Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 576(7787): 423-428, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31853081

RESUMO

Magnetically doped topological insulators enable the quantum anomalous Hall effect (QAHE), which provides quantized edge states for lossless charge-transport applications1-8. The edge states are hosted by a magnetic energy gap at the Dirac point2, but hitherto all attempts to observe this gap directly have been unsuccessful. Observing the gap is considered to be essential to overcoming the limitations of the QAHE, which so far occurs only at temperatures that are one to two orders of magnitude below the ferromagnetic Curie temperature, TC (ref. 8). Here we use low-temperature photoelectron spectroscopy to unambiguously reveal the magnetic gap of Mn-doped Bi2Te3, which displays ferromagnetic out-of-plane spin texture and opens up only below TC. Surprisingly, our analysis reveals large gap sizes at 1 kelvin of up to 90 millielectronvolts, which is five times larger than theoretically predicted9. Using multiscale analysis we show that this enhancement is due to a remarkable structure modification induced by Mn doping: instead of a disordered impurity system, a self-organized alternating sequence of MnBi2Te4 septuple and Bi2Te3 quintuple layers is formed. This enhances the wavefunction overlap and size of the magnetic gap10. Mn-doped Bi2Se3 (ref. 11) and Mn-doped Sb2Te3 form similar heterostructures, but for Bi2Se3 only a nonmagnetic gap is formed and the magnetization is in the surface plane. This is explained by the smaller spin-orbit interaction by comparison with Mn-doped Bi2Te3. Our findings provide insights that will be crucial in pushing lossless transport in topological insulators towards room-temperature applications.

2.
Phys Rev Lett ; 130(23): 236402, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354399

RESUMO

Three-dimensional Dirac semimetals are an exotic state of matter that continue to attract increasing attention due to the unique properties of their low-energy excitations. Here, by performing angle-resolved photoemission spectroscopy, we investigate the electronic structure of Au_{2}Pb across a wide temperature range. Our experimental studies on the (111)-cleaved surface unambiguously demonstrate that Au_{2}Pb is a three-dimensional Dirac semimetal characterized by the presence of a bulk Dirac cone projected off-center of the bulk Brillouin zone (BZ), in agreement with our theoretical calculations. Unusually, we observe that the bulk Dirac cone is significantly shifted by more than 0.4 eV to higher binding energies with reducing temperature, eventually going through a Lifshitz transition. The pronounced downward shift is qualitatively reproduced by our calculations indicating that an enhanced orbital overlap upon compression of the lattice, which preserves C_{4} rotational symmetry, is the main driving mechanism for the Lifshitz transition. These findings not only broaden the range of currently known materials exhibiting three-dimensional Dirac phases, but also show a viable mechanism by which it could be possible to switch on and off the contribution of the degeneracy point to electron transport without external doping.


Assuntos
Chumbo , Espectroscopia Fotoeletrônica , Temperatura
3.
Phys Rev Lett ; 119(10): 106602, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28949185

RESUMO

Negative longitudinal magnetoresistance (NLMR) is shown to occur in topological materials in the extreme quantum limit, when a magnetic field is applied parallel to the excitation current. We perform pulsed and dc field measurements on Pb_{1-x}Sn_{x}Se epilayers where the topological state can be chemically tuned. The NLMR is observed in the topological state, but is suppressed and becomes positive when the system becomes trivial. In a topological material, the lowest N=0 conduction Landau level disperses down in energy as a function of increasing magnetic field, while the N=0 valence Landau level disperses upwards. This anomalous behavior is shown to be responsible for the observed NLMR. Our work provides an explanation of the outstanding question of NLMR in topological insulators and establishes this effect as a possible hallmark of bulk conduction in topological matter.

4.
Phys Rev Lett ; 110(21): 216801, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23745908

RESUMO

The helical Dirac fermions at the surface of topological insulators show a strong circular dichroism which has been explained as being due to either the initial-state spin angular momentum, the initial-state orbital angular momentum, or the handedness of the experimental setup. All of these interpretations conflict with our data from Bi(2)Te(3) which depend on the photon energy and show several sign changes. Our one-step photoemission calculations coupled to ab initio theory confirm the sign change and assign the dichroism to a final-state effect. Instead, the spin polarization of the photoelectrons excited with linearly polarized light remains a reliable probe for the spin in the initial state.

5.
Phys Rev Lett ; 108(6): 066804, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22401103

RESUMO

We reveal a giant Rashba effect (α(R)≈1.3 eV Å) on a surface state of Ir(111) by angle-resolved photoemission and by density functional theory. It is demonstrated that the existence of the surface state, its spin polarization, and the size of its Rashba-type spin-orbit splitting remain unaffected when Ir is covered with graphene. The graphene protection is, in turn, sufficient for the spin-split surface state to survive in ambient atmosphere. We discuss this result along with indications for a topological protection of the surface state.

6.
Phys Rev Lett ; 108(25): 256810, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-23004639

RESUMO

We study the effect of Fe impurities deposited on the surface of the topological insulator Bi(2)Se(3) by means of core-level and angle-resolved photoelectron spectroscopy. The topological surface state reveals surface electron doping when the Fe is deposited at room temperature and hole doping with increased linearity when deposited at low temperature (~8 K). We show that in both cases the surface state remains intact and gapless, in contradiction to current belief. Our results suggest that the surface state can very well exist at functional interfaces with ferromagnets in future devices.

7.
Nanoscale ; 14(25): 9124-9133, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35723255

RESUMO

Artificial graphene based on molecular networks enables the creation of novel 2D materials with unique electronic and topological properties. Landau quantization has been demonstrated by CO molecules arranged on the two-dimensional electron gas on Cu(111) and the observation of electron quantization may succeed based on the created gauge fields. Recently, it was reported that instead of individual manipulation of CO molecules, simple deposition of nonpolar C60 molecules on Cu(111) and Au(111) produces artificial graphene as evidenced by Dirac cones in photoemission spectroscopy. Here, we show that C60-induced Dirac cones on Au(111) have a different origin. We argue that those are related to umklapp diffraction of surface electronic bands of Au on the molecular grid of C60 in the final state of photoemission. We test this alternative explanation by precisely probing the dimensionality of the observed conical features in the photoemission spectra, by varying both the incident photon energy and the degree of charge doping via alkali adatoms. Using density functional theory calculations and spin-resolved photoemission we reveal the origin of the replicating Au(111) bands and resolve them as deep leaky surface resonances derived from the bulk Au sp-band residing at the boundary of its surface projection. We also discuss the manifold nature of these resonances which gives rise to an onion-like Fermi surface of Au(111).

8.
Phys Rev Lett ; 104(11): 117601, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20366500

RESUMO

High-resolution photoemission spectroscopy and ab initio calculations have been employed to analyze the onset and progression of d-sp hybridization in Fe impurities deposited on alkali metal films. The interplay between delocalization, mediated by the free-electron environment, and Coulomb interaction among d electrons gives rise to complex electronic configurations. The multiplet structure of a single Fe atom evolves and gradually dissolves into a quasiparticle peak near the Fermi level with increasing host electron density. The effective multiorbital impurity problem within the exact diagonalization scheme describes the whole range of hybridizations.

9.
Phys Rev Lett ; 103(26): 267203, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20366340

RESUMO

The strength of electronic correlation effects in the spin-dependent electronic structure of ferromagnetic bcc Fe(110) has been investigated by means of spin and angle-resolved photoemission spectroscopy. The experimental results are compared to theoretical calculations within the three-body scattering approximation and within the dynamical mean-field theory, together with one-step model calculations of the photoemission process. This comparison indicates that the present state of the art many-body calculations, although improving the description of correlation effects in Fe, give too small mass renormalizations and scattering rates thus demanding more refined many-body theories including nonlocal fluctuations.

10.
Sci Adv ; 4(11): eaau0059, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30430134

RESUMO

We propose a novel mechanism of flat band formation based on the relative biasing of only one sublattice against other sublattices in a honeycomb lattice bilayer. The mechanism allows modification of the band dispersion from parabolic to "Mexican hat"-like through the formation of a flattened band. The mechanism is well applicable for bilayer graphene-both doped and undoped. By angle-resolved photoemission from bilayer graphene on SiC, we demonstrate the possibility of realizing this extremely flattened band (< 2-meV dispersion), which extends two-dimensionally in a k-space area around the K ¯ point and results in a disk-like constant energy cut. We argue that our two-dimensional flat band model and the experimental results have the potential to contribute to achieving superconductivity of graphene- or graphite-based systems at elevated temperatures.

11.
Nat Commun ; 9(1): 517, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410418

RESUMO

SmB6 is predicted to be the first member of the intersection of topological insulators and Kondo insulators, strongly correlated materials in which the Fermi level lies in the gap of a many-body resonance that forms by hybridization between localized and itinerant states. While robust, surface-only conductivity at low temperature and the observation of surface states at the expected high symmetry points appear to confirm this prediction, we find both surface states at the (100) surface to be topologically trivial. We find the [Formula: see text] state to appear Rashba split and explain the prominent [Formula: see text] state by a surface shift of the many-body resonance. We propose that the latter mechanism, which applies to several crystal terminations, can explain the unusual surface conductivity. While additional, as yet unobserved topological surface states cannot be excluded, our results show that a firm connection between the two material classes is still outstanding.

12.
Sci Rep ; 7(1): 3353, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28611416

RESUMO

One of the most promising platforms for spintronics and topological quantum computation is the two-dimensional electron gas (2DEG) with strong spin-orbit interaction and out-of-plane ferromagnetism. In proximity to an s-wave superconductor, such 2DEG may be driven into a topologically non-trivial superconducting phase, predicted to support zero-energy Majorana fermion modes. Using angle-resolved photoemission spectroscopy and ab initio calculations, we study the 2DEG at the surface of the vanadium-doped polar semiconductor with a giant Rashba-type splitting, BiTeI. We show that the vanadium-induced magnetization in the 2DEG breaks time-reversal symmetry, lifting Kramers degeneracy of the Rashba-split surface state at the Brillouin zone center via formation of a huge gap of about 90 meV. As a result, the constant energy contour inside the gap consists of only one circle with spin-momentum locking. These findings reveal a great potential of the magnetically-doped semiconductors with a giant Rashba-type splitting for realization of novel states of matter.

13.
Nat Commun ; 7: 10559, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26892831

RESUMO

Magnetic doping is expected to open a band gap at the Dirac point of topological insulators by breaking time-reversal symmetry and to enable novel topological phases. Epitaxial (Bi(1-x)Mn(x))2Se3 is a prototypical magnetic topological insulator with a pronounced surface band gap of ∼100 meV. We show that this gap is neither due to ferromagnetic order in the bulk or at the surface nor to the local magnetic moment of the Mn, making the system unsuitable for realizing the novel phases. We further show that Mn doping does not affect the inverted bulk band gap and the system remains topologically nontrivial. We suggest that strong resonant scattering processes cause the gap at the Dirac point and support this by the observation of in-gap states using resonant photoemission. Our findings establish a mechanism for gap opening in topological surface states which challenges the currently known conditions for topological protection.

14.
Nat Commun ; 6: 7610, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26212127

RESUMO

Spin and pseudospin in graphene are known to interact under enhanced spin-orbit interaction giving rise to an in-plane Rashba spin texture. Here we show that Au-intercalated graphene on Fe(110) displays a large (∼230 meV) bandgap with out-of-plane hedgehog-type spin reorientation around the gapped Dirac point. We identify two causes responsible. First, a giant Rashba effect (∼70 meV splitting) away from the Dirac point and, second, the breaking of the six-fold graphene symmetry at the interface. This is demonstrated by a strong one-dimensional anisotropy of the graphene dispersion imposed by the two-fold-symmetric (110) substrate. Surprisingly, the graphene Fermi level is systematically tuned by the Au concentration and can be moved into the bandgap. We conclude that the out-of-plane spin texture is not only of fundamental interest but can be tuned at the Fermi level as a model for electrical gating of spin in a spintronic device.

15.
Phys Rev Lett ; 85(12): 2561-4, 2000 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-10978107

RESUMO

Au chain structures have been prepared on Ni(110). Au6 s,p-derived features in photoemission spectra are identified as quantum-wire states due to their strong dispersion along the chains and absence of dispersion perpendicular to the chains in agreement with our ab initio calculation of the electronic structure. Spin analysis reveals that the states have minority-spin character showing that the confinement of electrons in the chain structure depends on the electron spin.

16.
Nat Commun ; 3: 1232, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23187632

RESUMO

Graphene in spintronics is predominantly considered for spin current leads of high performance due to weak intrinsic spin-orbit coupling of the graphene π electrons. Externally induced large spin-orbit coupling opens the possibility of using graphene in active elements of spintronic devices such as the Das-Datta spin field-effect transistor. Here we show that Au intercalation at the graphene-Ni interface creates a giant spin-orbit splitting (~100 meV) of the graphene Dirac cone up to the Fermi energy. Photoelectron spectroscopy reveals the hybridization with Au 5d states as the source for this giant splitting. An ab initio model of the system shows a Rashba-split spectrum around the Dirac point of graphene. A sharp graphene-Au interface at the equilibrium distance accounts for only ~10 meV spin-orbit splitting and enhancement is due to the Au atoms in the hollow position that get closer to graphene and do not break the sublattice symmetry.

17.
19.
Phys Rev B Condens Matter ; 47(19): 13051-13054, 1993 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-10005524
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA