Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 132(1): e1-e21, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36448480

RESUMO

BACKGROUND: We examined components of systemic and intestinal renin-angiotensin system on gut barrier permeability, glucose homeostasis, systemic inflammation, and progression of diabetic retinopathy (DR) in human subjects and mice with type 1 diabetes (T1D). METHODS: T1D individual with (n=18) and without (n=20) DR and controls (n=34) were examined for changes in gut-regulated components of the immune system, gut leakage markers (FABP2 [fatty acid binding protein 2] and peptidoglycan), and Ang II (angiotensin II); Akita mice were orally administered a Lactobacillus paracasei (LP) probiotic expressing humanized ACE2 (angiotensin-converting enzyme 2) protein (LP-ACE2) as either a prevention or an intervention. Akita mice with genetic overexpression of humanAce2 by small intestine epithelial cells (Vil-Cre.hAce2KI-Akita) were similarly examined. After 9 months of T1D, circulatory, enteral, and ocular end points were assessed. RESULTS: T1D subjects exhibit elevations in gut-derived circulating immune cells (ILC1 cells) and higher gut leakage markers, which were positively correlated with plasma Ang II and DR severity. The LP-ACE2 prevention cohort and genetic overexpression of intestinal ACE2 preserved barrier integrity, reduced inflammatory response, improved hyperglycemia, and delayed development of DR. Improvements in glucose homeostasis were due to intestinal MasR activation, resulting in a GSK-3ß (glycogen synthase kinase-3 beta)/c-Myc (cellular myelocytomatosis oncogene)-mediated decrease in intestinal glucose transporter expression. In the LP-ACE2 intervention cohort, gut barrier integrity was improved and DR reversed, but no improvement in hyperglycemia was observed. These data support that the beneficial effects of LP-ACE2 on DR are due to the action of ACE2, not improved glucose homeostasis. CONCLUSIONS: Dysregulated systemic and intestinal renin-angiotensin system was associated with worsening gut barrier permeability, gut-derived immune cell activation, systemic inflammation, and progression of DR in human subjects. In Akita mice, maintaining intestinal ACE2 expression prevented and reversed DR, emphasizing the multifaceted role of the intestinal renin-angiotensin system in diabetes and DR.


Assuntos
Diabetes Mellitus Tipo 1 , Retinopatia Diabética , Hiperglicemia , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Retinopatia Diabética/prevenção & controle , Glucose/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hiperglicemia/complicações , Inflamação/metabolismo , Intestino Delgado , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/genética , Sistema Renina-Angiotensina/fisiologia
2.
Circ Res ; 130(3): 401-417, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35113664

RESUMO

Hypertension is a worldwide problem with major impacts on health including morbidity and mortality, as well as consumption of health care resources. Nearly 50% of American adults have high blood pressure, and this rate is rising. Even with multiple antihypertensive drugs and aggressive lifestyle modifications, blood pressure is inadequately controlled in about 1 of 5 hypertensive individuals. This review highlights a hypothesis for hypertension that suggests alternative mechanisms for blood pressure elevation and maintenance. A better understanding of these mechanisms could open avenues for more successful treatments. The hypothesis accounts for recent understandings of the involvement of gut physiology, gut microbiota, and neuroinflammation in hypertension. It includes bidirectional communication between gut microbiota and gut epithelium in the gut-brain axis that is involved in regulation of autonomic nervous system activity and blood pressure control. Dysfunction of this gut-brain axis, including dysbiosis of gut microbiota, gut epithelial dysfunction, and deranged input to the brain, contributes to hypertension via inflammatory mediators, metabolites, bacteria in the circulation, afferent information alterations, etc resulting in neuroinflammation and unbalanced autonomic nervous system activity that elevates blood pressure. This in turn negatively affects gut function and its microbiota exacerbating the problem. We focus this review on the gut-brain axis hypothesis for hypertension and possible contribution to racial disparities in hypertension. A novel idea, that immunoglobulin A-coated bacteria originating in the gut with access to the brain could be involved in hypertension, is raised. Finally, minocycline, with its anti-inflammatory and antimicrobial properties, is evaluated as a potential antihypertensive drug acting on this axis.


