Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Infect Dis ; 72(12): 2112-2120, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32246147

RESUMO

BACKGROUND: Multidrug-resistant (MDR) bacteria are frequently defined using the criteria established by Magiorakos et al [Clin Microbiol Infect 2012;18:268-81]. Difficult-to-treat resistance (DTR) [Kadri et al, Clin Infect Dis 2018;67:1803-14] is a novel approach to defining resistance in gram-negative bacilli focusing on treatment-limiting resistance to first-line agents (all ß-lactams and fluoroquinolones). METHODS: Clinical and Laboratory Standards Institute-defined broth microdilution minimum inhibitory concentrations (MICs) were determined for imipenem/relebactam, ceftolozane/tazobactam, and comparators against respiratory, intraabdominal, and urinary isolates of Enterobacterales (n = 10 516) and Pseudomonas aeruginosa (n = 2732) collected in 26 US hospitals in 2015-2017. RESULTS: Among all Enterobacterales, 1.0% of isolates were DTR and 15.6% were MDR; 8.4% of P. aeruginosa isolates were DTR and 32.4% were MDR. MDR rates for Enterobacterales and DTR and MDR rates for P. aeruginosa were significantly higher (P < .05) in isolates collected in intensive care units (ICUs) than in non-ICUs and in respiratory tract isolates than in intraabdominal or urinary tract isolates. In addition, 82.4% of DTR and 92.1% of MDR Enterobacterales and 62.2% of DTR and 82.2% of MDR P. aeruginosa were imipenem/relebactam-susceptible, and 1.5% of DTR and 65.8% of MDR Enterobacterales and 67.5% of DTR and 84.0% of MDR P. aeruginosa were ceftolozane/tazobactam-susceptible. CONCLUSIONS: MDR phenotypes defined using the Magiorakos criteria may overcall treatment-limiting resistance in gram-negative bacilli. In the US, DTR Enterobacterales were infrequent, while MDR Enterobacterales isolates and DTR and MDR P. aeruginosa were common. Imipenem/relebactam (Enterobacterales, P. aeruginosa) and ceftolozane/tazobactam (P. aeruginosa) retained in vitro activity against most DTR and MDR isolates.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Antibacterianos/farmacologia , Compostos Azabicíclicos , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Humanos , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , Fenótipo , Pseudomonas aeruginosa , Tazobactam/farmacologia , Estados Unidos
2.
Open Forum Infect Dis ; 6(6): ofz240, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31263733

RESUMO

BACKGROUND: Pseudomonas aeruginosa remains an important cause of hospital-acquired infections in the United States and is frequently multidrug-resistant (MDR). The Infectious Diseases Society of America guidelines recommend empiric combination therapy that includes an antipseudomonal ß-lactam with an aminoglycoside or fluoroquinolone likely to cover ≥95% of P. aeruginosa infections in seriously ill patients at risk of having an MDR pathogen. Ceftolozane is an antipseudomonal cephalosporin, combined with the ß-lactamase inhibitor tazobactam. Ceftolozane-tazobactam is approved for treatment of complicated urinary tract infections and complicated intra-abdominal infections. A phase 3 clinical trial for the treatment of hospital-acquired pneumonia including ventilator-associated pneumoniae was recently completed. We compared the in vitro susceptibility rate of ceftolozane-tazobactam with the cumulative susceptibility rates of antibiotic combinations commonly used against P. aeruginosa. METHODS: Isolates were collected from intensive care unit patients hospitalized in 32 US hospitals from 2011 to 2017. The susceptibilities of 1543 P. aeruginosa isolates from bloodstream infections (198 isolates, 12.8%) or pneumonia (1345 isolates, 87.2%) were determined for ceftolozane-tazobactam and comparators. RESULTS: The most active antimicrobials were colistin (99.4% susceptible), amikacin (98.1% susceptible), and ceftolozane-tazobactam (96.5% susceptible). The susceptibilities to other antipseudomonal ß-lactams and fluoroquinolones were <84%. A cumulative susceptibility of ≥95% was reached for cefepime, ceftazidime, meropenem, and piperacillin-tazobactam only in combination with amikacin due to the lower susceptibilities of gentamicin, ciprofloxacin, and levofloxacin. Monotherapies that exceeded 95% were ceftolozane-tazobactam, amikacin, and colistin. CONCLUSIONS: Ceftolozane-tazobactam monotherapy is likely to be active against more isolates than a combination of another ß-lactam and a fluoroquinolone or gentamicin for serious P. aeruginosa infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA