RESUMO
Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.
Assuntos
Aves , Evolução Molecular , Genoma , Filogenia , Animais , Aves/genética , Aves/classificação , Aves/anatomia & histologia , Encéfalo/anatomia & histologia , Extinção Biológica , Genoma/genética , Genômica , Densidade Demográfica , Masculino , FemininoRESUMO
During the last glacial-interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1-8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key findings include: (1) a relatively homogeneous steppe-tundra flora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher effective precipitation, as well as an increase in the proportion of wetland plants, show negative effects on animal diversity; (5) the persistence of the steppe-tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our findings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics.
Assuntos
Biota , DNA Antigo/análise , DNA Ambiental/análise , Metagenômica , Animais , Regiões Árticas , Mudança Climática/história , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Extinção Biológica , Sedimentos Geológicos , Pradaria , Groenlândia , Haplótipos/genética , Herbivoria/genética , História Antiga , Humanos , Lagos , Mamutes , Mitocôndrias/genética , Perissodáctilos , Pergelissolo , Filogenia , Plantas/genética , Dinâmica Populacional , Chuva , Sibéria , Análise Espaço-Temporal , Áreas AlagadasRESUMO
Tropical mountains are global biodiversity hotspots, owing to a combination of high local species richness and turnover in species composition. Typically, the highest local richness and turnover levels are implicitly assumed to converge in the same mountain regions, resulting in extraordinary species richness at regional to global scales. We investigated this untested assumption using high-resolution distribution data for all 9,788 bird species found in 134 mountain regions worldwide. Contrary to expectations, the mountain regions with the highest local richness differed from those with the highest species turnover. This finding reflects dissimilarities in the regions' climates and habitat compositions. Forest habitats and humid tropical climates characterize the mountain regions with the highest local richness. In contrast, mountain regions with the highest turnover are generally colder with drier climates and have mostly open habitat types. The highest local species richness and turnover levels globally converge in only a few mountain regions with the greatest climate volumes and topographic heterogeneity, resulting in the most prominent global hotspots for avian biodiversity. These results underline that species-richness hotspots in tropical mountains arise from idiosyncratic levels of local species richness and turnover, a pattern that traditional analyses of overall regional species richness do not detect.
Assuntos
Biodiversidade , Florestas , Clima TropicalRESUMO
The extinction of the woolly rhinoceros (Coelodonta antiquitatis) at the onset of the Holocene remains an enigma, with conflicting evidence regarding its cause and spatiotemporal dynamics. This partly reflects challenges in determining demographic responses of late Quaternary megafauna to climatic and anthropogenic causal drivers with available genetic and paleontological techniques. Here, we show that elucidating mechanisms of ancient extinctions can benefit from a detailed understanding of fine-scale metapopulation dynamics, operating over many millennia. Using an abundant fossil record, ancient DNA, and high-resolution simulation models, we untangle the ecological mechanisms and causal drivers that are likely to have been integral in the decline and later extinction of the woolly rhinoceros. Our 52,000-y reconstruction of distribution-wide metapopulation dynamics supports a pathway to extinction that began long before the Holocene, when the combination of cooling temperatures and low but sustained hunting by humans trapped woolly rhinoceroses in suboptimal habitats along the southern edge of their range. Modeling indicates that this ecological trap intensified after the end of the last ice age, preventing colonization of newly formed suitable habitats, weakening stabilizing metapopulation processes, triggering the extinction of the woolly rhinoceros in the early Holocene. Our findings suggest that fragmentation and resultant metapopulation dynamics should be explicitly considered in explanations of late Quaternary megafauna extinctions, sending a clarion call to the fragility of the remaining large-bodied grazers restricted to disjunct fragments of poor-quality habitat due to anthropogenic environmental change.
Assuntos
Extinção Biológica , Fósseis , Perissodáctilos , Dinâmica Populacional , Animais , Ecossistema , DNA Antigo/análise , PaleontologiaRESUMO
Despite evidence of declining biosphere integrity, we currently lack understanding of how the functional diversity associated with changes in abundance among ecological communities has varied over time and before widespread human disturbances. We combine morphological, ecological, and life-history trait data for >260 extant bird species with genomic-based estimates of changing effective population size (Ne) to quantify demographic-based shifts in avian functional diversity over the past million years and under pre-anthropogenic climate warming. We show that functional diversity was relatively stable over this period, but underwent significant changes in some key areas of trait space due to changing species abundances. Our results suggest that patterns of population decline over the Pleistocene have been concentrated in particular regions of trait space associated with extreme reproductive strategies and low dispersal ability, consistent with an overall erosion of functional diversity. Further, species most sensitive to climate warming occupied a relatively narrow region of functional space, indicating that the largest potential population increases and decreases under climate change will occur among species with relatively similar trait sets. Overall, our results identify fluctuations in functional space of extant species over evolutionary timescales and represent the demographic-based vulnerability of different regions of functional space among these taxa. The integration of paleodemographic dynamics with functional trait data enhances our ability to quantify losses of biosphere integrity before anthropogenic disturbances and attribute contemporary biodiversity loss to different drivers over time.
Assuntos
Biodiversidade , Biota , Humanos , Animais , Fatores de Tempo , Aves/genética , Mudança Climática , EcossistemaRESUMO
Northeastern Siberia has been inhabited by humans for more than 40,000 years but its deep population history remains poorly understood. Here we investigate the late Pleistocene population history of northeastern Siberia through analyses of 34 newly recovered ancient genomes that date to between 31,000 and 600 years ago. We document complex population dynamics during this period, including at least three major migration events: an initial peopling by a previously unknown Palaeolithic population of 'Ancient North Siberians' who are distantly related to early West Eurasian hunter-gatherers; the arrival of East Asian-related peoples, which gave rise to 'Ancient Palaeo-Siberians' who are closely related to contemporary communities from far-northeastern Siberia (such as the Koryaks), as well as Native Americans; and a Holocene migration of other East Asian-related peoples, who we name 'Neo-Siberians', and from whom many contemporary Siberians are descended. Each of these population expansions largely replaced the earlier inhabitants, and ultimately generated the mosaic genetic make-up of contemporary peoples who inhabit a vast area across northern Eurasia and the Americas.
Assuntos
Genoma Humano/genética , Migração Humana/história , Ásia/etnologia , DNA Antigo/análise , Europa (Continente)/etnologia , Pool Gênico , Haplótipos , História do Século XV , História Antiga , História Medieval , Humanos , Indígenas Norte-Americanos , Masculino , Sibéria/etnologiaRESUMO
Molecular analyses of rapidly radiating groups often reveal incongruence between gene trees. This mainly results from incomplete lineage sorting, introgression, and gene tree estimation error, which complicate the estimation of phylogenetic relationships. In this study, we reconstruct the phylogeny of Theaceae using 348 nuclear loci from 68 individuals and two outgroup taxa. Sequence data were obtained by target enrichment using the recently released Angiosperm 353 universal probe set applied to herbarium specimens. The robustness of the topologies to variation in data quality was established under a range of different filtering schemes, using both coalescent and concatenation approaches. Our results confirmed most of the previously hypothesized relationships among tribes and genera, while clarifying additional interspecific relationships within the rapidly radiating genus Camellia. We recovered a remarkably high degree of gene tree heterogeneity indicative of rapid radiation in the group and observed cytonuclear conflicts, especially within Camellia. This was especially pronounced around short branches, which we primarily associate with gene tree estimation error. Our analysis also indicates that incomplete lineage sorting (ILS) contributed to gene-tree conflicts and accounted for approximately 14 % of the explained variation, whereas inferred introgression levels were low. Our study advances the understanding of the evolution of this important plant family and provides guidance on the application of target capture methods and the evaluation of key processes that influence phylogenetic discordances.
Assuntos
Camellia , Filogenia , Camellia/genética , Camellia/classificação , Núcleo Celular/genética , Análise de Sequência de DNA , Teorema de Bayes , DNA de Plantas/genética , Evolução Molecular , Especiação Genética , Modelos GenéticosRESUMO
Migration allows animals to exploit spatially separated and seasonally available resources at a continental to global scale. However, responding to global climatic changes might prove challenging, especially for long-distance intercontinental migrants. During glacial periods, when conditions became too harsh for breeding in the north, avian migrants have been hypothesized to retract their distribution to reside within small refugial areas. Here, we present data showing that an Afro-Palearctic migrant continued seasonal migration, largely within Africa, during previous glacial-interglacial cycles with no obvious impact on population size. Using individual migratory track data to hindcast monthly bioclimatic habitat availability maps through the last 120,000 y, we show altered seasonal use of suitable areas through time. Independently derived effective population sizes indicate a growing population through the last 40,000 y. We conclude that the migratory lifestyle enabled adaptation to shifting climate conditions. This indicates that populations of resource-tracking, long-distance migratory species could expand successfully during warming periods in the past, which could also be the case under future climate scenarios.
Assuntos
Migração Animal/fisiologia , Aves/fisiologia , Mudança Climática , Clima , Dinâmica Populacional , África , Algoritmos , Animais , Ásia , Ecossistema , Europa (Continente) , Feminino , Camada de Gelo , Masculino , Modelos BiológicosRESUMO
European bison (Bison bonasus) were widespread throughout Europe during the late Pleistocene. However, the contributions of environmental change and humans to their near extinction have never been resolved. Using process-explicit models, fossils and ancient DNA, we disentangle the combinations of threatening processes that drove population declines and regional extinctions of European bison through space and across time. We show that the population size of European bison declined abruptly at the termination of the Pleistocene in response to rapid environmental change, hunting by humans and their interaction. Human activities prevented populations of European bison from rebounding in the Holocene, despite improved environmental conditions. Hunting caused range loss in the north and east of its distribution, while land use change was responsible for losses in the west and south. Advances in hunting technologies from 1500 CE were needed to simulate low abundances observed in 1870 CE. While our findings show that humans were an important driver of the extinction of the European bison in the wild, vast areas of its range vanished during the Pleistocene-Holocene transition because of post-glacial environmental change. These areas of its former range have been climatically unsuitable for millennia and should not be considered in reintroduction efforts.
Assuntos
Bison , Animais , Humanos , Bison/genética , Europa (Continente) , Fósseis , Atividades Humanas , CaçaRESUMO
Classic ecological research into the determinants of biodiversity patterns emphasised the important role of three-dimensional (3D) vegetation heterogeneity. Yet, measuring vegetation structure across large areas has historically been difficult. A growing focus on large-scale research questions has caused local vegetation heterogeneity to be overlooked compared with more readily accessible habitat metrics from, for example, land cover maps. Using newly available 3D vegetation data, we investigated the relative importance of habitat and vegetation heterogeneity for explaining patterns of bird species richness and composition across Denmark (42,394 km2 ). We used standardised, repeated point counts of birds conducted by volunteers across Denmark alongside metrics of habitat availability from land-cover maps and vegetation structure from rasterised LiDAR data (10 m resolution). We used random forest models to relate species richness to environmental features and considered trait-specific responses by grouping species by nesting behaviour, habitat preference and primary lifestyle. Finally, we evaluated the role of habitat and vegetation heterogeneity metrics in explaining local bird assemblage composition. Overall, vegetation structure was equally as important as habitat availability for explaining bird richness patterns. However, we did not find a consistent positive relationship between species richness and habitat or vegetation heterogeneity; instead, functional groups displayed individual responses to habitat features. Meanwhile, habitat availability had the strongest correlation with the patterns of bird assemblage composition. Our results show how LiDAR and land cover data complement one another to provide insights into different facets of biodiversity patterns and demonstrate the potential of combining remote sensing and structured citizen science programmes for biodiversity research. With the growing coverage of LiDAR surveys, we are witnessing a revolution of highly detailed 3D data that will allow us to integrate vegetation heterogeneity into studies at large spatial extents and advance our understanding of species' physical niches.
Assuntos
Biodiversidade , Ecossistema , Animais , Aves/fisiologia , Telemetria , DinamarcaRESUMO
Pathways to extinction start long before the death of the last individual. However, causes of early stage population declines and the susceptibility of small residual populations to extirpation are typically studied in isolation. Using validated process-explicit models, we disentangle the ecological mechanisms and threats that were integral in the initial decline and later extinction of the woolly mammoth. We show that reconciling ancient DNA data on woolly mammoth population decline with fossil evidence of location and timing of extinction requires process-explicit models with specific demographic and niche constraints, and a constrained synergy of climatic change and human impacts. Validated models needed humans to hasten climate-driven population declines by many millennia, and to allow woolly mammoths to persist in mainland Arctic refugia until the mid-Holocene. Our results show that the role of humans in the extinction dynamics of woolly mammoth began well before the Holocene, exerting lasting effects on the spatial pattern and timing of its range-wide extinction.
Assuntos
Mamutes , Animais , Efeitos Antropogênicos , Clima , Extinção Biológica , Fósseis , Humanos , Mamutes/genéticaRESUMO
The immense concentrations of vertebrate species in tropical mountains remain a prominent but unexplained pattern in biogeography. A long-standing hypothesis suggests that montane biodiversity hotspots result from endemic species aggregating within ecologically stable localities. Here, the persistence of ancient lineages coincides with frequent speciation events, making such areas both 'cradles' (where new species arise) and 'museums' (where old species survive). Although this hypothesis refers to processes operating at the scale of valleys, it remains supported primarily by patterns generated from coarse-scale distribution data. Using high-resolution occurrence and phylogenetic data on Andean hummingbirds, we find that old and young endemic species are not spatially aggregated. The young endemic species tend to have non-overlapping distributions scattered along the Andean treeline, a long and narrow habitat where populations easily become fragmented. By contrast, the old endemic species have more aggregated distributions, but mainly within pockets of cloud forests at lower elevations than the young endemic species. These findings contradict the premise that biogeographical cradles and museums should overlap in valley systems where pockets of stable climate persist through periods of climate change. Instead, Andean biodiversity hotspots may derive from large-scale fluctuating climate complexity in conjunction with local-scale variability in available area and habitat connectivity.
Assuntos
Biodiversidade , Museus , Ecossistema , Florestas , FilogeniaRESUMO
Humans have moved species away from their native ranges since the Neolithic, but globalization accelerated the rate at which species are being moved. We fitted more than half million distribution models for 610 traded bird species on the CITES list to examine the separate and joint effects of global climate and land-cover change on their potential end-of-century distributions. We found that climate-induced suitability for modelled invasive species increases with latitude, because traded birds are mainly of tropical origin and much of the temperate region is 'tropicalizing.' Conversely, the tropics are becoming more arid, thus limiting the potential from cross-continental invasion by tropical species. This trend is compounded by forest loss around the tropics since most traded birds are forest dwellers. In contrast, net gains in forest area across the temperate region could compound climate change effects and increase the potential for colonization of low-latitude birds. Climate change has always led to regional redistributions of species, but the combination of human transportation, climate, and land-cover changes will likely accelerate the redistribution of species globally, increasing chances of alien species successfully invading non-native lands. Such process of biodiversity homogenization can lead to emergence of non-analogue communities with unknown environmental and socioeconomic consequences.
Assuntos
Biodiversidade , Aves , Animais , Mudança Climática , Ecossistema , Florestas , Humanos , Espécies IntroduzidasRESUMO
The tea family (Theaceae) has a highly unusual amphi-Pacific disjunct distribution: most extant species in the family are restricted to subtropical evergreen broadleaf forests in East Asia, while a handful of species occur exclusively in the subtropical and tropical Americas. Here, we used an approach that integrates the rich fossil evidence of this group with phylogenies in biogeographic analysis to study the processes behind this distribution pattern. We first combined genome-skimming sequencing with existing molecular data to build a robust species-level phylogeny for c.130 Theaceae species, resolving most important unclarified relationships. We then developed an empirical Bayesian method to incorporate distribution evidence from fossil specimens into historical biogeographic analyses and used this method to account for the spatiotemporal history of Theaceae fossils. We compared our method with an alternative Bayesian approach and show that it provides consistent results while significantly reduces computational demands which allows analyses of much larger data sets. Our analyses revealed a circumboreal distribution of the family from the early Cenozoic to the Miocene and inferred repeated expansions and retractions of the modeled distribution in the Northern Hemisphere, suggesting that the current Theaceae distribution could be the remnant of a larger continuous distribution associated with the boreotropical forest that has been hypothesized to occupy most of the northern latitudes in the early Cenozoic. These results contradict with studies that only considered current species distributions and showcase the necessity of integrating fossil and molecular data in phylogeny-based parametric biogeographic models to improve the reliability of inferred biogeographical events. [Biogeography; genome skimming; phylogenomics; plastid genome; Theaceae.].
Assuntos
Fósseis , Theaceae , Teorema de Bayes , Filogenia , Filogeografia , Reprodutibilidade dos Testes , CháRESUMO
Research on resource partitioning in plant-pollinator mutualistic systems is mainly concentrated at the levels of species and communities, whereas differences between males and females are typically ignored. Nevertheless, pollinators often show large sexual differences in behaviour and morphology, which may lead to sex-specific patterns of resource use with the potential to differentially affect plant reproduction and diversification. We investigated variation in behavioural and morphological traits between sexes of hummingbird species as potential mechanisms underlying sex-specific flower resource use in ecological communities. To do so, we compiled a dataset of plant-hummingbird interactions based on pollen loads for 31 hummingbird species from 13 localities across the Americas, complemented by data on territorial behaviour (territorial or non-territorial) and morphological traits (bill length, bill curvature, wing length and body mass). We assessed the extent of intersexual differences in niche breadth and niche overlap in floral resource use across hummingbird species. Then, we tested whether floral niche breadth and overlap between sexes are associated with sexual dimorphism in behavioural or morphological traits of hummingbird species while accounting for evolutionary relatedness among the species. We found striking differences in patterns of floral resource use between sex. Females had a broader floral niche breadth and were more dissimilar in the plant species visited with respect to males of the same species, resulting in a high level of resource partitioning between sexes. We found that both territoriality and morphological traits were related to sex-specific resource use by hummingbird species. Notably, niche overlap between sexes was greater for territorial than non-territorial species, and moreover, niche overlap was negatively associated with sexual dimorphism in bill curvature across hummingbird species. These results reveal the importance of behavioural and morphological traits of hummingbird species in sex-specific resource use and that resource partitioning by sex is likely to be an important mechanism to reduce intersexual competition in hummingbirds. These findings highlight the need for better understanding the putative role of intersexual variation in shaping patterns of interactions and plant reproduction in ecological communities.
La investigación sobre la partición de recursos en los sistemas mutualistas planta-polinizador se concentra principalmente en los niveles de especies y comunidades, mientras que las diferencias entre machos y hembras suelen ser ignoradas. Sin embargo, los polinizadores suelen mostrar grandes diferencias sexuales en su comportamiento y morfología, lo que puede dar lugar a patrones específicos de uso de recursos para cada sexo con el potencial de afectar de forma diferencial la reproducción y la diversificación de las plantas. Se estudió la variación en los rasgos de comportamiento y morfológicos entre sexos de las especies de colibríes como posibles mecanismos que explican el uso de recursos florales específicos para cada sexo en las comunidades ecológicas. Para ello, se recopiló un conjunto de datos de interacciones planta-colibrí con base en las cargas de polen de 31 especies de colibríes de 13 localidades en las Américas, además de datos sobre su comportamiento territorial (territorial o no territorial) y rasgos morfológicos (longitud y curvatura del pico, longitud del ala y masa corporal). Se evaluaron las diferencias intersexuales en la amplitud y el solapamiento del nicho en el uso de los recursos florales para las distintas especies de colibríes. Posteriormente, se comprobó si la amplitud del nicho floral y el solapamiento entre sexos están asociados con el dimorfismo sexual en los rasgos de comportamiento o morfológicos de las especies de colibríes, teniendo en cuenta el parentesco evolutivo entre las especies. Se encontraron diferencias notables en los patrones de uso de los recursos florales entre sexos. Las hembras presentaron una mayor amplitud de nicho floral y fueron más disímiles en las especies de plantas visitadas con respecto a los machos de la misma especie, lo que resultó en un alto nivel de partición de recursos entre los sexos. Se encontró que tanto la territorialidad como los rasgos morfológicos están relacionados con el uso de recursos específicos por sexo en las especies de colibríes. En particular, el solapamiento de nicho entre sexos fue mayor para las especies territoriales que para las no territoriales y, además, el solapamiento de nicho se asoció negativamente con el dimorfismo sexual en la curvatura del pico en las especies de colibríes. Estos resultados revelan la importancia de los rasgos conductuales y morfológicos de las especies de colibríes en el uso de recursos según el sexo y que la partición de recursos entre sexos es probablemente un mecanismo importante para reducir la competencia intersexual en los colibríes. Estos resultados ponen de manifiesto la necesidad de comprender mejor el rol que tiene la variación intersexual en los patrones de interacción y en la reproducción de las plantas en las comunidades ecológicas.
Assuntos
Aves , Polinização , Feminino , Masculino , Animais , Flores/anatomia & histologia , Pólen , Fenótipo , PlantasRESUMO
Land-use change is considered the greatest threat to nature, having caused worldwide declines in the abundance, diversity, and health of species and ecosystems. Despite increasing research on this global change driver, there are still challenges to forming an effective synthesis. The estimated impact of land-use change on biodiversity can depend on location, research methods, and taxonomic focus, with recent global meta-analyses reaching disparate conclusions. Here, we critically appraise this research body and our ability to reach a reliable consensus. We employ named entity recognition to analyze more than 4000 abstracts, alongside full reading of 100 randomly selected papers. We highlight the broad range of study designs and methodologies used; the most common being local space-for-time comparisons that classify land use in situ. Species metrics including abundance, distribution, and diversity were measured more frequently than complex responses such as demography, vital rates, and behavior. We identified taxonomic biases, with vertebrates well represented while detritivores were largely missing. Omitting this group may hinder our understanding of how land-use change affects ecosystem feedback. Research was heavily biased toward temperate forested biomes in North America and Europe, with warmer regions being acutely underrepresented despite offering potential insights into the future effects of land-use change under novel climates. Various land-use histories were covered, although more research in understudied regions including Africa and the Middle East is required to capture regional differences in the form of current and historical land-use practices. Failure to address these challenges will impede our global understanding of land-use change impacts on biodiversity, limit the reliability of future projections and have repercussions for the conservation of threatened species. Beyond identifying literature biases, we highlight the research priorities and data gaps that need urgent attention and offer perspectives on how to move forward.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Mudança Climática , Espécies em Perigo de Extinção , Reprodutibilidade dos TestesRESUMO
We combined participatory science data and museum records to understand long-term changes in occupancy for 29 ant species in Denmark over 119 years. Bayesian occupancy modelling indicated change in occupancy for 15 species: five increased, four declined and six showed fluctuating trends. We consider how trends may have been influenced by life-history and habitat changes. Our results build on an emerging picture that biodiversity change in insects is more complex than implied by the simple insect decline narrative.