Assuntos
Eixo Encéfalo-Intestino , Microbioma Gastrointestinal , Hipertensão/microbiologia , Animais , Humanos , Hipertensão/fisiopatologia
3.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36768972

RESUMO

Hypertension (HTN) is associated with gut dysbiosis and the depletion of butyrate-producing bacteria in animal models and people. Furthermore, fecal material transfer from donor hypertensive patients increases blood pressure in normotensive recipient animals and ameliorates HTN-associated pathophysiology. These observations have implications in the impaired interactions between the gut and gut microbiota in HTN. Although this concept is supported in animal models, little is known about human HTN. Therefore, our objective for this study was to compare gene expression with transcriptomics and its potential to influence microbiota in subjects with normal and high blood pressure (HBP). Colon samples from reference subjects with normal blood pressure (REF) and HBP were used for RNA-seq to analyze their transcriptomes. We observed the significant downregulation of gene sets governing immune responses (e.g., SGK1 and OASL), gut epithelial function (e.g., KRT20 and SLC9A3R1), gut microbiota (e.g., PPARG and CIDEC) and genes associated with cardiovascular and gut diseases (e.g., PLAUR and NLN) in HBP subjects; the expression of genes within these pathways correlated with blood pressure. Potential drug targets in the gut epithelium were identified using the Drug Gene International Database for possible use in HTN. They include peroxisome proliferator-activated receptor gamma (PPRG), active serum/glucocorticoid regulated kinase 1 (SGK1) and 3 beta-hydroxysteroid isomerase type II inhibitor (HSD3B). Finally, butyrate, a microbiota-derived short-chain fatty acid, restored the disrupted expression of certain functional genes in colonic organoids from HBP subjects. Patients with HBP exhibit a unique transcriptome that could underlie impaired gut-microbiota interactions. Targeting these interactions could provide a promising new therapeutic intervention for hypertension management.


Assuntos
Butiratos , Hipertensão , Animais , Humanos , Butiratos/metabolismo , Pressão Sanguínea/genética , Colo/metabolismo , Expressão Gênica , Disbiose/complicações
4.
Mol Psychiatry ; 26(8): 4277-4287, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31988436

RESUMO

Single nucleotide exact amplicon sequence variants (ASV) of the human gut microbiome were used to evaluate if individuals with a depression phenotype (DEPR) could be identified from healthy reference subjects (NODEP). Microbial DNA in stool samples obtained from 40 subjects were characterized using high throughput microbiome sequence data processed via DADA2 error correction combined with PIME machine-learning de-noising and taxa binning/parsing of prevalent ASVs at the single nucleotide level of resolution. Application of ALDEx2 differential abundance analysis with assessed effect sizes and stringent PICRUSt2 predicted metabolic pathways. This multivariate machine-learning approach significantly differentiated DEPR (n = 20) vs. NODEP (n = 20) (PERMANOVA P < 0.001) based on microbiome taxa clustering and neurocircuit-relevant metabolic pathway network analysis for GABA, butyrate, glutamate, monoamines, monosaturated fatty acids, and inflammasome components. Gut microbiome dysbiosis using ASV prevalence data may offer the diagnostic potential of using human metaorganism biomarkers to identify individuals with a depression phenotype.


Assuntos
Depressão , Microbioma Gastrointestinal , Aprendizado de Máquina , Depressão/genética , Microbioma Gastrointestinal/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Nucleotídeos , Fenótipo , RNA Ribossômico 16S/genética
5.
Circ Res ; 126(10): 1456-1474, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32264791

RESUMO

ACE2 (angiotensin-converting enzyme 2) has a multiplicity of physiological roles that revolve around its trivalent function: a negative regulator of the renin-angiotensin system, facilitator of amino acid transport, and the severe acute respiratory syndrome-coronavirus (SARS-CoV) and SARS-CoV-2 receptor. ACE2 is widely expressed, including, in the lungs, cardiovascular system, gut, kidneys, central nervous system, and adipose tissue. ACE2 has recently been identified as the SARS-CoV-2 receptor, the infective agent responsible for coronavirus disease 2019, providing a critical link between immunity, inflammation, ACE2, and cardiovascular disease. Although sharing a close evolutionary relationship with SARS-CoV, the receptor-binding domain of SARS-CoV-2 differs in several key amino acid residues, allowing for stronger binding affinity with the human ACE2 receptor, which may account for the greater pathogenicity of SARS-CoV-2. The loss of ACE2 function following binding by SARS-CoV-2 is driven by endocytosis and activation of proteolytic cleavage and processing. The ACE2 system is a critical protective pathway against heart failure with reduced and preserved ejection fraction including, myocardial infarction and hypertension, and against lung disease and diabetes mellitus. The control of gut dysbiosis and vascular permeability by ACE2 has emerged as an essential mechanism of pulmonary hypertension and diabetic cardiovascular complications. Recombinant ACE2, gene-delivery of Ace2, Ang 1-7 analogs, and Mas receptor agonists enhance ACE2 action and serve as potential therapies for disease conditions associated with an activated renin-angiotensin system. rhACE2 (recombinant human ACE2) has completed clinical trials and efficiently lowered or increased plasma angiotensin II and angiotensin 1-7 levels, respectively. Our review summarizes the progress over the past 20 years, highlighting the critical role of ACE2 as the novel SARS-CoV-2 receptor and as the negative regulator of the renin-angiotensin system, together with implications for the coronavirus disease 2019 pandemic and associated cardiovascular diseases.


Assuntos
Betacoronavirus/fisiologia , Doenças Cardiovasculares , Infecções por Coronavirus , Pandemias , Peptidil Dipeptidase A/fisiologia , Pneumonia Viral , Sistema Renina-Angiotensina/fisiologia , Proteína ADAM17/fisiologia , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19 , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/fisiopatologia , Infecções por Coronavirus/complicações , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/virologia , Complicações do Diabetes/metabolismo , Complicações do Diabetes/fisiopatologia , Humanos , Terapia de Alvo Molecular , Pneumonia Viral/complicações , Pneumonia Viral/metabolismo , Pneumonia Viral/fisiopatologia , Pneumonia Viral/virologia , Receptores Virais/fisiologia , SARS-CoV-2 , Ligação Viral , Tratamento Farmacológico da COVID-19
6.
Am Heart J ; 239: 27-37, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33984318

RESUMO

BACKGROUND: Hypertension (HTN) is frequently linked with depression (DEP) in adults with cardiovascular disease (CVD), yet the underlying mechanism and successful management remain elusive. We approached this knowledge gap through the lens that humans are eukaryote-prokaryote "meta-organisms," such that cardiovascular disease dysregulation is a mosaic disorder involving dysbiosis of the gut. We hypothesized that patients diagnosed with hypertension plus depression harbor a unique gut microbial ecology with attending functional genomics engaged with their hosts' gut/brain axis physiology. METHODS: Stool microbiome DNA was analyzed by whole metagenome shotgun sequencing in 54 subjects parsed into cohorts diagnosed with HTN only (N = 18), DEP only (N = 7), DEP plus HTN (DEP-HTN) (N = 8), or reference subjects with neither HTN nor DEP (N = 21). A novel battery of machine-learning multivariate analyses of de-noised data yielded effect sizes and permutational covariance-based dissimilarities that significantly differentiated the cohorts (false discovery rate (FDR)-adjusted P ≤ .05); data clustering within 95% confidence interval). RESULTS: Metagenomic significant differences extricated the four cohorts. Data of the cohort exhibiting DEP-HTN were germane to the interplay of central control of blood pressure concomitant with the neuropathology of depressive disorders. DEP-HTN gut bacterial community ecology was defined by co-occurrence of Eubacterium siraeum, Alistipes obesi, Holdemania filiformis, and Lachnospiraceae bacterium 1.1.57FAA with Streptococcus salivariu. The corresponding microbial functional genomics of DEP-HTN engaged pathways degrading GABA and beneficial short chain fatty acids (SCFA), and are associated with enhanced sodium absorption and inflammasome induction. CONCLUSIONS: These data suggest a new putative endotype of hypertension, which we denote "depressive-hypertension" (DEP-HTN), for which we posit a model that is distinctive from either HTN alone or DEP alone. An "endotype" is a subtype of a heterogeneous pathophysiological mechanism. The DEP-HTN model incorporates a unique signature of microbial taxa and functional genomics with crosstalk that putatively intertwines host pathophysiology involving the gastrointestinal tract with disruptions in central control of blood pressure and mood. The DEP-HTN endotype model engages cardiology with gastroenterology and psychiatry, providing a proof-of-concept foundation to explore future treatments, diagnosis, and prevention of HTN-coupled mood disorders.


Assuntos
Afeto/fisiologia , Biota/genética , Depressão , Disbiose , Microbioma Gastrointestinal , Hipertensão , Adulto , Ciências Biocomportamentais , Depressão/diagnóstico , Depressão/metabolismo , Depressão/fisiopatologia , Disbiose/diagnóstico , Disbiose/fisiopatologia , Disbiose/psicologia , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiopatologia , Humanos , Hipertensão/diagnóstico , Hipertensão/metabolismo , Hipertensão/psicologia , Aprendizado de Máquina , Masculino , Redes e Vias Metabólicas , Metagenoma
7.
Curr Opin Nephrol Hypertens ; 30(2): 159-165, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33394733

RESUMO

PURPOSE OF REVIEW: Rapidly emerging evidence implicates an important role of gut-brain-bone marrow (BM) axis involving gut microbiota (GM), gut epithelial wall permeability, increased production of pro-inflammatory BM cells and neuroinflammation in hypertension (HTN). However, the precise sequence of events involving these organs remains to be established. Furthermore, whether an impaired gut-brain-BM axis is a cause or consequence of HTN is actively under investigation. This will be extremely important for translation of this fundamental knowledge to novel, innovative approaches for the control and management of HTN. Therefore, our objectives are to summarize the latest hypothesis, provide evidence for and against the impaired gut, BM and brain interactions in HTN and discuss perspectives and future directions. RECENT FINDINGS: Hypertensive stimuli activate autonomic neural pathways resulting in increased sympathetic and decreased parasympathetic cardiovascular modulation. This directly affects the functions of cardiovascular-relevant organs to increase blood pressure. Increases in sympathetic drive to the gut and BM also trigger sequences of signaling events that ultimately contribute to altered GM, increased gut permeability, enhanced gut- and brain-targeted pro-inflammatory cells from the BM in perpetuation and establishment of HTN. SUMMARY: In this review, we present the mechanisms involving the brain, gut, and BM, whose dysfunctional interactions may be critical in persistent neuroinflammation and key in the development and establishment of HTN.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Pressão Sanguínea , Medula Óssea , Encéfalo , Humanos
8.
Clin Sci (Lond) ; 135(1): 1-17, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33399851

RESUMO

The rapid spread of the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has brought into focus the key role of angiotensin-converting enzyme 2 (ACE2), which serves as a cell surface receptor required for the virus to enter cells. SARS-CoV-2 can decrease cell surface ACE2 directly by internalization of ACE2 bound to the virus and indirectly by increased ADAM17 (a disintegrin and metalloproteinase 17)-mediated shedding of ACE2. ACE2 is widely expressed in the heart, lungs, vasculature, kidney and the gastrointestinal (GI) tract, where it counteracts the deleterious effects of angiotensin II (AngII) by catalyzing the conversion of AngII into the vasodilator peptide angiotensin-(1-7) (Ang-(1-7)). The down-regulation of ACE2 by SARS-CoV-2 can be detrimental to the cardiovascular system and kidneys. Further, decreased ACE2 can cause gut dysbiosis, inflammation and potentially worsen the systemic inflammatory response and coagulopathy associated with SARS-CoV-2. This review aims to elucidate the crucial role of ACE2 both as a regulator of the renin-angiotensin system and a receptor for SARS-CoV-2 as well as the implications for Coronavirus disease 19 and its associated cardiovascular and renal complications.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/enzimologia , Cardiopatias/enzimologia , Nefropatias/enzimologia , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Cardiopatias/genética , Cardiopatias/metabolismo , Cardiopatias/virologia , Humanos , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/virologia , Receptores Virais/genética , Receptores Virais/metabolismo , Sistema Renina-Angiotensina , SARS-CoV-2/fisiologia
9.
FASEB J ; 34(10): 13626-13640, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32780919

RESUMO

Many probiotics that affect gut microbial ecology have been shown to produce beneficial effects on renin-angiotensin-dependent rodent models and human hypertension. We hypothesized that Bifidobacterium breve CECT7263 (BFM) would attenuate hypertension in deoxycorticosterone acetate (DOCA)-salt rats, a renin-independent model of hypertension. Rats were randomly divided into five groups: control, DOCA-salt, treated DOCA-salt-BFM, treated DOCA-salt-butyrate, and treated DOCA-salt-acetate, for 5 weeks. BFM prevented the increase in systolic blood pressure, cardiac weight, and renal damage induced by DOCA-salt. BFM increased acetate-producing bacterial population and gut acetate levels, improved colonic integrity, normalized endotoxemia, plasma trimethylamine (TMA) levels, and restored the Th17 and Treg content in mesenteric lymph nodes and aorta. Furthermore, BFM improved nitric oxide-dependent vasorelaxation induced by acetylcholine in aortic rings and reduced NADPH oxidase activity in DOCA-salt animals. These protective effects were mimicked by acetate, but not by butyrate supplementation. These data demonstrate that BFM induces changes in gut microbiota linked with attenuation of endothelial dysfunction and increase in blood pressure in this low-renin form of hypertension. These beneficial effects seem to be mediated by increased acetate and reduced TMA production by gut microbiota, thus, improving gut integrity and restoring Th17/Tregs polarization and endotoxemia.


Assuntos
Bifidobacterium breve , Pressão Sanguínea , Microbioma Gastrointestinal , Hipertensão/terapia , Probióticos/uso terapêutico , Vasodilatação , Animais , Acetato de Desoxicorticosterona , Hipertensão/induzido quimicamente , Masculino , Ratos , Ratos Wistar
10.
Circ Res ; 125(1): 104-116, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31219753

RESUMO

Hypertension affects an estimated 103 million Americans, yet gaps in knowledge continue to limit its successful management. Rapidly emerging evidence is linking gut dysbiosis to many disorders and diseases including hypertension. The evolution of the -omics techniques has allowed determination of the abundance and potential function of gut bacterial species by next-generation bacterial sequencing, whereas metabolomics techniques report shifts in bacterial metabolites in the systemic circulation of hypertensive patients and rodent models of hypertension. The gut microbiome and host have evolved to exist in balance and cooperation, and there is extensive crosstalk between the 2 to maintain this balance, including during regulation of blood pressure. However, an understanding of the mechanisms of dysfunctional host-microbiome interactions in hypertension is still lacking. Here, we synthesize some of our recent data with published reports and present concepts and a rationale for our emerging hypothesis of a dysfunctional gut-brain axis in hypertension. Hopefully, this new information will improve the understanding of hypertension and help to address some of these knowledge gaps.


Assuntos
Sistema Nervoso Autônomo/metabolismo , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/metabolismo , Hipertensão/metabolismo , Animais , Sistema Nervoso Autônomo/microbiologia , Pressão Sanguínea/fisiologia , Trato Gastrointestinal/microbiologia , Humanos , Hipertensão/genética , Hipertensão/microbiologia
11.
Circ Res ; 124(5): 727-736, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30612527

RESUMO

RATIONALE: Increased microglial activation and neuroinflammation within autonomic brain regions have been implicated in sustained hypertension, and their inhibition by minocycline-an anti-inflammatory antibiotic-produces beneficial effects. These observations led us to propose a dysfunctional brain-gut communication hypothesis for hypertension. However, it has been difficult to reconcile whether an anti-inflammatory or antimicrobial action is the primary beneficial effect of minocycline in hypertension. Accordingly, we utilized chemically modified tetracycline-3 (CMT-3)-a derivative of tetracycline that has potent anti-inflammatory activity-to address this question. OBJECTIVE: Test the hypothesis that central administration of CMT-3 would inhibit microglial activation, attenuate neuroinflammation, alter selective gut microbial communities, protect the gut wall from developing hypertension-associated pathology, and attenuate hypertension. METHODS AND RESULTS: Rats were implanted with radiotelemetry devices for recording mean arterial pressure. Ang II (angiotensin II) was infused subcutaneously using osmotic mini-pumps to induce hypertension. Another osmotic mini-pump was surgically implanted to infuse CMT-3 intracerebroventricularly. Intracerebroventricular CMT- 3 infusion was also investigated in SHR (spontaneously hypertensive rats). Physiological, pathological, immunohistological parameters, and fecal microbiota were analyzed. Intracerebroventricular CMT-3 significantly inhibited Ang II-induced increases in number of microglia, their activation, and proinflammatory cytokines in the paraventricular nucleus of hypothalamus. Further, intracerebroventricular CMT-3 attenuated increased mean arterial pressure, normalized sympathetic activity, and left ventricular hypertrophy in Ang II rats, as well as in the SHR. Finally, CMT-3 beneficially restored certain gut microbial communities altered by Ang II and attenuated pathological alterations in gut wall. CONCLUSIONS: These observations demonstrate that inhibition of microglial activation alone was sufficient to induce significant antihypertensive effects. This was associated with unique changes in gut microbial communities and profound attenuation of gut pathology. They suggest, for the first time, a link between microglia and certain microbial communities that may have implications for treatment of hypertension.


Assuntos
Anti-Hipertensivos/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Intestinos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Tetraciclinas/administração & dosagem , Angiotensina II , Animais , Antibacterianos/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Pressão Arterial/efeitos dos fármacos , Sistema Nervoso Autônomo/efeitos dos fármacos , Sistema Nervoso Autônomo/fisiopatologia , Modelos Animais de Doenças , Hipertensão/microbiologia , Hipertensão/patologia , Hipertensão/fisiopatologia , Infusões Intraventriculares , Intestinos/inervação , Intestinos/microbiologia , Intestinos/patologia , Masculino , Microglia/patologia , Núcleo Hipotalâmico Paraventricular/patologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
12.
Physiol Genomics ; 52(3): 121-132, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31869283

RESUMO

Fecal matter transfer from hypertensive patients and animals into normotensive animals increases blood pressure, strengthening the evidence for gut-microbiota interactions in the control of blood pressure. However, cellular and molecular events involved in gut dysbiosis-associated hypertension remain poorly understood. Therefore, our objective in this study was to use gene expression profiling to characterize the gut epithelium layer in the colon in hypertension. We observed significant suppression of components of T cell receptor (TCR) signaling in the colonic epithelium of spontaneously hypertensive rats (SHR) when compared with Wistar Kyoto (WKY) normotensive rats. Western blot analysis confirmed lower expression of key proteins including T cell surface glycoprotein CD3 gamma chain (Cd3g) and lymphocyte cytosolic protein 2 (Lcp2). Furthermore, lower expression of cytokines and receptors responsible for lymphocyte proliferation, differentiation, and activation (e.g., Il12r, Il15ra, Il7, Il16, Tgfb1) was observed in the colonic epithelium of the SHR. Finally, Alpi and its product, intestinal alkaline phosphatase, primarily localized in the epithelial cells, were profoundly lower in the SHR. These observations demonstrate that the colonic epithelium undergoes functional changes linked to altered immune, barrier function, and dysbiosis in hypertension.


Assuntos
Colo/metabolismo , Microbioma Gastrointestinal/genética , Hipertensão/metabolismo , Mucosa Intestinal/metabolismo , Transcriptoma , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Pressão Sanguínea , Complexo CD3/metabolismo , Citocinas/metabolismo , Disbiose , Isoenzimas/metabolismo , Masculino , Fosfoproteínas/metabolismo , RNA-Seq , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores de Antígenos de Linfócitos T/metabolismo
13.
Clin Sci (Lond) ; 134(19): 2581-2595, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33063820

RESUMO

The angiotensin-converting enzyme 2 (ACE2) has emerged as a critical regulator of the renin-angiotensin system (RAS), which plays important roles in cardiovascular homeostasis by regulating vascular tone, fluid and electrolyte balance. ACE2 functions as a carboxymonopeptidase hydrolyzing the cleavage of a single C-terminal residue from Angiotensin-II (Ang-II), the key peptide hormone of RAS, to form Angiotensin-(1-7) (Ang-(1-7)), which binds to the G-protein-coupled Mas receptor and activates signaling pathways that counteract the pathways activated by Ang-II. ACE2 is expressed in a variety of tissues and overwhelming evidence substantiates the beneficial effects of enhancing ACE2/Ang-(1-7)/Mas axis under many pathological conditions in these tissues in experimental models. This review will provide a succinct overview on current strategies to enhance ACE2 as therapeutic agent, and discuss limitations and future challenges. ACE2 also has other functions, such as acting as a co-factor for amino acid transport and being exploited by the severe acute respiratory syndrome coronaviruses (SARS-CoVs) as cellular entry receptor, the implications of these functions in development of ACE2-based therapeutics will also be discussed.


Assuntos
Enzima de Conversão de Angiotensina 2/uso terapêutico , Animais , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Humanos , Modelos Biológicos , Especificidade de Órgãos , Sistema Renina-Angiotensina
14.
Pharmacol Res ; 151: 104518, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730803

RESUMO

Pulmonary hypertension (PH) is classically considered a disease of pulmonary vasculature which has been the predominant target for drug development and PH therapy. Despite significant advancement in recent years in identification of new drug targets and innovative treatment strategies, the prognosis of PH remains poor, with median survival of 5 years. Recent studies have demonstrated involvement of neuroinflammation, altered autonomic and gastrointestinal functions and increased trafficking of bone marrow-derived cells in cardiopulmonary pathophysiology. This has led to the proposal that PH could be considered a systemic disease involving complex interactions among many organs. Our objectives in this review is to summarize evidence for the involvement of the brain, bone marrow and gut in PH pathophysiology. Then, to synthesize all evidence supporting a brain-gut-lung interaction hypothesis for consideration in PH pathophysiology and finally to summarize unanswered questions and future directions to move this novel concept forward. This forward-thinking view, if proven by further experiments, would provide new opportunities and novel targets for the control and treatment of PH.


Assuntos
Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/fisiopatologia , Pulmão/fisiopatologia , Animais , Medula Óssea/fisiopatologia , Encéfalo/fisiopatologia , Microbioma Gastrointestinal , Trato Gastrointestinal/fisiopatologia , Humanos , Inflamação/complicações , Inflamação/fisiopatologia , Sistema Renina-Angiotensina
15.
Am J Physiol Lung Cell Mol Physiol ; 317(4): L434-L444, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31364370

RESUMO

Pulmonary hypertension complicates the care of many patients with chronic lung diseases (defined as Group 3 pulmonary hypertension), yet the mechanisms that mediate the development of pulmonary vascular disease are not clearly defined. Despite being the most prevalent form of pulmonary hypertension, to date there is no approved treatment for patients with disease. Myeloid-derived suppressor cells (MDSCs) and endothelial cells in the lung express the chemokine receptor CXCR2, implicated in the evolution of both neoplastic and pulmonary vascular remodeling. However, precise cellular contribution to lung disease is unknown. Therefore, we used mice with tissue-specific deletion of CXCR2 to investigate the role of this receptor in Group 3 pulmonary hypertension. Deletion of CXCR2 in myeloid cells attenuated the recruitment of polymorphonuclear MDSCs to the lungs, inhibited vascular remodeling, and protected against pulmonary hypertension. Conversely, loss of CXCR2 in endothelial cells resulted in worsened vascular remodeling, associated with increased MDSC migratory capacity attributable to increased ligand availability, consistent with analyzed patient sample data. Taken together, these data suggest that CXCR2 regulates MDSC activation, informing potential therapeutic application of MDSC-targeted treatments.


Assuntos
Células Endoteliais/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Células Supressoras Mieloides/metabolismo , Fibrose Pulmonar/metabolismo , Receptores de Interleucina-8B/genética , Transdução de Sinais , Animais , Bleomicina/administração & dosagem , Comunicação Celular , Movimento Celular , Células Endoteliais/patologia , Feminino , Expressão Gênica , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipóxia/etiologia , Hipóxia/genética , Hipóxia/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Knockout , Células Supressoras Mieloides/patologia , Cultura Primária de Células , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Receptores de Interleucina-8B/deficiência , Remodelação Vascular
16.
Am J Physiol Heart Circ Physiol ; 317(2): H279-H289, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31150271

RESUMO

Increased sympathetic nervous system activity is a hallmark of hypertension (HTN), and it is implicated in altered immune system responses in its pathophysiology. However, the precise mechanisms of neural-immune interaction in HTN remain elusive. We have previously shown an association between elevated sympathetic drive to the bone marrow (BM) and activated BM immune cells in rodent models of HTN. Moreover, microglial-dependent neuroinflammation is also seen in rodent models of HTN. However, the cause-effect relationship between central and systemic inflammatory responses and the sympathetic drive remains unknown. These observations led us to hypothesize that increase in the femoral BM sympathetic nerve activity (fSNA) initiates a cascade of events leading to increase in blood pressure (BP). Here, we investigated the temporal relationship between the BM sympathetic drive, activation of the central and peripheral immune system, and increase in BP in the events leading to established HTN. The present study demonstrates that central infusion of angiotensin II (ANG II) induces early microglial activation in the paraventricular nucleus of hypothalamus, which preceded increase in the fSNA. In turn, activation of fSNA correlated with the timing of increased production and release of CD4+.IL17+ T cells and other proinflammatory cells into circulation and elevation in BP, whereas infiltration of CD4+ cells to the paraventricular nucleus marked establishment of ANG II HTN. This study identifies cellular and molecular mechanisms involved in neural-immune interactions in early and established stages of rodent ANG II HTN. NEW & NOTEWORTHY Early microglia activation in paraventricular nucleus precedes sympathetic activation of the bone marrow. This leads to increased bone marrow immune cells and their release into circulation and an increase in blood pressure. Infiltration of CD4+ T cells into paraventricular nucleus paraventricular nucleus marks late hypertension.


Assuntos
Pressão Sanguínea , Medula Óssea/inervação , Hipertensão/fisiopatologia , Inflamação/fisiopatologia , Neuroimunomodulação , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Angiotensina II , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças , Fêmur , Hipertensão/induzido quimicamente , Hipertensão/imunologia , Hipertensão/metabolismo , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Microglia/imunologia , Microglia/metabolismo , Núcleo Hipotalâmico Paraventricular/imunologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos Sprague-Dawley , Sistema Nervoso Simpático/imunologia , Sistema Nervoso Simpático/metabolismo , Fatores de Tempo
17.
Circ Res ; 120(2): 312-323, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-27799253

RESUMO

RATIONALE: Sympathetic nervous system control of inflammation plays a central role in hypertension. The gut receives significant sympathetic innervation, is densely populated with a diverse microbial ecosystem, and contains immune cells that greatly impact overall inflammatory homeostasis. Despite this uniqueness, little is known about the involvement of the gut in hypertension. OBJECTIVE: Test the hypothesis that increased sympathetic drive to the gut is associated with increased gut wall permeability, increased inflammatory status, and microbial dysbiosis and that these gut pathological changes are linked to hypertension. METHODS AND RESULTS: Gut epithelial integrity and wall pathology were examined in spontaneously hypertensive rat and chronic angiotensin II infusion rat models. The increase in blood pressure in spontaneously hypertensive rat was associated with gut pathology that included increased intestinal permeability and decreased tight junction proteins. These changes in gut pathology in hypertension were associated with alterations in microbial communities relevant in blood pressure control. We also observed enhanced gut-neuronal communication in hypertension originating from paraventricular nucleus of the hypothalamus and presenting as increased sympathetic drive to the gut. Finally, angiotensin-converting enzyme inhibition (captopril) normalized blood pressure and was associated with reversal of gut pathology. CONCLUSIONS: A dysfunctional sympathetic-gut communication is associated with gut pathology, dysbiosis, and inflammation and plays a key role in hypertension. Thus, targeting of gut microbiota by innovative probiotics, antibiotics, and fecal transplant, in combination with the current pharmacotherapy, may be a novel strategy for hypertension treatment.


Assuntos
Microbioma Gastrointestinal/fisiologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiopatologia , Angiotensina II/toxicidade , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Masculino , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Ratos Wistar
18.
Clin Sci (Lond) ; 132(6): 701-718, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29507058

RESUMO

Recent evidence indicates a link between gut pathology and microbiome with hypertension (HTN) in animal models. However, whether this association exists in humans is unknown. Thus, our objectives in the present study were to test the hypotheses that high blood pressure (BP) patients have distinct gut microbiomes and that gut-epithelial barrier function markers and microbiome composition could predict systolic BP (SBP). Fecal samples, analyzed by shotgun metagenomics, displayed taxonomic and functional changes, including altered butyrate production between patients with high BP and reference subjects. Significant increases in plasma of intestinal fatty acid binding protein (I-FABP), lipopolysaccharide (LPS), and augmented gut-targetting proinflammatory T helper 17 (Th17) cells in high BP patients demonstrated increased intestinal inflammation and permeability. Zonulin, a gut epithelial tight junction protein regulator, was markedly elevated, further supporting gut barrier dysfunction in high BP. Zonulin strongly correlated with SBP (R2 = 0.5301, P<0.0001). Two models predicting SBP were built using stepwise linear regression analysis of microbiome data and circulating markers of gut health, and validated in a separate cohort by prediction of SBP from zonulin in plasma (R2 = 0.4608, P<0.0001). The mouse model of HTN, chronic angiotensin II (Ang II) infusion, was used to confirm the effects of butyrate and gut barrier function on the cardiovascular system and BP. These results support our conclusion that intestinal barrier dysfunction and microbiome function are linked to HTN in humans. They suggest that manipulation of gut microbiome and its barrier functions could be the new therapeutic and diagnostic avenues for HTN.


Assuntos
Bactérias/metabolismo , Pressão Sanguínea , Células Epiteliais/microbiologia , Microbioma Gastrointestinal , Hipertensão/microbiologia , Mucosa Intestinal/microbiologia , Animais , Bactérias/classificação , Bactérias/imunologia , Butiratos/sangue , Estudos de Casos e Controles , Toxina da Cólera/sangue , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Proteínas de Ligação a Ácido Graxo/sangue , Fezes/microbiologia , Haptoglobinas , Interações Hospedeiro-Patógeno , Humanos , Hipertensão/sangue , Hipertensão/imunologia , Hipertensão/fisiopatologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiopatologia , Lipopolissacarídeos/sangue , Camundongos Endogâmicos C57BL , Permeabilidade , Precursores de Proteínas , Ratos Sprague-Dawley , Células Th17/imunologia , Células Th17/metabolismo
19.
Circ Res ; 118(8): 1327-36, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27081113

RESUMO

Hypertension is the most prevalent modifiable risk factor for cardiovascular disease and disorders directly influencing cardiovascular disease morbidity and mortality, such as diabetes mellitus, chronic kidney disease, obstructive sleep apnea, etc. Despite aggressive attempts to influence lifestyle modifications and advances in pharmacotherapeutics, a large percentage of patients still do not achieve recommended blood pressure control worldwide. Thus, we think that mechanism-based novel strategies should be considered to significantly improve control and management of hypertension. The overall objective of this review is to summarize implications of peripheral- and neuroinflammation as well as the autonomic nervous system-bone marrow communication in hematopoietic cell homeostasis and their impact on hypertension pathophysiology. In addition, we discuss the novel and emerging field of intestinal microbiota and roles of gut permeability and dysbiosis in cardiovascular disease and hypertension. Finally, we propose a brain-gut-bone marrow triangular interaction hypothesis and discuss its potential in the development of novel therapies for hypertension.


Assuntos
Medula Óssea/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Entérico/metabolismo , Trato Gastrointestinal/metabolismo , Hipertensão/metabolismo , Hipertensão/terapia , Animais , Microbioma Gastrointestinal/fisiologia , Humanos , Hipertensão/diagnóstico , Comportamento de Redução do Risco
20.
J Cardiovasc Pharmacol ; 71(3): 155-159, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29140957

RESUMO

The dysfunctional nature of CD34 cells from patients with heart failure (HF) may make them unsuitable for autologous stem-cell therapy. In view of evidence that the vasoprotective axis of the renin-angiotensin system (RAS) improves CD34 cell functions, we hypothesized that CD34 cells from patients with HF will be dysfunctional and that angiotensin-(1-7) [Ang-(1-7)] would improve their function. Peripheral blood was collected from New York Heart Association class II-IV patients with HF (n = 31) and reference subjects (n = 16). CD34 cell numbers from patients with HF were reduced by 47% (P < 0.05) and also displayed 76% reduction in migratory capacity and 56% (P < 0.05) lower production of nitric oxide. These alterations were associated with increases in RAS genes angiotensin-converting enzyme and AT2R (595%, P < 0.05) mRNA levels and 80% and 85% decreases in angiotensin-converting enzyme 2 and Mas mRNA levels, respectively. Treatment with Ang-(1-7) enhanced CD34 cell function through increased migratory potential and nitric oxide production, and reduced reactive oxygen species generation. These data show that HF CD34 cells are dysfunctional, and Ang-(1-7) improves their functions. This suggests that activation of the vasoprotective axis of the RAS may hold therapeutic potential for autologous stem-cell therapy in patients with HF.


Assuntos
Angiotensina I/farmacologia , Antígenos CD34/metabolismo , Insuficiência Cardíaca/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Estudos de Casos e Controles , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Insuficiência Cardíaca/patologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA