Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(21): 3931-3949.e26, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36240740

RESUMO

Neural migration is a critical step during brain development that requires the interactions of cell-surface guidance receptors. Cancer cells often hijack these mechanisms to disseminate. Here, we reveal crystal structures of Uncoordinated-5 receptor D (Unc5D) in complex with morphogen receptor glypican-3 (GPC3), forming an octameric glycoprotein complex. In the complex, four Unc5D molecules pack into an antiparallel bundle, flanked by four GPC3 molecules. Central glycan-glycan interactions are formed by N-linked glycans emanating from GPC3 (N241 in human) and C-mannosylated tryptophans of the Unc5D thrombospondin-like domains. MD simulations, mass spectrometry and structure-based mutants validate the crystallographic data. Anti-GPC3 nanobodies enhance or weaken Unc5-GPC3 binding and, together with mutant proteins, show that Unc5/GPC3 guide migrating pyramidal neurons in the mouse cortex, and cancer cells in an embryonic xenograft neuroblastoma model. The results demonstrate a conserved structural mechanism of cell guidance, where finely balanced Unc5-GPC3 interactions regulate cell migration.


Assuntos
Movimento Celular , Glipicanas/química , Receptores de Netrina/química , Animais , Glipicanas/metabolismo , Humanos , Camundongos , Proteínas Mutantes , Receptores de Netrina/metabolismo , Receptores de Superfície Celular/metabolismo , Anticorpos de Domínio Único , Trombospondinas
2.
Cell ; 184(10): 2680-2695.e26, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33932340

RESUMO

Enzyme-mediated damage repair or mitigation, while common for nucleic acids, is rare for proteins. Examples of protein damage are elimination of phosphorylated Ser/Thr to dehydroalanine/dehydrobutyrine (Dha/Dhb) in pathogenesis and aging. Bacterial LanC enzymes use Dha/Dhb to form carbon-sulfur linkages in antimicrobial peptides, but the functions of eukaryotic LanC-like (LanCL) counterparts are unknown. We show that LanCLs catalyze the addition of glutathione to Dha/Dhb in proteins, driving irreversible C-glutathionylation. Chemo-enzymatic methods were developed to site-selectively incorporate Dha/Dhb at phospho-regulated sites in kinases. In human MAPK-MEK1, such "elimination damage" generated aberrantly activated kinases, which were deactivated by LanCL-mediated C-glutathionylation. Surveys of endogenous proteins bearing damage from elimination (the eliminylome) also suggest it is a source of electrophilic reactivity. LanCLs thus remove these reactive electrophiles and their potentially dysregulatory effects from the proteome. As knockout of LanCL in mice can result in premature death, repair of this kind of protein damage appears important physiologically.


Assuntos
Alanina/análogos & derivados , Aminobutiratos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteoma , Receptores Acoplados a Proteínas G/metabolismo , Alanina/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Feminino , Glutationa/metabolismo , Células HEK293 , Humanos , MAP Quinase Quinase 1/metabolismo , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas de Ligação a Fosfato/química , Proteínas de Ligação a Fosfato/genética , Fosforilação , Domínios Proteicos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Sulfetos/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(18): e2117310119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35486701

RESUMO

ß-Lactams are the most important class of antibacterials, but their use is increasingly compromised by resistance, most importantly via serine ß-lactamase (SBL)-catalyzed hydrolysis. The scope of ß-lactam antibacterial activity can be substantially extended by coadministration with a penicillin-derived SBL inhibitor (SBLi), i.e., the penam sulfones tazobactam and sulbactam, which are mechanism-based inhibitors working by acylation of the nucleophilic serine. The new SBLi enmetazobactam, an N-methylated tazobactam derivative, has recently completed clinical trials. Biophysical studies on the mechanism of SBL inhibition by enmetazobactam reveal that it inhibits representatives of all SBL classes without undergoing substantial scaffold fragmentation, a finding that contrasts with previous reports on SBL inhibition by tazobactam and sulbactam. We therefore reinvestigated the mechanisms of tazobactam and sulbactam using mass spectrometry under denaturing and nondenaturing conditions, X-ray crystallography, and NMR spectroscopy. The results imply that the reported extensive fragmentation of penam sulfone­derived acyl­enzyme complexes does not substantially contribute to SBL inhibition. In addition to observation of previously identified inhibitor-induced SBL modifications, the results reveal that prolonged reaction of penam sulfones with SBLs can induce dehydration of the nucleophilic serine to give a dehydroalanine residue that undergoes reaction to give a previously unobserved lysinoalanine cross-link. The results clarify the mechanisms of action of widely clinically used SBLi, reveal limitations on the interpretation of mass spectrometry studies concerning mechanisms of SBLi, and will inform the development of new SBLi working by reaction to form hydrolytically stable acyl­enzyme complexes.


Assuntos
Compostos Azabicíclicos , Inibidores de beta-Lactamases , Penicilinas , Sulfonas , Triazóis , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química
4.
J Neurochem ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429595

RESUMO

Small molecules are being explored intensively for their applications as therapeutic molecules in the management of metabolic and neurological disorders. The natural small molecules can inhibit protein aggregation and underlying cellular pathogenesis of neurodegenerative diseases involving multi-factorial mechanisms of action. Certain natural small molecular inhibitors of pathogenic protein aggregation are highly efficient and have shown promising therapeutic potential. In the present study, Shikonin (SHK), a natural plant-based naphthoquinone has been investigated for its aggregation inhibition activity against α-synuclein (α-syn) and the neuroprotective potential in Caenorhabditis elegans (C. elegans). SHK significantly inhibited aggregation of α-syn at sub-stochiometric concentrations, delayed the linear lag phase and growth kinetics of seeded and unseeded α-syn aggregation. The binding of SHK to the C-terminus of α-syn maintained α-helical and disordered secondary structures with reduced beta-sheet content and complexity of aggregates. Further, in C. elegans transgenic PD models, SHK significantly reduced α-syn aggregation, improved locomotor activity and prevented dopaminergic (DA) neuronal degeneration, indicating the neuroprotective role of SHK. The present study highlights the potential of natural small molecules in the prevention of protein aggregation that may further be explored for their therapeutic efficacy in the management of protein aggregation and neurodegenerative diseases.

5.
Small ; 19(32): e2300409, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37058137

RESUMO

Remotely powered microrobots are proposed as next-generation vehicles for drug delivery. However, most microrobots swim with linear trajectories and lack the capacity to robustly adhere to soft tissues. This limits their ability to navigate complex biological environments and sustainably release drugs at target sites. In this work, bubble-based microrobots with complex geometries are shown to efficiently swim with non-linear trajectories in a mouse bladder, robustly pin to the epithelium, and slowly release therapeutic drugs. The asymmetric fins on the exterior bodies of the microrobots induce a rapid rotational component to their swimming motions of up to ≈150 body lengths per second. Due to their fast speeds and sharp fins, the microrobots can mechanically pin themselves to the bladder epithelium and endure shear stresses commensurate with urination. Dexamethasone, a small molecule drug used for inflammatory diseases, is encapsulated within the polymeric bodies of the microrobots. The sustained release of the drug is shown to temper inflammation in a manner that surpasses the performance of free drug controls. This system provides a potential strategy to use microrobots to efficiently navigate large volumes, pin at soft tissue boundaries, and release drugs over several days for a range of diseases.


Assuntos
Sistemas de Liberação de Medicamentos , Epitélio , Robótica , Animais , Camundongos , Microtecnologia
6.
Metabolomics ; 19(2): 8, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36710275

RESUMO

INTRODUCTION: Globally, one of the major causes of cancer related deaths in women is breast cancer. Although metabolic pattern is altered in cancer patients, robust metabolic biomarkers with a potential to improve the screening and disease monitoring are lacking. A complete metabolome profiling of breast cancer patients may lead to the identification of diagnostic/prognostic markers and potential targets. OBJECTIVES: The aim of this study was to analyze the metabolic profile in the serum from 43 breast cancer patients and 13 healthy individuals. MATERIALS & METHODS: We used 1H NMR spectroscopy for the identification and quantification of metabolites. q-RT-PCR was used to examine the relative expression of lncRNAs. RESULTS: Metabolites such as amino acids, lipids, membrane metabolites, lipoproteins, and energy metabolites were observed in the serum from both patients and healthy individuals. Using unsupervised PCA, supervised PLS-DA, supervised OPLS-DA, and random forest classification, we observed that more than 25 metabolites were altered in the breast cancer patients. Metabolites with AUC value > 0.9 were selected for further analysis that revealed significant elevation of lactate, LPR and glycerol, while the level of glucose, succinate, and isobutyrate was reduced in breast cancer patients in comparison to healthy control. The level of these metabolites (except LPR) was altered in advanced-stage breast cancer patients in comparison to early-stage breast cancer patients. The altered metabolites were also associated with over 25 signaling pathways related to metabolism. Further, lncRNAs such as H19, MEG3 and GAS5 were dysregulated in the breast tumor tissue in comparison to normal adjacent tissue. CONCLUSION: The study provides insights into metabolic alteration in breast cancer patients. It also provides an avenue to examine the association of lncRNAs with metabolic patterns in patients.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Metabolômica/métodos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Metaboloma , Espectroscopia de Ressonância Magnética/métodos , Gravidade do Paciente
7.
Metabolomics ; 19(11): 92, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940751

RESUMO

BACKGROUND: Pulmonary sarcoidosis (SAR) and tuberculosis (TB) are two granulomatous lung-diseases and often pose a diagnostic challenge to a treating physicians. OBJECTIVE: The present study aims to explore the diagnostic potential of NMR based serum metabolomics approach to differentiate SAR from TB. MATERIALS AND METHOD: The blood samples were obtained from three study groups: SAR (N = 35), TB (N = 28) and healthy normal subjects (NC, N = 56) and their serum metabolic profiles were measured using 1D 1H CPMG (Carr-Purcell-Meiboom-Gill) NMR spectra recorded at 800 MHz NMR spectrometer. The quantitative metabolic profiles were compared employing a combination of univariate and multivariate statistical analysis methods and evaluated for their diagnostic potential using receiver operating characteristic (ROC) curve analysis. RESULTS: Compared to SAR, the sera of TB patients were characterized by (a) elevated levels of lactate, acetate, 3-hydroxybutyrate (3HB), glutamate and succinate (b) decreased levels of glucose, citrate, pyruvate, glutamine, and several lipid and membrane metabolites (such as very-low/low density lipoproteins (VLDL/LDL), polyunsaturated fatty acids, etc.). CONCLUSION: The metabolic disturbances not only found to be well in concordance with various previous reports, these further demonstrated very high sensitivity and specificity to distinguish SAR from TB patients suggesting serum metabolomics analysis can serve as surrogate method in the diagnosis and clinical management of SAR.


Assuntos
Sarcoidose , Tuberculose , Humanos , Metabolômica/métodos , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética , Sarcoidose/diagnóstico
8.
Soft Matter ; 19(5): 892-904, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36648425

RESUMO

Diffusiophoresis refers to the phenomenon where colloidal particles move in response to solute concentration gradients. Existing studies on diffusiophoresis, both experimental and theoretical, primarily focus on the movement of colloidal particles in response to one-dimensional solute gradients. In this work, we numerically investigate the impact of two-dimensional solute gradients on the distribution of colloidal particles, i.e., colloidal banding, induced via diffusiophoresis. The solute gradients are generated by spatially arranged sources and sinks that emit/absorb a time-dependent solute molar rate. First we study a dipole system, i.e., one source and one sink, and discover that interdipole diffusion and molar rate decay timescales dictate colloidal banding. At timescales shorter than the interdipole diffusion timescale, we observe a rapid enhancement in particle enrichment around the source due to repulsion from the sink. However, at timescales longer than the interdipole diffusion timescale, the source and sink screen each other, leading to a slower enhancement. If the solute molar rate decays at the timescale of interdipole diffusion, an optimal separation distance is obtained such that particle enrichment is maximized. We find that the partition coefficient of solute at the interface between the source and bulk strongly impacts the optimal separation distance. Surprisingly, the diffusivity ratio of solute in the source and bulk has a much weaker impact on the optimal dipole separation distance. We also examine an octupole configuration, i.e., four sinks and four sources, arranged in a circle, and demonstrate that the geometric arrangement that maximizes enrichment depends on the radius of the circle. If the radius of the circle is small, it is preferred to have sources and sinks arranged in an alternating fashion. However, if the radius of the circle is large, a consecutive arrangement of sources and sinks is optimal. Our numerical framework introduces a novel method for spatially and temporally designing the banded structure of colloidal particles in two dimensions using diffusiophoresis and opens up new avenues in a field that has primarily focused on one-dimensional solute gradients.

9.
J Microencapsul ; 40(4): 263-278, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36989347

RESUMO

The purpose of this study was to evaluate the drug delivery and therapeutic potential of berberine (Br) loaded nanoformulation in rheumatoid arthritis (RA)-induced animal model. The Br-loaded NLCs (nanostructured lipid carriers) were prepared employing melt-emulsification process, and optimised through Box-Behnken design. The prepared NLCs were assessed for in-vitro and in-vivo evaluations. The optimised NLCs exhibited a mean diameter of 180.2 ± 0.31 nm with 88.32 ± 2.43% entrapment efficiency. An enhanced anti-arthritic activity with reduced arthritic scores to 0.66 ± 0.51, reduction in ankle diameter to 5.80 ± 0.27 mm, decline in paw withdrawal timing, and improvements in walking behaviour were observed in the Br-NLCs treated group. The radiographic images revealed a reduction in bone and cartilage deformation. The Br-NLCs showed promising results in the management of RA disease, can be developed as an efficient delivery system at commercial levels, and may be explored for clinical application after suitable experiments in the future.


Assuntos
Artrite Reumatoide , Berberina , Nanoestruturas , Animais , Portadores de Fármacos/uso terapêutico , Berberina/farmacologia , Berberina/uso terapêutico , Sistemas de Liberação de Medicamentos , Artrite Reumatoide/tratamento farmacológico , Modelos Animais , Lipídeos , Tamanho da Partícula
10.
Soft Matter ; 16(33): 7845-7859, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32756713

RESUMO

Herein, we report synthesis of thermoresponsive poly(N-isopropylaccrylamide) (PNIPAM) microgels with short oligo(ethylene glycol) (OEG) chain comonomers (1 to 4/5 repeating unit) by surfactant-free precipitation copolymerization. The efficient incorporation of the comonomers was confirmed by a complete set of characterization methods viz., FTIR, 1H NMR, TEM, DLS, and viscometry. The structural heterogeneity and the distribution of the comonomers within the microgels were determined by means of 1H high-resolution transverse relaxation magnetization measurements. Interestingly, the incorporation of these short OEG chain comonomers led to the formation of a core-corona structure, in which the comonomers were mainly located in the core of the polymeric network with PNIPAM dangling chains at the microgel periphery. The experimental investigations of deswelling behaviours revealed that the OEG chains allowed precise control over the colloidal properties, including phase transition, particles size, swelling degree and polydispersity of the microgels. The tuneability of these properties that was interpreted in terms of polymeric hydrophobic/hydrophilic balance as well as structural diversity, could be achieved by changing the OEG chain length, comonomer feed and crosslinking density. Further, we found that the microgels with more hydrophilic OEG chains were able to show a higher relative swelling, and the same solid content thus led to a higher viscosity at all temperatures. The OEG chains remarkably improved the colloidal stability of the microgels in electrolyte solutions even at higher temperatures, thereby paving the way for the use of these microgels in a range of applications.

11.
J Am Chem Soc ; 139(15): 5277-5280, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28350443

RESUMO

Virus-like particles (VLPs) are stable protein cages derived from virus coats. They have been used extensively as biomolecular platforms, e.g., nanocarriers or vaccines, but a convenient in situ technique is lacking for tracking functional status. Here, we present a simple way to monitor disassembly of 19F-labeled VLPs derived from bacteriophage Qß by 19F NMR. Analysis of resonances, under a range of conditions, allowed determination not only of the particle as fully assembled but also as disassembled, as well as detection of a degraded state upon digestion by cells. This in turn allowed mutational redesign of disassembly and testing in both bacterial and mammalian systems as a strategy for the creation of putative, targeted-VLP delivery systems.


Assuntos
Flúor/química , Ressonância Magnética Nuclear Biomolecular , Vacinas de Partículas Semelhantes a Vírus/análise , Proteínas Virais/química , Bacteriófago lambda/química
12.
Appl Microbiol Biotechnol ; 101(13): 5439-5451, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28455616

RESUMO

Applications of probiotic bacteria and nanoparticles (NPs) as therapeutic agents have great importance. This study demonstrates a combinatorial approach of both the probiotic Lactobacillus spp. (Lactobacillus fermentum and Lactobacillus plantarum) with fluorescent cadmium sulfide (CdS) NPs as therapeutic agents to target MCF-7 cancer cells (human breast cancer cells). In this study, facultative anaerobic Lactobacillus was successfully used as a vehicle to transport NPs into MCF-7 cancer cells. The cell viability assay and invasion study along with confocal and field emission scanning electron microscopy (FESEM) confirmed the release of payload (CdS NPs) into cytoplasm without any external stimuli. The biosynthesized CdS NPs of ∼22 nm were characterized by FESEM, transmission electron microscopy (TEM), atomic force microscopy (AFM), and fluorescence spectroscopy. The bacteria-NPs (microbots) interaction was investigated by growth curve studies, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), FESEM, energy dispersive X-ray spectroscopy (EDX), and fluorescence and confocal microscopy. This alternative approach showed an approved and inexpensive delivering mode of specific functional cargos or therapeutic agents into the cancer cells.


Assuntos
Neoplasias da Mama/terapia , Compostos de Cádmio/administração & dosagem , Lactobacillus plantarum , Limosilactobacillus fermentum , Nanopartículas Metálicas/administração & dosagem , Sulfetos/administração & dosagem , Compostos de Cádmio/química , Compostos de Cádmio/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Feminino , Fluorescência , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microtecnologia/métodos , Espectrometria de Fluorescência , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfetos/química , Sulfetos/farmacologia
13.
J Am Chem Soc ; 138(28): 8678-81, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27336299

RESUMO

We describe palladium-mediated S-arylation that exploits natural metal-binding motifs to ensure high site selectivity for a proximal reactive residue. This allows the chemical identification not only of proteins that bind metals but also the environment of the metal-binding site itself through proteomic analysis of arylation sites. The transformation is easy to perform under standard conditions, does not require the isolation of a reactive Ar-Pd complex, is broad in scope, and is applicable in cell lysates as well as to covalent inhibition/modulation of metal-dependent enzymatic activity.


Assuntos
Manosiltransferases/metabolismo , Paládio/química , Sítios de Ligação , Catálise , Hidrocarbonetos Aromáticos/química , Manosiltransferases/química , Modelos Moleculares , Conformação Proteica , Rhodothermus/enzimologia
14.
Angew Chem Int Ed Engl ; 55(31): 8918-22, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27272618

RESUMO

Transcriptional regulation can be established by various post-translational modifications (PTMs) on histone proteins in the nucleosome and by nucleobase modifications on chromosomal DNA. Functional consequences of histone O-GlcNAcylation (O-GlcNAc=O-linked ß-N-acetylglucosamine) are largely unexplored. Herein, we generate homogeneously GlcNAcylated histones and nucleosomes by chemical post-translational modification. Mass-spectrometry-based quantitative interaction proteomics reveals a direct interaction between GlcNAcylated nucleosomes and the "facilitates chromatin transcription" (FACT) complex. Preferential binding of FACT to GlcNAcylated nucleosomes may point towards O-GlcNAcylation as one of the triggers for FACT-driven transcriptional control.


Assuntos
Acetilglucosamina/metabolismo , Cromatina/metabolismo , Nucleossomos/metabolismo , Acetilglucosamina/química , Cromatina/química , Glicosilação , Modelos Moleculares , Nucleossomos/química , Processamento de Proteína Pós-Traducional
15.
Angew Chem Int Ed Engl ; 55(7): 2361-7, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26756880

RESUMO

Glycosylation patterns in antibodies critically determine biological and physical properties but their precise control is a significant challenge in biology and biotechnology. We describe herein the optimization of an endoglycosidase-catalyzed glycosylation of the best-selling biotherapeutic Herceptin, an anti-HER2 antibody. Precise MS analysis of the intact four-chain Ab heteromultimer reveals nonspecific, non-enzymatic reactions (glycation), which are not detected under standard denaturing conditions. This competing reaction, which has hitherto been underestimated as a source of side products, can now be minimized. Optimization allowed access to the purest natural form of Herceptin to date (≥90 %). Moreover, through the use of a small library of sugars containing non-natural functional groups, Ab variants containing defined numbers of selectively addressable chemical tags (reaction handles at Sia C1) in specific positions (for attachment of cargo molecules or "glycorandomization") were readily generated.


Assuntos
Anticorpos/metabolismo , Trastuzumab/metabolismo , Anticorpos/uso terapêutico , Glicosilação , Trastuzumab/uso terapêutico
16.
J Am Chem Soc ; 136(5): 1698-701, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24393126

RESUMO

Through a "tag-and-modify" protein chemical modification strategy, we site-selectively phosphorylated the activation loop of protein kinase p38α. Phosphorylation at natural (180) and unnatural (172) sites created two pure phospho-forms. p38α bearing only a single phosphocysteine (pCys) as a mimic of pThr at 180 was sufficient to switch the kinase to an active state, capable of processing natural protein substrate ATF2; 172 site phosphorylation did not. In this way, we chemically recapitulated triggering of a relevant segment of the MAPK-signaling pathway in vitro. This allowed detailed kinetic analysis of global and stoichiometric phosphorylation events catalyzed by p38α and revealed that site 180 is a sufficient activator alone and engenders dominant mono-phosphorylation activity. Moreover, a survey of kinase inhibition using inhibitors with different (Type I/II) modes (including therapeutically relevant) revealed unambiguously that Type II inhibitors inhibit phosphorylated p38α and allowed discovery of a predictive kinetic analysis based on cooperativity to distinguish Type I vs II.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno/síntese química , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Fator 2 Ativador da Transcrição/metabolismo , Sítios de Ligação , Cisteína/química , Ativação Enzimática , Cinética , Sistema de Sinalização das MAP Quinases , Proteína Quinase 14 Ativada por Mitógeno/química , Proteína Quinase 14 Ativada por Mitógeno/genética , Modelos Moleculares , Fosforilação , Conformação Proteica , Especificidade por Substrato
17.
Biomed Mater ; 19(3)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38593835

RESUMO

Electrospinning technique converts polymeric solutions into nanoscale fibers using an electric field and can be used for various biomedical and clinical applications. Extracellular vesicles (EVs) are cell-derived small lipid vesicles enriched with biological cargo (proteins and nucleic acids) potential therapeutic applications. In this review, we discuss extending the scope of electrospinning by incorporating stem cell-derived EVs, particularly exosomes, into nanofibers for their effective delivery to target tissues. The parameters used during the electrospinning of biopolymers limit the stability and functional properties of cellular products. However, with careful consideration of process requirements, these can significantly improve stability, leading to longevity, effectiveness, and sustained and localized release. Electrospun nanofibers are known to encapsulate or surface-adsorb biological payloads such as therapeutic EVs, proteins, enzymes, and nucleic acids. Small EVs, specifically exosomes, have recently attracted the attention of researchers working on regeneration and tissue engineering because of their broad distribution and enormous potential as therapeutic agents. This review focuses on current developments in nanofibers for delivering therapeutic cargo molecules, with a special emphasis on exosomes. It also suggests prospective approaches that can be adapted to safely combine these two nanoscale systems and exponentially enhance their benefits in tissue engineering, medical device coating, and drug delivery applications.


Assuntos
Sistemas de Liberação de Medicamentos , Exossomos , Nanofibras , Regeneração , Células-Tronco , Engenharia Tecidual , Nanofibras/química , Humanos , Exossomos/metabolismo , Células-Tronco/citologia , Engenharia Tecidual/métodos , Animais , Alicerces Teciduais/química
18.
Chem Sci ; 15(4): 1306-1317, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38274071

RESUMO

In small molecule organic chemistry, the heuristic insight into ring-forming processes that was enabled by Baldwin's rules some 50 years ago proved a step-change in the role of mechanistically guided synthesis. It created a lens upon and marker of fundamental stereoelectronic and conformation-guided chemical processes. However, despite the widespread role of stereoelectronics and conformational control in Biology, no equivalent coherent exploitation of trapped, ring-forming processes yet exists in biomolecules. In the development of a minimal ring-closing process in intact proteins that might prove suitable in a coherent rule-set, we have tested endo-trig ring-closing conjugate thioether lanthionine (Lan) -CH2-S-CH2- formation as a limiting cyclization. Spontaneous Lan formation in proteins is rare if not non-existent and when found in natural product cyclic peptides it requires the mediation of corresponding biosynthetic enzymes as well as productive reactive conformations to guide it. Here, we show that within a conformationally flexible and functionally important protein loop - the MAPK kinase phosphorylation-targeted activation loop - Lan ring-closing is possible. Ring-closing proves to be critically dependent on the location of a trig electrophilic site in just one of two regioisomeric potential precursors to allow phosphosite-to-phosphosite 'stapling'. This first example of spontaneous protein thioether ring-closing/'stapling' and its accessibility from just one precursor (despite the potential for both to form an identical 'staple') now reveals the potential for Lan formation not only as an accessible form of minimal stapling in proteins but also as an exquisitely sensitive probe of associated protein geometries. We suggest that the use of this (as well as the development of other such, intramolecular protein traps that are dependent on inherent protein-controlled reactivity rather than forced crosslinking) may allow the broader trapping and mapping of relevant, even minor, protein states. In this way, protein ring formation may enable a form of extended 'bio-Baldwin's rules' that help to delineate relevant protein conformational space.

19.
Mol Omics ; 20(1): 64-77, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37909389

RESUMO

Physical inactivity affects multiple organ systems, including the musculoskeletal system, which upsets the delicate balance of several secretory factors leading to metabolic derailment. This reduces contractile recruitment of the skeletal muscle with dampening of its oxidative capacity resulting in impaired intramuscular lipid metabolism and substrate utilization. We hypothesized that this altered phenotype would also have an indispensable effect on circulatory cytokines and the level of metabolic intermediates. In this study, comparison between sedentary (SED) and exercised (EXER) animal models showed that organismal metabolic parameters (body mass, oxygen utilization and glucose tolerance) are altered based on physical activity. Our data suggest that cytokines linked to glycemic excursions (insulin, c-peptide, glucagon) and their passive regulators (leptin, BDNF, active ghrelin, and GIP) exhibit changes in the SED group. Furthermore, some of the proinflammatory cytokines and myokines were upregulated in SED. Interestingly, serum metabolite analysis showed that the levels of glucogenic amino acids (alanine, glycine, tryptophan, proline and valine), nitrogenous amino acids (ornithine, asparagine, and glutamine) and myogenic metabolites (taurine, creatine) were altered due to the level of physical activity. A pyrimidine nucleoside (uridine), lipid metabolite (glycerol) and ketone bodies (acetoacetate and acetate) were found to be altered in SED. A Spearman rank correlation study between SED and CTRL showed that cytokines build a deformed network with metabolites in SED, indicating significant modifications in amino acids, phosphatidylinositol phosphate and glycerophospholipid metabolic pathways. Overall, long-term physical inactivity reorganizes the profile of proinflammatory cytokines, glucose sensing hormones, and protein and glycerophospholipid metabolism, which might be the initial factors of metabolic diseases due to SED.


Assuntos
Glucose , Insulina , Animais , Camundongos , Insulina/metabolismo , Metabolismo dos Lipídeos , Aminoácidos/metabolismo , Citocinas/metabolismo
20.
iScience ; 27(5): 109641, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38646166

RESUMO

Cornea-related injuries are the most common cause of blindness worldwide. Transplantation remains the primary approach for addressing corneal blindness, though the demand for donor corneas outmatches the supply by millions. Tissue adhesives employed to seal corneal wounds have shown inefficient healing and incomplete vision restoration. We have developed a biodegradable hydrogel - Kuragel, with the ability to promote corneal regeneration. Functionalized gelatin and hyaluronic acid form photo-crosslinkable hydrogel with transparency and compressive modulus similar to healthy human cornea. Kuragel composition was tuned to achieve sufficient adhesive strength for sutureless integration to host tissue, with minimal swelling post-administration. Studies in the New Zealand rabbit mechanical injury model affecting corneal epithelium and stroma demonstrate that Kuragel efficiently promotes re-epithelialization within 1 month of administration, while stroma and sub-basal nerve plexus regenerate within 3 months. We propose Kuragel as a regenerative treatment for patients suffering from corneal defects including thinning, by restoration of transparency and thickness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA