Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 36(44): e2404606, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39221508

RESUMO

Using high-resolution 3D printing, a novel class of microneedle array patches (MAPs) is introduced, called latticed MAPs (L-MAPs). Unlike most MAPs which are composed of either solid structures or hollow needles, L-MAPs incorporate tapered struts that form hollow cells capable of trapping liquid droplets. The lattice structures can also be coated with traditional viscous coating formulations, enabling both liquid- and solid-state cargo delivery, on a single patch. Here, a library of 43 L-MAP designs is generated and in-silico modeling is used to down-select optimal geometries for further characterization. Compared to traditionally molded and solid-coated MAPs, L-MAPs can load more cargo with fewer needles per patch, enhancing cargo loading and drug delivery capabilities. Further, L-MAP cargo release kinetics into the skin can be tuned based on formulation and needle geometry. In this work, the utility of L-MAPs as a platform is demonstrated for the delivery of small molecules, mRNA lipid nanoparticles, and solid-state ovalbumin protein. In addition, the production of programmable L-MAPs is demonstrated with tunable cargo release profiles, enabled by combining needle geometries on a single patch.


Assuntos
Agulhas , Impressão Tridimensional , Sistemas de Liberação de Medicamentos/instrumentação , Animais , Pele/metabolismo , Administração Cutânea , Ovalbumina/química , Ovalbumina/administração & dosagem , Nanopartículas/química
2.
JACS Au ; 2(11): 2426-2445, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36465529

RESUMO

The intradermal (ID) space has been actively explored as a means for drug delivery and diagnostics that is minimally invasive. Microneedles or microneedle patches or microarray patches (MAPs) are comprised of a series of micrometer-sized projections that can painlessly puncture the skin and access the epidermal/dermal layer. MAPs have failed to reach their full potential because many of these platforms rely on dated lithographic manufacturing processes or molding processes that are not easily scalable and hinder innovative designs of MAP geometries that can be achieved. The DeSimone Laboratory has recently developed a high-resolution continuous liquid interface production (CLIP) 3D printing technology. This 3D printer uses light and oxygen to enable a continuous, noncontact polymerization dead zone at the build surface, allowing for rapid production of MAPs with precise and tunable geometries. Using this tool, we are now able to produce new classes of lattice MAPs (L-MAPs) and dynamic MAPs (D-MAPs) that can deliver both solid state and liquid cargos and are also capable of sampling interstitial fluid. Herein, we will explore how additive manufacturing can revolutionize MAP development and open new doors for minimally invasive drug delivery and diagnostic platforms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA