Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 182: 107731, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36781030

RESUMO

The stylommatophoran land-snail genus Corilla is endemic to Sri Lanka and India's Western Ghats. On the basis of habitat distribution and shell morphology, the 10 extant Sri Lankan species fall into two distinct groups, lowland and montane. Here, we use phylogenetic analyses of restriction-site-associated DNA sequencing (RADseq) data and ancestral-state reconstructions of habitat association and shell morphology to clarify the systematics and evolution of Sri Lankan Corilla. Our dataset consists of 9 species of Corilla. Phylogenetic analyses were based on 88 assemblies (9,604-4,132,850 bp) generated by the RADseq assembler ipyrad, using four parameter combinations and different levels of missing data. Trees were inferred using a maximum likelihood (ML) approach. Ancestral states were reconstructed using maximum parsimony (MP) and ML approaches, with 1 binary state character analysed for habitat association (lowland vs montane) and 6 binary state characters analysed for shell morphology (shape, colour, lip width, length of upper palatal folds, orientation of upper palatal folds and collabral sculpture). Over a wide range of missing data (40-87 % missing individuals per locus) and assembly sizes (62,279-4,132,850 bp), nearly all trees conformed to one of two topologies (A and B), most relationships were strongly supported and total branch support approached the maximal value. Apart from the position of Corilla odontophora 'south', topologies A and B showed similar, well-resolved relationships at and above the species level. Our study agrees with the shell-based taxonomy of C. adamsi, C. beddomeae, C. carabinata, C. colletti and C. humberti (all maximally supported as monophyletic species). It shows that C. erronea and C. fryae constitute a single relatively widespread species (for which the valid name is C. erronea) and that the names C. gudei and C. odontophora each apply to at least two distinct, yet conchologically-cryptic species. The MP and ML ancestral-state reconstructions yielded broadly similar results and provide firm evidence that diversification in Sri Lankan Corilla has involved evolutionary convergence in the shell morphology of lowland lineages, with a pale shell and wide lip having evolved on at least two separate occasions (in C. carabinata and C. colletti) from montane ancestors having a dark, narrow-lipped shell.


Assuntos
Floresta Úmida , Caramujos , Humanos , Animais , Filogenia , Sri Lanka , Análise de Sequência de DNA
2.
Ecol Lett ; 23(4): 674-681, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32043741

RESUMO

Decades of research suggest that species richness depends on spatial characteristics of habitat patches, especially their size and isolation. In contrast, the habitat amount hypothesis predicts that (1) species richness in plots of fixed size (species density) is more strongly and positively related to the amount of habitat around the plot than to patch size or isolation; (2) habitat amount better predicts species density than patch size and isolation combined, (3) there is no effect of habitat fragmentation per se on species density and (4) patch size and isolation effects do not become stronger with declining habitat amount. Data on eight taxonomic groups from 35 studies around the world support these predictions. Conserving species density requires minimising habitat loss, irrespective of the configuration of the patches in which that habitat is contained.


Assuntos
Ecossistema
3.
Mol Phylogenet Evol ; 131: 193-210, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30278252

RESUMO

The genus Chondrocyclus Ancey, 1898 contains the majority of southern African members of the Cyclophoridae, a large family of operculate land snails. We present the first molecular phylogeny of the genus based on two mitochondrial genes (16S and CO1) and complement this with an appraisal of morphological characters relating to the shell and soft parts. Worn shells on which some descriptions and records of different species were based appear to be indistinguishable morphologically, creating taxonomic confusion. We show that Chondrocyclus s.l. underwent two major radiations, one Afromontane and the other largely coastal. Accordingly, we recommend a revision recognising two genera. Chondrocyclus s.s. contains four monophyletic lineages, each characterized by a combination of morphological features. The Afromontane group is shown to be a species complex; relationships within this complex could not be resolved due to insufficient DNA sequence data. The molecular data confirms the monophyly of seven currently recognised species and provides evidence for at least twelve undescribed species; the morphological data are broadly consistent with this finding. The morphological data suggest that the two species from countries to the north of South Africa should be removed from the genus, and that Chondrocyclus sensu lato is endemic to South Africa. The historical biogeography of this group of microhabitat specialists with poor dispersal abilities contributes an additional, phylogenetically independent taxon to our understanding of the processes generating biodiversity in southern Africa, a natural laboratory for palaeobiogeography. All taxa are narrow-range endemics, underlining the importance of conserving South Africa's threatened forest habitats.


Assuntos
Ecossistema , Filogenia , Caramujos/classificação , Caramujos/genética , Animais , Sequência de Bases , Teorema de Bayes , Bases de Dados Genéticas , Geografia , Caramujos/anatomia & histologia , África do Sul , Especificidade da Espécie
4.
Ecology ; 100(12): e02861, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31380568

RESUMO

Habitat destruction is the single greatest anthropogenic threat to biodiversity. Decades of research on this issue have led to the accumulation of hundreds of data sets comparing species assemblages in larger, intact, habitats to smaller, more fragmented, habitats. Despite this, little synthesis or consensus has been achieved, primarily because of non-standardized sampling methodology and analyses of notoriously scale-dependent response variables (i.e., species richness). To be able to compare and contrast the results of habitat fragmentation on species' assemblages, it is necessary to have the underlying data on species abundances and sampling intensity, so that standardization can be achieved. To accomplish this, we systematically searched the literature for studies where abundances of species in assemblages (of any taxa) were sampled from many habitat patches that varied in size. From these, we extracted data from several studies, and contacted authors of studies where appropriate data were collected but not published, giving us 117 studies that compared species assemblages among habitat fragments that varied in area. Less than one-half (41) of studies came from tropical forests of Central and South America, but there were many studies from temperate forests and grasslands from all continents except Antarctica. Fifty-four of the studies were on invertebrates (mostly insects), but there were several studies on plants (15), birds (16), mammals (19), and reptiles and amphibians (13). We also collected qualitative information on the length of time since fragmentation. With data on total and relative abundances (and identities) of species, sampling effort, and affiliated meta-data about the study sites, these data can be used to more definitively test hypotheses about the role of habitat fragmentation in altering patterns of biodiversity. There are no copyright restrictions. Please cite this data paper and the associated Dryad data set if the data are used in publications.

5.
Ecol Evol ; 4(9): 1524-37, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24967073

RESUMO

Habitat fragmentation studies have produced complex results that are challenging to synthesize. Inconsistencies among studies may result from variation in the choice of landscape metrics and response variables, which is often compounded by a lack of key statistical or methodological information. Collating primary datasets on biodiversity responses to fragmentation in a consistent and flexible database permits simple data retrieval for subsequent analyses. We present a relational database that links such field data to taxonomic nomenclature, spatial and temporal plot attributes, and environmental characteristics. Field assessments include measurements of the response(s) (e.g., presence, abundance, ground cover) of one or more species linked to plots in fragments within a partially forested landscape. The database currently holds 9830 unique species recorded in plots of 58 unique landscapes in six of eight realms: mammals 315, birds 1286, herptiles 460, insects 4521, spiders 204, other arthropods 85, gastropods 70, annelids 8, platyhelminthes 4, Onychophora 2, vascular plants 2112, nonvascular plants and lichens 320, and fungi 449. Three landscapes were sampled as long-term time series (>10 years). Seven hundred and eleven species are found in two or more landscapes. Consolidating the substantial amount of primary data available on biodiversity responses to fragmentation in the context of land-use change and natural disturbances is an essential part of understanding the effects of increasing anthropogenic pressures on land. The consistent format of this database facilitates testing of generalizations concerning biologic responses to fragmentation across diverse systems and taxa. It also allows the re-examination of existing datasets with alternative landscape metrics and robust statistical methods, for example, helping to address pseudo-replication problems. The database can thus help researchers in producing broad syntheses of the effects of land use. The database is dynamic and inclusive, and contributions from individual and large-scale data-collection efforts are welcome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA