Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(18): 4597-4611, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34478657

RESUMO

We explore the utility of bioengineered human tissues-individually or connected into physiological units-for biological research. While much smaller and simpler than their native counterparts, these tissues are complex enough to approximate distinct tissue phenotypes: molecular, structural, and functional. Unlike organoids, which form spontaneously and recapitulate development, "organs-on-a-chip" are engineered to display some specific functions of whole organs. Looking back, we discuss the key developments of this emerging technology. Thinking forward, we focus on the challenges faced to fully establish, validate, and utilize the fidelity of these models for biological research.


Assuntos
Dispositivos Lab-On-A-Chip , Modelos Biológicos , Pesquisa , Animais , Engenharia Celular , Microambiente Celular , Humanos , Engenharia Tecidual
2.
Cell ; 176(4): 913-927.e18, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30686581

RESUMO

Tissue engineering using cardiomyocytes derived from human pluripotent stem cells holds a promise to revolutionize drug discovery, but only if limitations related to cardiac chamber specification and platform versatility can be overcome. We describe here a scalable tissue-cultivation platform that is cell source agnostic and enables drug testing under electrical pacing. The plastic platform enabled on-line noninvasive recording of passive tension, active force, contractile dynamics, and Ca2+ transients, as well as endpoint assessments of action potentials and conduction velocity. By combining directed cell differentiation with electrical field conditioning, we engineered electrophysiologically distinct atrial and ventricular tissues with chamber-specific drug responses and gene expression. We report, for the first time, engineering of heteropolar cardiac tissues containing distinct atrial and ventricular ends, and we demonstrate their spatially confined responses to serotonin and ranolazine. Uniquely, electrical conditioning for up to 8 months enabled modeling of polygenic left ventricular hypertrophy starting from patient cells.


Assuntos
Miócitos Cardíacos/citologia , Técnicas de Cultura de Tecidos/instrumentação , Engenharia Tecidual/métodos , Potenciais de Ação , Diferenciação Celular , Células Cultivadas , Fenômenos Eletrofisiológicos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/citologia , Técnicas de Cultura de Tecidos/métodos
3.
Arterioscler Thromb Vasc Biol ; 43(12): 2241-2255, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823265

RESUMO

Vascular diseases, such as atherosclerosis and thrombosis, are major causes of morbidity and mortality worldwide. Traditional in vitro models for studying vascular diseases have limitations, as they do not fully recapitulate the complexity of the in vivo microenvironment. Organ-on-a-chip systems have emerged as a promising approach for modeling vascular diseases by incorporating multiple cell types, mechanical and biochemical cues, and fluid flow in a microscale platform. This review provides an overview of recent advancements in engineering organ-on-a-chip systems for modeling vascular diseases, including the use of microfluidic channels, ECM (extracellular matrix) scaffolds, and patient-specific cells. We also discuss the limitations and future perspectives of organ-on-a-chip for modeling vascular diseases.


Assuntos
Sistemas Microfisiológicos , Doenças Vasculares , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica , Matriz Extracelular/metabolismo , Doenças Vasculares/terapia , Doenças Vasculares/metabolismo
5.
Biomacromolecules ; 24(11): 4511-4531, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37639715

RESUMO

Cardiovascular tissue constructs provide unique design requirements due to their functional responses to substrate mechanical properties and cyclic stretching behavior of cardiac tissue that requires the use of durable elastic materials. Given the diversity of polyester synthesis approaches, an opportunity exists to develop a new class of biocompatible, elastic, and immunomodulatory cardiovascular polymers. Furthermore, elastomeric polyester materials have the capability to provide tailored biomechanical synergy with native tissue and hence reduce inflammatory response in vivo and better support tissue maturation in vitro. In this review, we highlight underlying chemistry and design strategies of polyester elastomers optimized for cardiac tissue scaffolds. The major advantages of these materials such as their tunable elasticity, desirable biodegradation, and potential for incorporation of bioactive compounds are further expanded. Unique fabrication methods using polyester materials such as micromolding, 3D stamping, electrospinning, laser ablation, and 3D printing are discussed. Moreover, applications of these biomaterials in cardiovascular organ-on-a-chip devices and patches are analyzed. Finally, we outline unaddressed challenges in the field that need further study to enable the impactful translation of soft polyesters to clinical applications.


Assuntos
Poliésteres , Engenharia Tecidual , Engenharia Tecidual/métodos , Poliésteres/química , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Elasticidade , Dispositivos Lab-On-A-Chip
6.
J Mol Cell Cardiol ; 160: 97-110, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34216608

RESUMO

Angiotensin II (Ang II) presents a critical mediator in various pathological conditions such as non-genetic cardiomyopathy. Osmotic pump infusion in rodents is a commonly used approach to model cardiomyopathy associated with Ang II. However, profound differences in electrophysiology and pharmacokinetics between rodent and human cardiomyocytes may limit predictability of animal-based experiments. This study investigates the application of an Organ-on-a-chip (OOC) system in modeling Ang II-induced progressive cardiomyopathy. The disease model is constructed to recapitulate myocardial response to Ang II in a temporal manner. The long-term tissue cultivation and non-invasive functional readouts enable monitoring of both acute and chronic cardiac responses to Ang II stimulation. Along with mapping of cytokine secretion and proteomic profiles, this model presents an opportunity to quantitatively measure the dynamic pathological changes that could not be otherwise identified in animals. Further, we present this model as a testbed to evaluate compounds that target Ang II-induced cardiac remodeling. Through assessing the effects of losartan, relaxin, and saracatinib, the drug screening data implicated multifaceted cardioprotective effects of relaxin in restoring contractile function and reducing fibrotic remodeling. Overall, this study provides a controllable platform where cardiac activities can be explicitly observed and tested over the pathological process. The facile and high-content screening can facilitate the evaluation of potential drug candidates in the pre-clinical stage.


Assuntos
Angiotensina II/efeitos adversos , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Animais , Cardiomiopatias/patologia , Cardiotônicos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Avaliação Pré-Clínica de Medicamentos/métodos , Fibroblastos/metabolismo , Fibrose , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Dispositivos Lab-On-A-Chip , Losartan/farmacologia , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Projetos Piloto , Proteoma , Proteômica/métodos , Proteínas Recombinantes/farmacologia , Relaxina/farmacologia , Remodelação Ventricular/efeitos dos fármacos
7.
Arterioscler Thromb Vasc Biol ; 40(5): 1325-1339, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32212852

RESUMO

OBJECTIVE: Elastin gene deletion or mutation leads to arterial stenoses due to vascular smooth muscle cell (SMC) proliferation. Human induced pluripotent stem cells-derived SMCs can model the elastin insufficiency phenotype in vitro but show only partial rescue with rapamycin. Our objective was to identify drug candidates with superior efficacy in rescuing the SMC phenotype in elastin insufficiency patients. Approach and Results: SMCs generated from induced pluripotent stem cells from 5 elastin insufficiency patients with severe recurrent vascular stenoses (3 Williams syndrome and 2 elastin mutations) were phenotypically immature, hyperproliferative, poorly responsive to endothelin, and exerted reduced tension in 3-dimensional smooth muscle biowires. Elastin mRNA and protein were reduced in SMCs from patients compared to healthy control SMCs. Fourteen drug candidates were tested on patient SMCs. Of the mammalian target of rapamycin inhibitors studied, everolimus restored differentiation, rescued proliferation, and improved endothelin-induced calcium flux in all patient SMCs except one Williams syndrome. Of the calcium channel blockers, verapamil increased SMC differentiation and reduced proliferation in Williams syndrome patient cells but not in elastin mutation patients and had no effect on endothelin response. Combination treatment with everolimus and verapamil was not superior to everolimus alone. Other drug candidates had limited efficacy. CONCLUSIONS: Everolimus caused the most consistent improvement in SMC differentiation, proliferation and in SMC function in patients with both syndromic and nonsyndromic elastin insufficiency, and offers the best candidate for drug repurposing for treatment of elastin insufficiency associated vasculopathy.


Assuntos
Arteriopatias Oclusivas/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Elastina/deficiência , Everolimo/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Síndrome de Williams/metabolismo , Arteriopatias Oclusivas/genética , Arteriopatias Oclusivas/metabolismo , Arteriopatias Oclusivas/patologia , Estudos de Casos e Controles , Linhagem Celular , Constrição Patológica , Elastina/genética , Feminino , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Lactente , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Mutação , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fenótipo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Síndrome de Williams/complicações , Síndrome de Williams/genética
8.
Adv Funct Mater ; 30(48)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33692660

RESUMO

Tumor progression relies heavily on the interaction between the neoplastic epithelial cells and their surrounding stromal partners. This cell cross-talk affects stromal development, and ultimately the heterogeneity impacts drug efflux and efficacy. To mimic this evolving paradigm, we have micro-engineered a three-dimensional (3D) vascularized pancreatic adenocarcinoma tissue in a tri-culture system composed of patient derived pancreatic organoids, primary human fibroblasts and endothelial cells on a perfusable InVADE platform situated in a 96-well plate. Uniquely, through synergistic engineering we combined the benefits of cellular fidelity of patient tumor derived organoids with the addressability of a plastic organ-on-a-chip platform. Validation of this platform included demonstrating the growth of pancreatic tumor organoids by monitoring the change in metabolic activity of the tissue. Investigation of tumor microenvironmental behavior highlighted the role of fibroblasts in symbiosis with patient organoid cells, resulting in a six-fold increase of collagen deposition and a corresponding increase in tissue stiffness in comparison to fibroblast free controls. The value of a perfusable vascular network was evident in drug screening, as perfusion of gemcitabine into a stiffened matrix did not show the dose-dependent effects on tumor viability as those under static conditions. These findings demonstrate the importance of studying the dynamic synergistic relationship between patient cells with stromal fibroblasts, in a 3D perfused vascular network, to accurately understand and recapitulate the tumor microenvironment.

9.
Circ Res ; 123(2): 244-265, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29976691

RESUMO

Some of the most significant leaps in the history of modern civilization-the development of article in China, the steam engine, which led to the European industrial revolution, and the era of computers-have occurred when science converged with engineering. Recently, the convergence of human pluripotent stem cell technology with biomaterials and bioengineering have launched a new medical innovation: functional human engineered tissue, which promises to revolutionize the treatment of failing organs including most critically, the heart. This compendium covers recent, state-of-the-art developments in the fields of cardiovascular tissue engineering, as well as the needs and challenges associated with the clinical use of these technologies. We have not attempted to provide an exhaustive review in stem cell biology and cardiac cell therapy; many other important and influential reports are certainly merit but already been discussed in several recent reviews. Our scope is limited to the engineered tissues that have been fabricated to repair or replace components of the heart (eg, valves, vessels, contractile tissue) that have been functionally compromised by diseases or developmental abnormalities. In particular, we have focused on using an engineered myocardial tissue to mitigate deficiencies in contractile function.


Assuntos
Doenças Cardiovasculares/terapia , Medicina Regenerativa/métodos , Transplante de Células-Tronco/métodos , Engenharia Tecidual/métodos , Animais , Ensaios Clínicos como Assunto , Humanos , Transplante de Células-Tronco/efeitos adversos
11.
Proc Natl Acad Sci U S A ; 113(40): E5792-E5801, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27647919

RESUMO

There is a clinical need for new, more effective treatments for chronic wounds in diabetic patients. Lack of epithelial cell migration is a hallmark of nonhealing wounds, and diabetes often involves endothelial dysfunction. Therefore, targeting re-epithelialization, which mainly involves keratinocytes, may improve therapeutic outcomes of current treatments. In this study, we present an integrin-binding prosurvival peptide derived from angiopoietin-1, QHREDGS (glutamine-histidine-arginine-glutamic acid-aspartic acid-glycine-serine), as a therapeutic candidate for diabetic wound treatments by demonstrating its efficacy in promoting the attachment, survival, and collective migration of human primary keratinocytes and the activation of protein kinase B Akt and MAPKp42/44 The QHREDGS peptide, both as a soluble supplement and when immobilized in a substrate, protected keratinocytes against hydrogen peroxide stress in a dose-dependent manner. Collective migration of both normal and diabetic human keratinocytes was promoted on chitosan-collagen films with the immobilized QHREDGS peptide. The clinical relevance was demonstrated further by assessing the chitosan-collagen hydrogel with immobilized QHREDGS in full-thickness excisional wounds in a db/db diabetic mouse model; QHREDGS showed significantly accelerated and enhanced wound closure compared with a clinically approved collagen wound dressing, peptide-free hydrogel, or blank wound controls. The accelerated wound closure resulted primarily from faster re-epithelialization and increased formation of granulation tissue. There were no observable differences in blood vessel density or size within the wound; however, the total number of blood vessels was greater in the peptide-hydrogel-treated wounds. Together, these findings indicate that QHREDGS is a promising candidate for wound-healing interventions that enhance re-epithelialization and the formation of granulation tissue.


Assuntos
Diabetes Mellitus Experimental/patologia , Hidrogéis/farmacologia , Peptídeos/farmacologia , Reepitelização , Sequência de Aminoácidos , Animais , Adesão Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quitosana/farmacologia , Colágeno/farmacologia , Humanos , Peróxido de Hidrogênio/toxicidade , Proteínas Imobilizadas/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Peptídeos/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reepitelização/efeitos dos fármacos
12.
Nat Mater ; 16(10): 1038-1046, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28805824

RESUMO

Despite great progress in engineering functional tissues for organ repair, including the heart, an invasive surgical approach is still required for their implantation. Here, we designed an elastic and microfabricated scaffold using a biodegradable polymer (poly(octamethylene maleate (anhydride) citrate)) for functional tissue delivery via injection. The scaffold's shape memory was due to the microfabricated lattice design. Scaffolds and cardiac patches (1 cm × 1 cm) were delivered through an orifice as small as 1 mm, recovering their initial shape following injection without affecting cardiomyocyte viability and function. In a subcutaneous syngeneic rat model, injection of cardiac patches was equivalent to open surgery when comparing vascularization, macrophage recruitment and cell survival. The patches significantly improved cardiac function following myocardial infarction in a rat, compared with the untreated controls. Successful minimally invasive delivery of human cell-derived patches to the epicardium, aorta and liver in a large-animal (porcine) model was achieved.


Assuntos
Plásticos Biodegradáveis/química , Células Imobilizadas , Teste de Materiais , Miócitos Cardíacos , Alicerces Teciduais/química , Aloenxertos , Animais , Aorta/metabolismo , Aorta/patologia , Aorta/cirurgia , Sobrevivência Celular , Células Imobilizadas/metabolismo , Células Imobilizadas/patologia , Células Imobilizadas/transplante , Elasticidade , Xenoenxertos , Humanos , Fígado/metabolismo , Fígado/patologia , Fígado/cirurgia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/cirurgia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/transplante , Pericárdio/metabolismo , Pericárdio/patologia , Pericárdio/cirurgia , Ratos , Suínos
13.
Nat Mater ; 15(6): 669-78, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26950595

RESUMO

We report the fabrication of a scaffold (hereafter referred to as AngioChip) that supports the assembly of parenchymal cells on a mechanically tunable matrix surrounding a perfusable, branched, three-dimensional microchannel network coated with endothelial cells. The design of AngioChip decouples the material choices for the engineered vessel network and for cell seeding in the parenchyma, enabling extensive remodelling while maintaining an open-vessel lumen. The incorporation of nanopores and micro-holes in the vessel walls enhances permeability, and permits intercellular crosstalk and extravasation of monocytes and endothelial cells on biomolecular stimulation. We also show that vascularized hepatic tissues and cardiac tissues engineered by using AngioChips process clinically relevant drugs delivered through the vasculature, and that millimetre-thick cardiac tissues can be engineered in a scalable manner. Moreover, we demonstrate that AngioChip cardiac tissues implanted with direct surgical anastomosis to the femoral vessels of rat hindlimbs establish immediate blood perfusion.


Assuntos
Materiais Biocompatíveis/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Dispositivos Lab-On-A-Chip , Fígado/metabolismo , Monócitos/metabolismo , Miocárdio/citologia , Engenharia Tecidual , Alicerces Teciduais/química , Anastomose Cirúrgica , Animais , Fêmur/irrigação sanguínea , Fêmur/citologia , Fêmur/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Fígado/irrigação sanguínea , Fígado/citologia , Monócitos/citologia , Miocárdio/metabolismo , Porosidade , Ratos , Ratos Endogâmicos Lew , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
14.
Clin Sci (Lond) ; 131(13): 1393-1404, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28645929

RESUMO

Engineering functional cardiac tissues remains an ongoing significant challenge due to the complexity of the native environment. However, our growing understanding of key parameters of the in vivo cardiac microenvironment and our ability to replicate those parameters in vitro are resulting in the development of increasingly sophisticated models of engineered cardiac tissues (ECT). This review examines some of the most relevant parameters that may be applied in culture leading to higher fidelity cardiac tissue models. These include the biochemical composition of culture media and cardiac lineage specification, co-culture conditions, electrical and mechanical stimulation, and the application of hydrogels, various biomaterials, and scaffolds. The review will also summarize some of the recent functional human tissue models that have been developed for in vivo and in vitro applications. Ultimately, the creation of sophisticated ECT that replicate native structure and function will be instrumental in advancing cell-based therapeutics and in providing advanced models for drug discovery and testing.


Assuntos
Miocárdio/citologia , Miócitos Cardíacos/citologia , Engenharia Tecidual/métodos , Células Cultivadas , Técnicas de Cocultura , Estimulação Elétrica/métodos , Humanos , Hidrogéis , Modelos Cardiovasculares , Miócitos Cardíacos/fisiologia , Estimulação Física/métodos , Alicerces Teciduais
15.
Biochem Biophys Res Commun ; 473(3): 698-703, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-26626076

RESUMO

Wingless-related integration site (Wnt) signaling has proven to be a fundamental mechanism in cardiovascular development as well as disease. Understanding its particular role in heart formation has helped to develop pluripotent stem cell differentiation protocols that produce relatively pure cardiomyocyte populations. The resultant cardiomyocytes have been used to generate heart tissue for pharmaceutical testing, and to study physiological and disease states. Such protocols in combination with induced pluripotent stem cell technology have yielded patient-derived cardiomyocytes that exhibit some of the hallmarks of cardiovascular disease and are therefore being used to model disease states. While FDA approval of new treatments typically requires animal experiments, the burgeoning field of tissue engineering could act as a replacement. This would necessitate the generation of reproducible three-dimensional cardiac tissues in a well-controlled environment, which exhibit native heart properties, such as cellular density, composition, extracellular matrix composition, and structure-function. Such tissues could also enable the further study of Wnt signaling. Furthermore, as Wnt signaling has been found to have a mechanistic role in cardiac pathophysiology, e.g. heart attack, hypertrophy, atherosclerosis, and aortic stenosis, its strategic manipulation could provide a means of generating reproducible and specific, physiological and pathological cardiac models.


Assuntos
Regulação da Expressão Gênica , Cardiopatias/terapia , Coração/fisiopatologia , Miocárdio/metabolismo , Engenharia Tecidual/métodos , Proteínas Wnt/metabolismo , Animais , Estenose da Valva Aórtica/fisiopatologia , Diferenciação Celular , Coração/fisiologia , Humanos , Transdução de Sinais , Suínos , beta Catenina/metabolismo
16.
Nat Methods ; 10(8): 781-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23793239

RESUMO

Directed differentiation protocols enable derivation of cardiomyocytes from human pluripotent stem cells (hPSCs) and permit engineering of human myocardium in vitro. However, hPSC-derived cardiomyocytes are reflective of very early human development, limiting their utility in the generation of in vitro models of mature myocardium. Here we describe a platform that combines three-dimensional cell cultivation with electrical stimulation to mature hPSC-derived cardiac tissues. We used quantitative structural, molecular and electrophysiological analyses to explain the responses of immature human myocardium to electrical stimulation and pacing. We demonstrated that the engineered platform allows for the generation of three-dimensional, aligned cardiac tissues (biowires) with frequent striations. Biowires submitted to electrical stimulation had markedly increased myofibril ultrastructural organization, elevated conduction velocity and improved both electrophysiological and Ca(2+) handling properties compared to nonstimulated controls. These changes were in agreement with cardiomyocyte maturation and were dependent on the stimulation rate.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Miocárdio/citologia , Miócitos Cardíacos/citologia , Engenharia Tecidual/métodos , Diferenciação Celular/fisiologia , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Humanos , Microscopia Eletrônica de Transmissão , Miocárdio/ultraestrutura
17.
Methods ; 84: 44-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25952946

RESUMO

In order to provide an instructive microenvironment to facilitate cellular behaviors and tissue regeneration, biomaterials can be modified by immobilizing growth factors or peptides. We describe here our procedure for modification of collagen-based biomaterials, both porous scaffolds and hydrogel systems, with growth factors or peptides by covalent immobilization. Characterizations of the modified biomaterials (immobilization efficiency, release profile, morphology, mechanical strength, and rheology) and in vitro testing with cells are also discussed.


Assuntos
Materiais Biocompatíveis/química , Colágeno/química , Engenharia Tecidual/métodos , Técnicas de Cultura de Células/métodos , Quitosana/química , Humanos , Hidrogéis/química , Proteínas Imobilizadas/administração & dosagem , Proteínas Imobilizadas/química , Proteínas Imobilizadas/farmacocinética , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacocinética , Teste de Materiais , Porosidade , Medicina Regenerativa/métodos , Reologia , Resistência à Tração
18.
Proc Natl Acad Sci U S A ; 110(49): E4698-707, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24255110

RESUMO

Access to robust and information-rich human cardiac tissue models would accelerate drug-based strategies for treating heart disease. Despite significant effort, the generation of high-fidelity adult-like human cardiac tissue analogs remains challenging. We used computational modeling of tissue contraction and assembly mechanics in conjunction with microfabricated constraints to guide the design of aligned and functional 3D human pluripotent stem cell (hPSC)-derived cardiac microtissues that we term cardiac microwires (CMWs). Miniaturization of the platform circumvented the need for tissue vascularization and enabled higher-throughput image-based analysis of CMW drug responsiveness. CMW tissue properties could be tuned using electromechanical stimuli and cell composition. Specifically, controlling self-assembly of 3D tissues in aligned collagen, and pacing with point stimulation electrodes, were found to promote cardiac maturation-associated gene expression and in vivo-like electrical signal propagation. Furthermore, screening a range of hPSC-derived cardiac cell ratios identified that 75% NKX2 Homeobox 5 (NKX2-5)+ cardiomyocytes and 25% Cluster of Differentiation 90 OR (CD90)+ nonmyocytes optimized tissue remodeling dynamics and yielded enhanced structural and functional properties. Finally, we demonstrate the utility of the optimized platform in a tachycardic model of arrhythmogenesis, an aspect of cardiac electrophysiology not previously recapitulated in 3D in vitro hPSC-derived cardiac microtissue models. The design criteria identified with our CMW platform should accelerate the development of predictive in vitro assays of human heart tissue function.


Assuntos
Microambiente Celular/fisiologia , Miocárdio/citologia , Células-Tronco Pluripotentes/citologia , Engenharia Tecidual/métodos , Fenômenos Biomecânicos , Estimulação Elétrica , Análise de Elementos Finitos , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/metabolismo , Humanos , Antígenos Thy-1/metabolismo , Fatores de Transcrição/metabolismo
19.
Proc Natl Acad Sci U S A ; 109(50): E3414-23, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23184971

RESUMO

Vascularization is critical for the survival of engineered tissues in vitro and in vivo. In vivo, angiogenesis involves endothelial cell proliferation and sprouting followed by connection of extended cellular processes and subsequent lumen propagation through vacuole fusion. We mimicked this process in engineering an organized capillary network anchored by an artery and a vein. The network was generated by inducing directed capillary sprouting from vascular explants on micropatterned substrates containing thymosin ß4-hydrogel. The capillary outgrowths connected between the parent explants by day 21, a process that was accelerated to 14 d by application of soluble VEGF and hepatocyte growth factor. Confocal microscopy and transmission electron microscopy indicated the presence of tubules with lumens formed by endothelial cells expressing CD31, VE-cadherin, and von Willebrand factor. Cardiac tissues engineered around the resulting vasculature exhibited improved functional properties, cell striations, and cell-cell junctions compared with tissues without prevascularization. This approach uniquely allows easy removal of the vasculature from the microfabricated substrate and easy seeding of the tissue specific cell types in the parenchymal space.


Assuntos
Prótese Vascular , Microvasos/crescimento & desenvolvimento , Engenharia Tecidual/métodos , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Fator de Crescimento de Hepatócito/administração & dosagem , Humanos , Hidrogéis , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Microvasos/efeitos dos fármacos , Microvasos/fisiologia , Neovascularização Fisiológica , Perfusão , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ratos , Ratos Sprague-Dawley , Timosina , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Fator de von Willebrand/metabolismo
20.
PLoS One ; 19(3): e0295131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38446773

RESUMO

H9c2 myoblasts are a cell line derived from embryonic rat heart tissue and demonstrate the ability to differentiate to cardiac myotubes upon reduction of the serum concentration (from 10% to 1%) and addition of all-trans retinoic acid in the growth medium. H9c2 cells are increasingly being used as an easy-to-culture proxy for some functions of cardiomyocytes. The cryobiology of cardiac cells including H9c2 myoblasts has not been studied as extensively as that of some cell types. Consequently, it is important to characterize the cryobiological response and systematically develop well-optimized cryopreservation protocols for H9c2 cells to have optimal and consistent viability and functionality after thaw for high quality studies with this cell type. In this work, an interrupted slow cooling protocol (graded freezing) was applied to characterize H9c2 response throughout the cooling profile. Important factors that affect the cell response were examined, and final protocols that provided the highest post-thaw viability are reported. One protocol uses the common cryoprotectant dimethyl sulfoxide combined with hydroxyethyl starch, which will be suitable for applications in which the presence of dimethyl sulfoxide is not an issue; and the other protocol uses glycerol as a substitute when there is a desire to avoid dimethyl sulfoxide. Both protocols achieved comparable post-thaw viabilities (higher than 80%) based on SYTO 13/GelRed flow cytometry results. H9c2 cells cryopreserved by either protocol showed ability to differentiate to cardiac myotubes comparable to fresh (unfrozen) H9c2 cells, and their differentiation to cardiac myotubes was confirmed with i) change in cell morphology, ii) expression of cardiac marker troponin I, and iii) increase in mitochondrial mass.


Assuntos
Mioblastos Cardíacos , Animais , Ratos , Dimetil Sulfóxido/farmacologia , Criopreservação , Mioblastos , Miócitos Cardíacos , Suspensões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA