Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biomacromolecules ; 23(4): 1610-1621, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35041381

RESUMO

A family of thermoresponsive poly(N-isopropylacrylamide) [PNIPAM]-grafted cellulose nanofibers (CNFs) was synthesized via a novel silver-promoted decarboxylative polymerization approach. This method relies on the oxidative decarboxylation of carboxylic acid groups to initiate free radicals on the surface of CNFs. The polymerization reaction employs relatively mild reaction conditions and can be performed in a one-step, one-pot fashion. This rapid reaction forms a C─C bond between CNF and PNIPAM, along with the formation of free polymer in solution. The degree of functionalization (DF) and the amount of PNIPAM grafted can be controlled by the Ag concentration in the reaction. Similar to native bulk PNIPAM, PNIPAM-grafted CNFs (PNIPAM-g-CNFs) show remarkable thermoresponsive properties, albeit exhibiting a slight hysteresis between the heating and cooling stages. Grafting PNIPAM from CNFs changes its cloud point from about 32 to 36 °C, influenced by the hydrophilic nature of CNFs. Unlike physical blending, covalently tethering PNIPAM transforms the originally inert CNFs into thermosensitive biomaterials. The Ag concentration used does not significantly change the cloud point of PNIPAM-g-CNFs, while the cloud point slightly decreases with fiber concentration. Rheological studies demonstrated the sol-gel transition of PNIPAM-g-CNFs and revealed that the storage modulus (G') above cloud point increases with the amount of PNIPAM grafted. The novel chemistry developed paves the way for the polymerization of any vinyl monomer from the surface of CNFs and carbohydrates. This study validates a novel approach to graft PNIPAM from CNFs for the synthesis of new thermoresponsive and transparent hydrogels for a wide range of applications.


Assuntos
Celulose , Nanofibras , Resinas Acrílicas , Nanofibras/química , Polimerização , Prata , Temperatura
2.
Biomacromolecules ; 18(8): 2439-2445, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28665589

RESUMO

Quantification of adsorbed biomolecules (enzymes, proteins) at the cellulose interface is a major challenge in developing eco-friendly biodiagnostics. Here, a novel methodology is developed to visualize and quantify the adsorption of antibody from solution to the cellulose-liquid interface. The concept is to deuterate cellulose by replacing all nonexchangeable hydrogens from the glucose rings with deuterium in order to enhance the scattering contrast between the cellulose film surface and adsorbed antibody molecules. Deuterated cellulose (DC) was obtained from bacterial (Gluconacetobacter xylinus strain) cellulose, which was grown in heavy water (D2O) media with a deuterated glycerol as a carbon source. For comparison, hydrogenated cellulose (HC) was obtained from cellulose acetate. Both HC and DC thin films were prepared on silicon substrate by spin coating. X-ray reflectivity (XR) shows the formation of homogeneous and smooth film. Neutron reflectivity (NR) at the liquid/film interface reveals swelling of the cellulose film by a factor of 2-3× its initial thickness. An Immunoglobulin G (IgG), used as a model antibody, was adsorbed at the liquid-solid interface of cellulose (HC) and deuterated cellulose (DC) films under equilibrium and surface saturation conditions. NR measurements of the IgG antibody layer adsorbed onto the DC film can clearly be visualized, in sharp contrast in comparison to the HC film. The average thickness of the IgG adsorbed layer onto cellulose films is 127 ± 5 Å and a partial monolayer is formed. Visualization and quantification of adsorbed IgG is shown by large difference in scattering length density (SLD) between DC (7.1 × 10-6 Å-2) and IgG (4.1 × 10-6 Å-2) in D2O, which enhanced the scattering contrast in NR. Quartz crystal measurements (QCM-D) were used as a complementary method to NR to quantify the adsorbed IgG over the cellulose interface.


Assuntos
Celulose/análogos & derivados , Imunoglobulina G/química , Membranas Artificiais , Animais , Celulose/química
3.
Phys Chem Chem Phys ; 17(2): 1106-13, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25415596

RESUMO

Self-aggregation of three di-N-alkylated diaza-18-crown-6 ethers (ACEs) was studied in non-polar solvents. The three ACEs differed by the length of the alkyl chain: n-decyl (ACE-10), n-hexadecyl (ACE-16) and n-tetracosane (ACE-24). From the previously reported interfacial tension isotherms, the formation of reverse micelles was expected above ACE concentrations of ∼10(-3) M. However, the water content analysis in conjunction with Dynamic Light Scattering (DLS), Fluorescence Correlation Spectroscopy (FCS) and (1)H NMR Diffusion Ordered Spectroscopy (DOSY) do not provide any clear proof of the existence of aggregates. Only the Small Angle Neutron Scattering (SANS) of concentrated toluene ACE solutions reveals the existence of small reverse micelles (probably ACE dimers forming small cages hosting 1-2 water molecules). On the other hand, spectrophotometric and fluorescence dye dissolution studies using eosin Y, tropaeolin OO and methyl orange suggest that ACEs can dissolve these dyes without requiring the formation of aggregates. This discrepancy was interpreted assuming the dye-ACE complexation as the driving force for dye solubilisation, providing a possible mechanism of reverse hydrotropy ("lipotropy") in non-polar solvents. This example shows that special care should be taken when dye solubilisation is used to probe self-aggregation of an amphiphile in non-polar solvents. The amphiphile-dye complex formation might be responsible for false positive results and the aggregate formation should always be confirmed with other methods.

4.
Langmuir ; 30(21): 6038-46, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24814886

RESUMO

In this work, we report the formation and growth mechanisms of gold nanoparticles (AuNPs) in eco-friendly deep eutectic solvents (DES; choline chloride and urea). AuNPs are synthesized on the DES surface via a low-energy sputter deposition method. Detailed small angle X-ray scattering (SAXS), UV-Vis, and cryogenic transmission electron microscopy (cryo-TEM) investigations show the formation of AuNPs of 5 nm diameter. Data analysis reveals that for a prolonged gold-sputtering time there is no change in the size of the particles. Only the concentration of AuNPs increases linearly in time. More surprisingly, the self-assembly of AuNPs into a first and second shell ordered system is observed directly by in situ SAXS for prolonged gold-sputtering times. The self-assembly mechanism is explained by the templating nature of DES combined with the equilibrium between specific physical interaction forces between the AuNPs. A disulfide-based stabilizer, bis((2-mercaptoethyl)trimethylammonium) disulfide dichloride, was applied to suppress the self-assembly. Moreover, the stabilizer even reverses the self-assembled or agglomerated AuNPs back to stable 5 nm individual particles as directly evidenced by UV-Vis. The template behavior of DES is compared to that of nontemplating solvent castor oil. Our results will also pave the way to understand and control the self-assembly of metallic and bimetallic nanoparticles.

5.
ACS Appl Mater Interfaces ; 16(1): 1370-1379, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38117479

RESUMO

The extracellular matrix (ECM) is the fundamental acellular element of human tissues, providing their mechanical structure while delivering biomechanical and biochemical signals to cells. Three-dimensional (3D) tissue models commonly use hydrogels to recreate the ECM in vitro and support the growth of cells as organoids and spheroids. Collagen-nanocellulose (COL-NC) hydrogels rely on the blending of both polymers to design matrices with tailorable physical properties. Despite the promising application of these biomaterials in 3D tissue models, the architecture and network organization of COL-NC remain unclear. Here, we investigate the structural effects of incorporating NC fibers into COL hydrogels by small-angle neutron scattering (SANS) and ultra-SANS (USANS). The critical hierarchical structure parameters of fiber dimensions, interfiber distance, and coassembled open structures of NC and COL in the absence and presence of cells were determined. We found that NC expanded and increased the homogeneity in the COL network without affecting the inherent fiber properties of both polymers. Cells cultured as spheroids in COL-NC remodeled the hydrogel network without a significant impact on its architecture. Our study reveals the polymer organization of COL-NC hydrogels and demonstrates SANS and USANS as exceptional techniques to reveal nano- and micron-scale details on polymer organization, which leads to a better understanding of the structural properties of hydrogels to engineer novel ECMs.


Assuntos
Matriz Extracelular , Hidrogéis , Humanos , Hidrogéis/química , Matriz Extracelular/química , Colágeno/química , Organoides
6.
J Colloid Interface Sci ; 650(Pt B): 1064-1072, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37459730

RESUMO

HYPOTHESIS: The iridescent optical properties of films made of cellulose nanocrystals (CNC) are controlled by the pitch and range of the chiral nematic structures. These are further tuned with the addition of electrolyte. EXPERIMENTS: Electrolyte type, valency and concentration were varied. The bulk CNC suspension properties were investigated by combining rheology, polarised optical photography and microscopy, while the spacing between crystals was determined using SAXS. FINDINGS: The addition of electrolyte to a CNC suspension containing chiral nematic structures first causes the nematic pitch to increase indicating the suspension has a weaker structure. Further increases in electrolyte concentration cause aggregation and complete breakdown of the chiral nematic structures. The univalent species cause larger changes to the chiral nematic structure with the onset and magnitude of structure breakdown occurring at lower ionic strengths compared with the divalent species. Cation size influences the chiral nematic structure with the order of influence being K+ > Na+ ≈ Ca2+ > Mg2+, which corresponds from the largest to smallest cation. This work demonstrates that both ion valency, concentration and species play a significant role in controlling the chiral nematic structures of CNC suspensions and will be a vital step in the development of CNC liquid crystals, optical materials and sensors.

7.
J Colloid Interface Sci ; 630(Pt B): 249-259, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36327727

RESUMO

Hypothesis The self-assembly (SA) of cellulose nanocrystals (CNC) in suspensions is important both from the fundamental and advanced technology development perspective. CNC of different lengths self-assemble differently in suspensions by balancing attractive and repulsive interactions which depends strongly on morphology, surface chemistry and concentrations. Experiments Two different commercial CNC samples (CNC-M and CNC-C) of different lengths were dispersed in Milli-Q water at different concentrations (0.5-10 wt%). CNC-M is provided as a gel at a solid concentration of 10.3 wt% which was diluted in Milli-Q water. CNC-C is sold as a powder which was dispersed in Milli-Q water with a mixer to achieve the desired concentrations. TEM was used to determine morphology of CNC. Polarised optical microscopy is performed to get microscale visualisation of the chiral nematic self-assembly. High flux synchrotron SAXS is applied to evaluate and compare the nanoscale self-assembly mechanisms of CNC of different lengths. Findings The SA of two different types of CNC rods of similar diameter but different lengths is investigated. SAXS analysis shows the short rods in suspension form an isotropic phase (randomly oriented) at lower concentration (0-4 wt%); as concentration is increased, the rods become systematically aligned in a nematic phase. The interrod distance d varies as c-0.33 at the lower concentration, which changes to c-0.5 and even c-1 at the higher concentrations. In contrast, the long rods in suspension remain in the isotropic phase throughout the measured concentration range from 0.5 to 10 wt%. The interrod distance also follows the isotropic power law slope of c-0.33. Suspensions made of the short CNC rods show long range order and large interrod distance compared to those formed by the long rods. POM agrees with the SAXS results. A specific equilibrium between attractive and repulsive forces is required to maintain SA and ordering of the rods. DLVO calculations reveal that the long rods maintain van der Waal attractive force dominating over the electrostatic repulsion, which hinders rods alignment in an ordered manner. However, for the short rods, the weaker attractive interactions are well compensated by the repulsive force which aligns rods in an ordered assembly. This fundamental understanding of the SA of rods in suspensions facilitates the engineering of novel CNC composites of unique optical properties which enables novel applications such as in sensors and bio-diagnostics.


Assuntos
Celulose , Nanopartículas , Celulose/química , Suspensões , Espalhamento a Baixo Ângulo , Difração de Raios X , Nanopartículas/química , Água/química
8.
J Colloid Interface Sci ; 629(Pt B): 694-704, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36183648

RESUMO

HYPOTHESIS: The optical properties and humidity response of iridescent films made of cellulose nanocrystal (CNC) and polyethylene glycol (PEG) can be tailored by the incorporation of electrolytes chosen based on specific ion effects (SIE). EXPERIMENTS: A series of inorganic salts comprising five different cations and five anions based on the Hofmeister series were mixed with CNC/PEG suspensions, followed by an air-dried process into iridescent solid films. These films were tested in changing relative humidity (RH) environments from 30% to 90% and their photonic properties and mass change monitored. The underlying structures and the mechanism of their formation were quantified in terms of interparticle distance derived from small angle X-ray scattering experiment and pitch size quantified by scanning electron microscope (SEM). FINDINGS: The specific color and color range of CNC/PEG based films are controlled by a specific anion effect achieved by selection of the salt while the specific cation effect is negligible. The salting-in type anions with the same valency result in a red-shift color when films are in the dried state. The salting-in type leads to a greater color changing range during RH changes than the salting-out type. The resultant mass gain/loss trend is consistent with the color change. In contrast, cations do not show any relationships between salting-in effect and the measured properties as observed for anions. The observed SIE can be used to engineer CNC/polymer-based humidity and bio-diagnostic colorimetric indicator devices.

9.
J Colloid Interface Sci ; 652(Pt B): 1609-1619, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666193

RESUMO

HYPOTHESIS: Poly(N-isopropylacrylamide) [PNIPAM]-grafted cellulose nanofibers (CNFs) are new thermo-responsive hydrogels which can be used for a wide range of applications. Currently, there is no clear understanding of the precise mechanism by which CNFs and PNIPAM interact together. Here, we hypothesize that the physical crosslinking of grafted PNIPAM on CNF inhibits the free movement of individual CNF, which increases the gel strength while sustaining its thermo-responsive properties. EXPERIMENTS: The thermo-responsive behaviour of PNIPAM-grafted CNFs (PNIPAM-g-CNFs), synthesized via silver-catalyzed decarboxylative radical polymerization, and PNIPAM-blended CNFs (PNIPAM-b-CNFs) was studied. Small angle neutron scattering (SANS) combined with Ultra-SANS (USANS) revealed the nano to microscale conformation changes of these polymer hybrids as a function of temperature. The effect of temperature on the optical and viscoelastic properties of hydrogels was also investigated. FINDINGS: Grafting PNIPAM from CNFs shifted the lower critical solution temperature (LCST) from 32 °C to 36 °C. Below LCST, the PNIPAM chains in PNIPAM-g-CNF sustain an open conformation and poor interaction with CNF, and exhibit water-like behaviour. At and above LCST, the PNIPAM chains change conformation to entangle and aggregate nearby CNFs. Large voids are formed in solution between the aggregated PNIPAM-CNF walls. In comparison, PNIPAM-b-CNF sustains liquid-like behaviour below LCST. At and above LCST, the blended PNIPAM phase separates from CNF to form large aggregates which do not affect CNF network and thus PNIPAM-b-CNF demonstrates low viscosity. Understanding of temperature-dependent conformation of PNIPAM-g-CNFs engineer thermo-responsive hydrogels for biomedical and functional applications.

10.
J Colloid Interface Sci ; 606(Pt 2): 1842-1851, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507175

RESUMO

HYPOTHESIS: The crystallisation of biosourced ferulic acid derivatives - Bis-O-feruloyl-1,4-butanediol (BDF) - in a polylactic acid (PLA) matrix produces thermoplastic elastomeric blends that are transparent and biodegradable. Elastomeric and transparency are controlled by the domain size. PLA-BDF blends up to a threshold BDF concentration providing elastomeric properties show no evidence of BDF crystallisation. Heat treatment weakens the PLA-BDF interaction, give BDF molecules mobility to interact with nearby BDF molecules, leading to BDF nano-crystallisation. EXPERIMENTS: PLA-BDF blends were synthesised by hot-melt processing by mixing pure PLA with different concentrations of BDF (0-40 wt%) at 180 °C for 13 min. One set of blends was annealed at 50 °C for 24 h and compared with the unannealed set. The BDF crystallisation in the blends is studied by combining SAXS, SEM, XRD and Polarised Optical Microscopy. Monte-Carlo simulations were performed to validate SAXS data analysis. FINDINGS: Unannealed PLA-BDF blends of up to the threshold of 20 wt% BDF are dominated by the semicrystalline behaviour of PLA, without any trace of BDF crystallisation. Surprisingly, the PLA-BDF 40 wt% blend shows BDF crystallisation in the form of large and nanoscale structures bonded together by weak interparticle interaction. At concentrations up to 20 wt%, the BDF molecules are homogenously dispersed and bonded with PLA. Increasing BDF to 40 wt% brings the BDF molecules close enough to crystallise at room temperature, as the BDF molecules are still bonded with the PLA network. Annealing of PLA-BDF blends led to BDF nanocrystallisation and self-assembling in the PLA network. Both BDF nanoparticle size and interparticle distance decrease as the BDF concentration increases. However, the number density of BDF nanocrystals increases. The formed BDF nanocrystals have size ranging between 100 and 380 Å with interparticle distance of 120-180 Å. The structure factor and potential mean force confirm the strong interparticle interaction at the higher BDF concentration. Heat treatment weakens the PLA -BDF interaction, which provides mobility to the BDF molecules to change conformation and interact with the nearby BDF molecules, leading to BDF crystallisation. This novel BDF crystallisation and self-assembly mechanism can be used to develop biodegradable shape memory PLA blends for biomedical, shape memory, packaging and energy applications.


Assuntos
Poliésteres , Polímeros , Ácidos Cumáricos , Espalhamento a Baixo Ângulo , Difração de Raios X
11.
J Colloid Interface Sci ; 601: 124-132, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34058548

RESUMO

HYPOTHESIS: The absorption capacity and kinetics of nanocellulose foams are controlled by the surface charge of the fibers, which affects swelling and determine the porosity and structure of the network. EXPERIMENTS: Absorption kinetics were quantified at time scales ranging from fractions of a second to minutes. The mass absorption rate as well as the area profile for the liquid stains were simultaneously measured. FINDINGS: The absorption profile followed a three-stage mechanism: wicking, transition and fiber swelling. Absorption of fluids differing in ionic strength revealed the critical role played by electrostatic forces. Nanocellulose foam absorption capacity is 25% higher for water than for 0.9 wt% NaCl solution. The absorption kinetics of nanocellulose foam are also tuneable by modulating the surface charge. High surface charge nanocellulose foams have slower absorption in water than their low surface charged analogues. This behaviour is driven by the lower pore sizes developed in high surface charge foams, as determined by X-ray CT. Small Angle X-ray Scattering revealed structural homogeneity of high surface charge foams upon absorption of water due to high fibrillation and fiber swelling.

12.
J Colloid Interface Sci ; 584: 216-224, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069020

RESUMO

HYPOTHESIS: Cellulose nanocrystals (CNC) can produce photonic composite films that selectively reflect light based on their periodic cholesteric structure. The hypothesis of this research is that by incorporating water-soluble polymer, photonic properties of CNC composite film can be designed by manipulating the polymer molecular weight. EXPERIMENTAL: Flexible free-standing composite films of five different poly (ethylene glycol) (PEG) molecular weights were prepared via air drying under a controlled environment, and characterised by reflectance UV-vis spectrometer, atomic force microscopy (AFM) and scanning electron microscopy (SEM). Films with each molecular weight were investigated over a concentration range. FINDINGS: The colour and transmission haze of the composite films was modified by varying both the PEG molecular weight and concentration. Depending on the molecular weight, the films were able to reflect light from the UV region (242 nm) across the visible spectrum to the near-infrared region (832 nm). Different trends in variation of the reflected light based on the molecular weight was found with increasing PEG concentration and was explained by weak depletion interactions occurring between CNC and PEG, which was reduced with increasing PEG molecular weight.

13.
J Colloid Interface Sci ; 575: 317-325, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32387740

RESUMO

HYPOTHESIS: TiO2-NPs-Cellulose composites functionality depends on the retention and dispersion of NPs in the composites. SAXS and SEM can be combined to reveal the effect PAE has on the NPs aggregation, retention and interaction mechanisms in the composites. EXPERIMENTS: TiO2-NPs-Cellulose sheets were made by first preparing PAE-cellulose suspensions of different PAE dosages (10 and 50 mg of PAE/g fibres). The TiO2 NPs suspension (at different NPs loading) was then added to the cellulose-PAE suspension. The final suspension was used to make flexible paper-like composites sheets. SEM and SAXS quantified NPs retention and aggregation state. FINDINGS: PAE dosage of 20 mg/g cellulose provides full surface coverage of cellulose fibres. A 10 mg of PAE/g cellulose covers half the cellulose surface area and no free PAE remains in the suspension. PAE dosage of 50 mg/g cellulose gives full cellulose surface coverage and provides a large amount of PAE (30 mg/g cellulose) free in the suspension. Surprisingly, at both PAE dosages, NP coagulates and the size of the aggregates increase with NPs loading. Aggregates of two particle sizes (10 and 35 nm) are formed and the number density of smaller particles is higher than larger particle. The NPs aggregates and their retention are similar at both PAE dosages, which is explained by different PAE-NPs bridging mechanisms.

14.
Artigo em Inglês | MEDLINE | ID: mdl-32582681

RESUMO

A pH dependent reversible sponge like behavior of a bovine serum albumin (BSA) nanolayer adsorbed at the gold-saline interface is revealed by quartz crystal microbalance with dissipation (QCM-D), atomic force microscope (AFM) and contact angle measurements. During the saline rinsing cycles, the BSA layer adsorbs water molecules at pH 7.0 and releases them at pH 4.5. The phenomenon remains constant and reproducible upon multiple rinsing cycles. The BSA layer thickness also increases upon rinsing with saline at pH 7.0 and reverses back to its original thickness at pH 4.5. Varying ionic strength with water further desorbs more water molecules from the BSA layer, which decreases its mass and thickness. However, upon both pH and ionic strength changes, all the BSA molecules remain adsorbed irreversibly at the gold interface and only the sorption of water molecules occurs. The study aims at engineering high efficiency pH-responsive biodiagnostics and drug delivery systems.

15.
Carbohydr Polym ; 245: 116566, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32718648

RESUMO

TEMPO and periodate are combined in a one-shot reaction to oxidise cellulose and produce nanocellulose gels with a wide range of degree of substitution (DS). Highly-oxidised cellulose nanofibres with a high charge of -80 mV were produced. The strong electrical repulsion between TEMPO-periodate oxidised nanofibres (TPOF) results in the formation of well-separated nanofibres with a diameter of 2-4 nm, albeit depolymerised due to high oxidation. TPOF produces highly-transparent gels due to smaller aspect ratio and high surface charge. These properties induce a reduced viscosity and moduli of the gels by decreasing fibre entanglement. TPOF gels are more stable at basic pH and high ionic strength than TEMPO-oxidised gels due to their higher surface charge. Freeze-dried TPOF gels also exhibit remarkable water holding capacity due to enhanced immobilisation of water molecules. The excellent optical properties of the highly transparent gel for red blood cells analysis open new possibilities in diagnostics application.


Assuntos
Celulose/química , Géis/química , Nanofibras/química , Reologia/métodos , Absorção Fisico-Química , Materiais Biocompatíveis/química , Óxidos N-Cíclicos/química , Eritrócitos/química , Humanos , Concentração de Íons de Hidrogênio , Concentração Osmolar , Oxirredução , Ácido Periódico/química , Propriedades de Superfície , Viscosidade , Água/química
16.
J Colloid Interface Sci ; 568: 234-244, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32092552

RESUMO

HYPOTHESIS: The water absorption capacity of nanocellulose (NC) foam is tailored by crosslinking with polyethyleneimine (PEI) and hexamethylenediamine (HMDA). The interaction of amine groups in PEI and HMDA with the carboxylic groups (COO-) of NC affects the foam structure which reduces its swelling capacity. EXPERIMENTS: Functionalised NC foams were prepared by TEMPO (2,2,6,6,-tetramethylpiperidine-1-oxyl) oxidation of bleached pulp, followed by fibrillation into a hydrogel, adding a crosslinker and freeze drying the hydrogel into a foam. The structure of the NC foam characterised by rheology, SANS (Small Angle Neutron Scattering), SAXS (Small Angle X-ray Scattering) and cryo-SEM (cryo-Scanning Electron Microscopy) was related to absorption and swelling properties. FINDINGS: The NC foam has the highest water absorption capacity at 132 g water/g foam. PEI-NC foam has a water absorption capacity of 71 g water/g foam, which further decreases to 47 g water/g foam for the HMDA-NC foam. Small angle scattering reveals the elementary fibril of NC is 3-5 nm thick and forms fiber bundles. In water, these bundles swell differently for the different types of foam which affects the water absorption capacity of the network. The structural analysis of the foam was related to the swelling capacity. The structure of NC foam can be engineered for specific applications for biomedical, agriculture or food industries.


Assuntos
Celulose/química , Reagentes de Ligações Cruzadas/química , Nanopartículas/química , Celulose/síntese química , Reagentes de Ligações Cruzadas/síntese química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
17.
ACS Sens ; 5(8): 2596-2603, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32672954

RESUMO

High-throughput and rapid serology assays to detect the antibody response specific to severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) in human blood samples are urgently required to improve our understanding of the effects of COVID-19 across the world. Short-term applications include rapid case identification and contact tracing to limit viral spread, while population screening to determine the extent of viral infection across communities is a longer-term need. Assays developed to address these needs should match the ASSURED criteria. We have identified agglutination tests based on the commonly employed blood typing methods as a viable option. These blood typing tests are employed in hospitals worldwide, are high-throughput, fast (10-30 min), and automated in most cases. Herein, we describe the application of agglutination assays to SARS-CoV-2 serology testing by combining column agglutination testing with peptide-antibody bioconjugates, which facilitate red cell cross-linking only in the presence of plasma containing antibodies against SARS-CoV-2. This simple, rapid, and easily scalable approach has immediate application in SARS-CoV-2 serological testing and is a useful platform for assay development beyond the COVID-19 pandemic.


Assuntos
Testes de Aglutinação/métodos , Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Testes Sorológicos/métodos , Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Humanos , Pandemias , SARS-CoV-2 , Fatores de Tempo
18.
Front Chem ; 7: 535, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417896

RESUMO

Cellulose, the most abundant polymer on earth, has enormous potential in developing bio-friendly, and sustainable technological products. In particular, cellulose films of nanoscale thickness (1-100 nm) are transparent, smooth (roughness <1 nm), and provide a large surface area interface for biomolecules immobilization and interactions. These attractive film properties create many possibilities for both fundamental studies and applications, especially in the biomedical field. The three liable-OH groups on the monomeric unit of the cellulose chain provide schemes to chemically modify the cellulose interface and engineer its properties. Here, the cellulose thin film serves as a substrate for biomolecules interactions and acts as a support for bio-diagnostics. This review focuses on the challenges and opportunities provided by engineering cellulose thin films for controlling biomolecules interactions. The first part reviews the methods for preparing cellulose thin films. These are by dispersing or dissolving pure cellulose or cellulose derivatives in a solvent to coat a substrate using the spin coating, Langmuir-Blodgett, or Langmuir-Schaefer method. It is shown how different cellulose sources, preparation, and coating methods and substrate surface pre-treatment affect the film thickness, roughness, morphology, crystallinity, swelling in water, and homogeneity. The second part analyses the bio-macromolecules interactions with the cellulose thin film interfaces. Biomolecules, such as antibodies and enzymes, are adsorbed at the cellulose-liquid interface, and analyzed dry and wet. This highlights the effect of film surface morphology, thickness, crystallinity, water intake capacity, and surface pre-treatment on biomolecule adsorption, conformation, coverage, longevity, and activity. Advance characterization of cellulose thin film interface morphology and adsorbed biomolecules interactions are next reviewed. X-ray and neutron scattering/reflectivity combined with atomic force microscopy (AFM), quartz crystal microbalance (QCM), microscopy, and ellipsometer allow visualizing, and quantifying the structural morphology of cellulose-biomolecule interphase and the respective biomolecules conformations, kinetics, and sorption mechanisms. This review provides a novel insight on the advantages and challenges of engineering cellulose thin films for biomedical applications. This is to foster the exploration at the molecular level of the interaction mechanisms between a cellulose interface and adsorbed biomolecules with respect to adsorbed molecules morphology, surface coverage, and quantity. This knowledge is to engineer a novel generation of efficient and functional biomedical devices.

19.
Adv Colloid Interface Sci ; 274: 102044, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31677493

RESUMO

Hydrogels are water enriched soft materials widely used for applications as varied as super absorbents, breast implants and contact lenses. Hydrogels have also been designed for smart functional devices including drug delivery, tissue engineering and diagnostics such as blood typing. The hydrogel properties and functionality depend on their crosslinking density, water holding capacity and fibre/polymer composition, strength and internal structure. Determining these parameters and properties are challenging. This review presents the main characterisation methods providing both qualitative and quantitative information of the structures and compositions of hydrogel. The length scale of interest ranges from the nano to the micro scale and the techniques and results are analysed in relationship to the hydrogel macroscopic applications. The characterisation methods examined aim at quantifying swelling, mechanical strength, mesh size, bound and free water content, pore structure, chemical composition, strength of chemical bonds and mechanical strength. These hydrogel parameters enable us to understand the fundamental mechanisms of hydrogel formation, to control their structure and functionality, and to optimize and tailor specific hydrogel properties to engineer particular applications.

20.
Adv Colloid Interface Sci ; 267: 47-61, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30884359

RESUMO

Nanocellulose hydrogels are highly hydrated porous cellulosic soft materials with good mechanical properties. These cellulose-based gels can be produced from bacterial or plant cellulose nanofibrils, which are hydrophilic, renewable, biodegradable and biocompatible. Nanocellulose, whether fibrils (CNF), crystals (CNC) or bacterial (BNC), has a high aspect ratio and surface area, and can be chemically modified with functional groups or by grafting biomolecules. Cellulose functionalization provides enhanced physical and chemical properties and control of biological interactions, tailoring its hydrogels for specific applications. Here, we critically review nanocellulose hydrogels for biomedical applications. Nanocellulose hydrogels have been demonstrated for 3D cell culture, mimicking the extracellular matrix (ECM) properties with low cytotoxicity. For wound dressing and cartilage repair, nanocellulose gels promote cell regeneration while providing the required mechanical properties for tissue engineering scaffolds. The encapsulation of therapeutics within nanocellulose allows the targeted delivery of drugs. Currently, cellulose crosslinking to peptides and proteins enables a new generation of low cost and renewable smart materials used in diagnostics. Last, the organized mesh of fibres contained in hydrogels drives applications in separation of biomolecules and cells. Nanocellulose hydrogels have emerged as a highly engineerable platform for multiple biomedical applications, providing renewable and performant solutions to life sciences.


Assuntos
Materiais Biocompatíveis/química , Celulose/química , Engenharia , Nanoestruturas/química , Animais , Materiais Biocompatíveis/farmacologia , Humanos , Hidrogéis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA