreover, information regarding the HAp and 3CuHAp surface wettability was obtained by water contact angle measurements. The biocompatibility of the HAp and 3CuHAp coatings was evaluated using the HeLa and MG63 cell lines. The cytotoxicity evaluation of the coatings was performed by assessing the cell viability through the MTT assay after incubation with the HAp and 3CuHAp coatings for 24, 48, and 72 h. The results proved that the 3CuHAp coatings exhibited good biocompatible activity for all the tested intervals. The ability of Pseudomonas aeruginosa 27853 ATCC (P. aeruginosa) cells to adhere to and develop on the surface of the HAp and 3CuHAp coatings was investigated using AFM studies. The AFM studies revealed that the 3CuHAp coatings inhibited the formation of P. aeruginosa biofilms. The AFM data indicated that P. aeruginosa's attachment and development on the 3CuHAp coatings were significantly inhibited within the first 24 h. Both the 2D and 3D topographies showed a rapid decrease in attached bacterial cells over time, with a significant reduction observed after 72 h of exposure. Our studies suggest that 3CuHAp coatings could be suitable candidates for biomedical uses such as the development of new antimicrobial agents.
RESUMO
In the present work, methanol oxidation reaction was investigated on Pt particles of various diameters on carbon-nanofibers and carbon-black supports with different surface-oxygen concentrations, aiming for a better understanding of the relationship between the catalyst properties and the electrochemical performance. The pre-synthesized Pt nanoparticles in ethylene glycol, prepared by the polyol method without using any capping agents, were deposited on different carbon supports. Removal of oxygen-groups from the carbon supports had profound positive effects on not only the Pt dispersion but also the specific activity. The edge structures on the stacked graphene sheets in the platelet carbon-nanofibers provided a strong interaction with the Pt particles, significantly reconstructing them in the process. Such reconstruction resulted in the formation of more plated Pt particles on the CNF than on the carbon-black and exposure of more Pt atoms with relatively high co-ordination numbers, and thereby higher specific activity. Owing to the combined advantages of optimum Pt particle diameter, an oxygen-free surface and the unique properties of CNFs, Pt supported on heat-treated CNFs exhibited a higher mass activity twice of that of its commercial counterpart.
RESUMO
Hydroxyapatite doped with magnesium and zinc in chitosan matrix biocomposites have great potential for applications in space technology, aerospace, as well as in the biomedical field, as a result of coatings with multifunctional properties that meet the increased requirements for wide applications. In this study, coatings on titanium substrates were developed using hydroxyapatite doped with magnesium and zinc ions in a chitosan matrix (MgZnHAp_Ch). Valuable information concerning the surface morphology and chemical composition of MgZnHAp_Ch composite layers were obtained from studies that performed scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), metallographic microscopy, and atomic force microscopy (AFM). The wettability of the novel coatings, based on magnesium and zinc-doped biocomposites in a chitosan matrix on a titanium substrate, was evaluated by performing water contact angle studies. Furthermore, the swelling properties, together with the coating's adherence to the titanium substrate, were also analyzed. The AFM results emphasized that the composite layers exhibited the surface topography of a uniform layer, and that there were no evident cracks and fissures present on the investigated surface. Moreover, antifungal studies concerning the MgZnHAp_Ch coatings were also carried out. The data obtained from quantitative antifungal assays highlight the strong inhibitory effects of MgZnHAp_Ch against C. albicans. Additionally, our results underline that after 72 h of exposure, the MgZnHAp_Ch coatings display fungicidal features. Thus, the obtained results suggest that the MgZnHAp_Ch coatings possess the requisite properties that make them suitable for use in the development of new coatings with enhanced antifungal features.
RESUMO
The paper presents the results of preliminary research on the possibility of synthesizing ZnO-TiO2 mixed coatings by plasma electrochemical oxidation (PEO). The aim of the work was to synthesize TiO2-ZnO mixed coatings on a titanium substrate from an electrolyte containing ZnO nanoparticles (NPs) and to assess the parameters of PEO on the structure, chemical composition, and properties of the obtained oxide coatings. The PEO process was carried out under various current-voltage conditions using different signals: DC, DC pulse, and AC. In this work, optimal conditions for the PEO process were determined to obtain well-adhering oxide coatings with the highest possible content of ZnO. The structure and morphology of the resulting oxide coatings were investigated, and their chemical and phase composition was comprehensively examined (EDX, XRD, XPS, and GD-OES). In addition, their basic optical properties were assessed. It has been shown that in the PEO DC pulse process, it is possible to obtain oxide coatings characterized by a high degree of structure order, high ZnO content in the oxide coating (3.6 at.%, XPS), and prospective applications for photocatalytic purposes (3.12 eV).
RESUMO
In the present study, sage-coated zinc-doped hydroxyapatite was incorporated into a dextran matrix (7ZnHAp-SD), and its physico-chemical and antimicrobial activities were investigated. A 7ZnHAp-SD nanocomposite suspension was obtained using the co-precipitation method. The stability of the nanocomposite suspension was evaluated using ultrasound measurements. The stability parameter calculated relative to double-distilled water as a reference fluid highlights the very good stability of the 7ZnHAp-SD suspension. X-ray diffraction (XRD) experiments were performed to evaluate the characteristic diffraction peak of the hydroxyapatite phase. Valuable information regarding the morphology and chemical composition of 7ZnHAp-SD was obtained via scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) studies. Fourier-transform infrared spectroscopy (FTIR) measurements were performed on the 7ZnHAp-SD suspensions in order to evaluate the functional groups present in the sample. Preliminary studies on the antimicrobial activity of 7ZnHAp-SD suspensions against the standard strains of Staphylococcus aureus 25923 ATCC, Enterococcus faecalis 29212 ATCC, Escherichia coli 25922 ATCC, and Pseudomonas aeruginosa 27853 ATCC were conducted. More than that, preliminary studies on the biocompatibility of 7ZnHAp-SD were conducted using human cervical adenocarcinoma (HeLa) cells, and their results emphasized that the 7ZnHAp-SD sample did not exhibit a toxic effect and did not induce any noticeable changes in the morphological characteristics of HeLa cells. These preliminary results showed that these nanoparticles could be possible candidates for biomedical/antimicrobial applications.
RESUMO
This is the first report regarding the effect of gamma irradiation on chitosan-coated magnesium-doped hydroxyapatite (xMg = 0.1; 10 MgHApCh) layers prepared by the spin-coating process. The stability of the resulting 10 MgHApCh gel suspension used to obtain the layers has been shown by ultrasound measurements. The presence of magnesium and the effect of the irradiation process on the studied samples were shown by X-ray photoelectron spectroscopy (XPS). The XPS results obtained for irradiated 10 MgHApCh layers suggested that the magnesium and calcium contained in the surface layer are from tricalcium phosphate (TCP; Ca3(PO4)2) and hydroxyapatite (HAp). The XPS analysis has also highlighted that the amount of TCP in the surface layer increased with the irradiation dose. The energy-dispersive X-ray spectroscopy (EDX) evaluation showed that the calcium decreases with the increase in the irradiation dose. In addition, a decrease in crystallinity and crystallite size was highlighted after irradiation. By atomic force microscopy (AFM) we have obtained images suggesting a good homogeneity of the surface of the non-irradiated and irradiated layers. The AFM results were also sustained by the scanning electron microscopy (SEM) images obtained for the studied samples. The effect of gamma-ray doses on the Fourier transform infrared spectroscopy (ATR-FTIR) spectra of 10 MgHApCh composite layers was also evaluated. The in vitro antifungal assays proved that 10 MgHApCh composite layers presented a strong antifungal effect, correlated with the irradiation dose and incubation time. The study of the stability of the 10 MgHApCh gel allowed us to achieve uniform and homogeneous layers that could be used in different biomedical applications.
RESUMO
In the present study, we report the development and characterization of composite layers (by spin coating) based on magnesium-doped hydroxyapatite in a chitosan matrix, (Ca10-xMgx(PO4)6(OH)2; xMg = 0, 0.08 and 0.3; HApCh, 8MgHApCh and 30MgHApCh). The MgHApCh composite layers were investigated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) techniques. The in vitro biological evaluation included the assessment of their cytotoxicity on MG63 osteoblast-like cells and antifungal activity against Candida albicans ATCC 10231 fungal cell lines. The results of the physico-chemical characterization highlighted the obtaining of uniform and homogeneous composite layers. In addition, the biological assays demonstrated that the increase in the magnesium concentration in the samples enhanced the antifungal effect but also decreased their cytocompatibility. However, for certain optimal magnesium ion concentrations, the composite layers presented both excellent biocompatibility and antifungal properties, suggesting their promising potential for biomedical applications in both implantology and dentistry.
RESUMO
Studies of adsorption of CO2 on nanoscopic surfaces are relevant for technological applications in heterogeneous catalysis as well as for sorption of this important greenhouse gas. Presently, adsorption of carbon dioxide on pure and oxidized thin samarium layers near mono-layer thickness on Ni(100) has been investigated by photoelectron spectroscopy and temperature programmed desorption. It is observed that very little CO2 adsorb on the metallic sample for exposures in the vacuum regime at room temperature. For the oxidized sample, a large enhancement in CO2 adsorption is observed in the desorption measurements. Indications of carbonate formation on the surface were found by C 1s and O 1s XPS. After annealing of the oxidized samples to 900 K very little CO2 was found to adsorb. Differences in desorption spectra before and after annealing of the oxidized samples are correlated with changes in XPS intensities, and with changes in sample work function which determines the energy difference between molecular orbitals and substrate Fermi level, and thus the probability of charge transfer between adsorbed molecule and substrate.
RESUMO
In this work, nanohydroxyapatite coatings with nanosilver and nanocopper have been fabricated and studied. The presented results concern coatings with a chemical composition that has never been proposed before. The present research aims to characterize the effects of nanosilver and nanocopper, dispersed in nanohydroxyapatite coatings and deposited on a new, non-toxic Ti13Zr13Nb alloy, on the physical and mechanical properties of coatings. The coatings were obtained by a one-stage electrophoretic process. The surface topography, and the chemical and phase compositions of coatings were examined with scanning electron microscopy, atomic force microscopy, X-ray diffractometry, glow discharge optical emission spectroscopy, and energy-dispersive X-ray spectroscopy. The mechanical properties of coatings were determined by nanoindentation tests, while coatings adhesion was determined by nanoscratch tests. The results demonstrate that copper addition increases the hardness and adhesion. The presence of nanosilver has no significant influence on the adhesion of coatings.
RESUMO
This paper describes the microstructure and properties of titanium-based composites obtained as a result of a reactive spark plasma sintering of a mixture of titanium and nanostructured (Ti,Mo)C-type carbide in a carbon shell. Composites with different ceramic addition mass percentage (10 and 20 wt %) were produced. Effect of content of elemental carbon covering nc-(Ti,Mo)C reinforcing phase particles on the microstructure, mechanical, tribological, and corrosion properties of the titanium-based composites was investigated. The microstructural evolution, mechanical properties, and tribological behavior of the Ti + (Ti,Mo)C/C composites were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), electron backscatter diffraction analysis (EBSD), X-ray photoelectron spectroscopy (XPS), 3D confocal laser scanning microscopy, nanoindentation, and ball-on-disk wear test. Moreover, corrosion resistance in a 3.5 wt % NaCl solution at RT were also investigated. It was found that the carbon content affected the tested properties. With the increase of carbon content from ca. 3 to 40 wt % in the (Ti,Mo)C/C reinforcing phase, an increase in the Young's modulus, hardness, and fracture toughness of spark plasma sintered composites was observed. The results of abrasive and corrosive resistance tests were presented and compared with experimental data obtained for cp-Ti and Ti-6Al-4V alloy without the reinforcing phase. Moreover, it was found that an increase in the percentage of carbon increased the resistance to abrasive wear and to electrochemical corrosion of composites, measured by the relatively lower values of the friction coefficient and volume of wear and higher values of resistance polarization. This resistance results from the fact that a stable of TiO2 layer doped with MoO3 is formed on the surface of the composites. The results of experimental studies on the composites were compared with those obtained for cp-Ti and Ti-6Al-4V alloy without the reinforcing phase.
RESUMO
Coatings enriched with zinc and copper as well as calcium or magnesium, fabricated on titanium substrate by Plasma Electrolytic Oxidation (PEO) under AC conditions (two cathodic voltages, i.e., -35 or -135 V, and anodic voltage of +400 V), were investigated. In all experiments, the electrolytes were based on concentrated orthophosphoric acid (85 wt%) and zinc, copper, calcium and/or magnesium nitrates. It was found that the introduced calcium and magnesium were in the ranges 5.0-5.4 at% and 5.6-6.5 at%, respectively, while the zinc and copper amounts were in the range of 0.3-0.6 at%. Additionally, it was noted that the metals of the block S (Ca and Mg) could be incorporated into the structure about 13 times more than metals of the transition group (Zn and Cu). The incorporated metals (from the electrolyte) into the top-layer of PEO phosphate coatings were on their first (Cu+) or second (Cu2+, Ca2+ and Mg2+) oxidation states. The crystalline phases (TiO and Ti3O) were detected only in coatings fabricated at cathodic voltage of -135 V. It has also been pointed that fabricated porous calcium-phosphate coatings enriched with biocompatible magnesium as well as with antibacterial zinc and copper are dedicated mainly to medical applications. However, their use for other applications (e.g., catalysis and photocatalysis) after additional functionalizations is not excluded.
RESUMO
This paper reports on the plasma electrolytic oxidation (PEO) of titanium alloy Ti-15Mo in baths containing zinc to obtain biomaterials with bacteriostatic and antibacterial properties. The Ti-15Mo surface was oxidised in a 0.1â¯M Ca(H2PO2)2 bath containing zinc compound particles: ZnO or Zn3(PO4)2. During the PEO process, the applied voltage was 300â¯V, and the current density was 150â¯mAâcm-2. The surface morphology, roughness and wettability were determined. It has been noted that both roughness and wettability of Ti-15Mo alloy surface increased after PEO. EDX and XPS chemical composition analysis was carried out, and Raman spectroscopy was also performed indicating that Zn has been successfully incorporated into oxide layer. To investigate the antibacterial properties of the PEO oxide coatings, microbial tests were carried out. The bacterial adhesion test was performed using four different bacterial strains: reference Staphylococcus aureus (ATCC 25923), clinical Staphylococcus aureus (MRSA 1030), reference Staphylococcus epidermidis (ATCC 700296) and clinical Staphylococcus epidermidis (15560). Performed zinc-containing oxide coatings did not indicate the bacteria growth inducing effect. Additionally, the cytocompatibility of the formed oxide layers was characterised by MG-63 osteoblast-like live/dead tests. The surface bioactivity and cytocompatibility increased after the PEO process. The zinc was successfully incorporated into the titanium oxide layer. Based on the obtained results of the studies, it can be claimed that zinc-containing PEO layers can be an interesting course of bacteriostatic titanium biomaterials development.
Assuntos
Ligas/farmacologia , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Fosfatos/química , Compostos de Zinco/química , Óxido de Zinco/química , Ligas/química , Antibacterianos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Osteoblastos/classificação , Osteoblastos/efeitos dos fármacos , Análise Espectral Raman , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento , MolhabilidadeRESUMO
To fabricate porous copper coatings on titanium, we used the process of plasma electrolytic oxidation (PEO) with voltage control. For all experiments, the three-phase step-up transformer with six-diode Graetz bridge was used. The voltage and the amount of salt used in the electrolyte were determined so as to obtain porous coatings. Within the framework of this study, the PEO process was carried out at a voltage of 450 VRMS in four electrolytes containing the salt as copper(II) nitrate(V) trihydrate. Moreover, we showed that the content of salt in the electrolyte needed to obtain a porous PEO coating was in the range 300-600 g/dm3. After exceeding this amount of salts in the electrolyte, some inclusions on the sample surface were observed. It is worth noting that this limitation of the amount of salts in the electrolyte was not connected with the maximum solubility of copper(II) nitrate(V) trihydrate in the concentrated (85%) orthophosphoric acid. To characterize the obtained coatings, numerous techniques were used. In this work, we used scanning electron microscopy (SEM) coupled with electron-dispersive X-ray spectroscopy (EDS), conducted surface analysis using confocal laser scanning microscopy (CLSM), and studied the surface layer chemical composition of the obtained coatings by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), glow discharge of optical emission spectroscopy (GDOES), and biological tests. It was found that the higher the concentration of Cu(NO3)2â3H2O in the electrolyte, the higher the roughness of the coatings, which may be described by 3D roughness parameters, such as Sa (1.17-1.90 µm) and Sp (7.62-13.91 µm). The thicknesses of PEO coatings obtained in the electrolyte with 300-600 g/dm3 Cu(NO3) 2â3H2O were in the range 7.8 to 10 µm. The Cu/P ratio of the whole volume of coating measured by EDS was in the range 0.05-0.12, while the range for the top layer (measured using XPS) was 0.17-0.24. The atomic concentration of copper (0.54-0.72 at%) resulted in antibacterial and fungicidal properties in the fabricated coatings, which can be dedicated to biocompatible applications.
RESUMO
The present paper covers the possible ways to fabricate advanced porous coatings that are enriched in copper on a titanium substrate through Direct Current Plasma Electrolytic Oxidation (DC-PEO) with voltage control, in electrolytes made of concentrated orthophosphoric acid with the addition of copper(II) nitrate(V) trihydrate. In these studies, solutions containing from 0 to 650 g salt per 1 dm3 of acid and anodic voltages from 450 V up to 650 V were used. The obtained coatings featuring variable porosity could be best defined by the three-dimensional (3D) parameter Sz, which lies in the range 9.72 to 45.18 µm. The use of copper(II) nitrate(V) trihydrate in the electrolyte, resulted, for all cases, in the incorporation of the two oxidation forms, i.e., Cu+ and Cu2+ into the coatings. Detailed X-Ray Photoelectron Spectroscopy (XPS) studies layers allowed for stating that the percentage of copper in the surface layer of the obtained coatings was in the range of 0.24 at% to 2.59 at%. The X-Ray Diffraction (XRD) studies showed the presence of copper (α-Cu2P2O7, and Cu3(PO4)2) and titanium (TiO2-anatase, TiO3, TiP2O7, and Ti0.73O0.91) compounds in coatings. From Energy-Dispersive X-Ray Spectroscopy (EDS) and XPS studies, it was found that the Cu/P ratio increases with the increase of voltage and the amount of salt in the electrolyte. The depth profile analysis by Glow-Discharge Optical Emission Spectroscopy (GDOES) method showed that a three-layer model consisting of a top porous layer, a semi-porous layer, and a transient/barrier layer might describe the fabricated coatings.
RESUMO
We describe a rapid environmentally friendly wet-chemical approach to synthesize extremely stable non-toxic, biocompatible, water-soluble monodispersed gold nanoparticles (AuNPs) in one step at room temperature. The particles have been successfully achieved in just a few minutes by merely adding sodium hydroxide (NaOH) acting as an initiator for the reduction of HAuCl(4) in aqueous solution in the presence of polyvinylpyrrolidone (PVP) without the use of any reducing agent. It is also proved to be highly efficient for the preparation of AuNPs with controllable sizes. The AuNPs show remarkable stability in water media with high concentrations of salt, various buffer solutions and physiological conditions in biotechnology and biomedicine. Moreover, the AuNPs are also non-toxic at high concentration (100 microM). Therefore, it provides great opportunities to use these AuNPs for biotechnology and biomedicine. This new approach also involved several green chemistry concepts, such as the selection of environmentally benign reagents and solvents, without energy consumption, and less reaction time.
Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Morte Celular , Linhagem Celular , Humanos , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Espectrofotometria Ultravioleta , Fatores de Tempo , Difração de Raios XRESUMO
Coatings with developed surface stereometry, being based on a porous system, may be obtained by plasma electrolytic oxidation, PEO (micro arc oxidation, MAO). In this paper, we present novel porous coatings, which may be used, e.g., in micromachine's biocompatible sensors' housing, obtained in electrolytes containing magnesium nitrate hexahydrate Mg(NO3)2·6H2O and/or zinc nitrate hexahydrate Zn(NO3)2·6H2O in concentrated phosphoric acid H3PO4 (85% w/w). Complementary techniques are used for coatings' surface characterization, such as scanning electron microscopy (SEM), for surface imaging as well as for chemical semi-quantitative analysis via energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), glow discharge optical emission spectroscopy (GDOES), and X-ray powder diffraction (XRD). The results have shown that increasing contents of salts (here, 250 g/L Mg(NO3)2·6H2O and 250 g/L Zn(NO3)2·6H2O) in electrolyte result in increasing of Mg/P and Zn/P ratios, as well as coating thickness. It was also found that by increasing the PEO voltage, the Zn/P and Mg/P ratios increase as well. In addition, the analysis of XPS spectra revealed the existence in 10 nm top of coating magnesium (Mg2+), zinc (Zn2+), titanium (Ti4+), and phosphorus compounds (PO43-, or HPO42-, or H2PO4-, or P2O74-).