Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Pathol ; 263(1): 1-4, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38362619

RESUMO

Testicular germ cell tumours (TGCTs) derived from immature (type I) and pluripotent germ cell neoplasia in situ (GCNIS, type II) are characterised by remarkable phenotypic heterogeneity and plasticity. In contrast, the rare spermatocytic tumour (SpT, type III), derived from mature spermatogonia, is considered a homogenous and benign tumour but may occasionally present as an anaplastic or an aggressive sarcomatoid tumour. While various oncogenic processes had been proposed, the precise mechanism driving malignant progression remained elusive until the molecular characterisation of a series of atypical SpTs described in a recent issue of The Journal of Pathology. The emerging picture suggests the presence of two distinct trajectories for SpTs, involving either RAS/mitogen-activated protein kinase pathway mutations or a ploidy shift with secondary TP53 mutations and/or gain of chromosome 12p, the latter known as pathognomonic for type II GCNIS-derived TGCTs. Here, we discuss the implications of these findings, seen from the perspective of germ cell biology and the unique features of different TGCTs. The evolving phenotype of SpTs, induced by genomic and epigenetic changes, illustrates that the concept of plasticity applies to all germ cell tumours, making them inherently heterogenous and capable of significant transformation during progression. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Seminoma , Neoplasias Testiculares , Masculino , Humanos , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Testiculares/metabolismo , Mutação , Seminoma/genética
2.
N Engl J Med ; 385(8): 707-719, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34347949

RESUMO

BACKGROUND: P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are short (21 to 35 nucleotides in length) and noncoding and are found almost exclusively in germ cells, where they regulate aberrant expression of transposable elements and postmeiotic gene expression. Critical to the processing of piRNAs is the protein poly(A)-specific RNase-like domain containing 1 (PNLDC1), which trims their 3' ends and, when disrupted in mice, causes azoospermia and male infertility. METHODS: We performed exome sequencing on DNA samples from 924 men who had received a diagnosis of nonobstructive azoospermia. Testicular-biopsy samples were analyzed by means of histologic and immunohistochemical tests, in situ hybridization, reverse-transcriptase-quantitative-polymerase-chain-reaction assay, and small-RNA sequencing. RESULTS: Four unrelated men of Middle Eastern descent who had nonobstructive azoospermia were found to carry mutations in PNLDC1: the first patient had a biallelic stop-gain mutation, p.R452Ter (rs200629089; minor allele frequency, 0.00004); the second, a novel biallelic missense variant, p.P84S; the third, two compound heterozygous mutations consisting of p.M259T (rs141903829; minor allele frequency, 0.0007) and p.L35PfsTer3 (rs754159168; minor allele frequency, 0.00004); and the fourth, a novel biallelic canonical splice acceptor site variant, c.607-2A→T. Testicular histologic findings consistently showed error-prone meiosis and spermatogenic arrest with round spermatids of type Sa as the most advanced population of germ cells. Gene and protein expression of PNLDC1, as well as the piRNA-processing proteins PIWIL1, PIWIL4, MYBL1, and TDRKH, were greatly diminished in cells of the testes. Furthermore, the length distribution of piRNAs and the number of pachytene piRNAs was significantly altered in men carrying PNLDC1 mutations. CONCLUSIONS: Our results suggest a direct mechanistic effect of faulty piRNA processing on meiosis and spermatogenesis in men, ultimately leading to male infertility. (Funded by Innovation Fund Denmark and others.).


Assuntos
Azoospermia/genética , Exorribonucleases/genética , Infertilidade Masculina/genética , Meiose/fisiologia , Mutação , RNA Interferente Pequeno/metabolismo , Testículo/patologia , Adulto , Azoospermia/fisiopatologia , Biópsia , Expressão Gênica , Humanos , Masculino , Fenótipo , Reação em Cadeia da Polimerase , RNA Interferente Pequeno/ultraestrutura , Análise de Sequência de RNA , Testículo/metabolismo , Sequenciamento do Exoma
3.
Physiol Rev ; 96(1): 55-97, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26582516

RESUMO

It is predicted that Japan and European Union will soon experience appreciable decreases in their populations due to persistently low total fertility rates (TFR) below replacement level (2.1 child per woman). In the United States, where TFR has also declined, there are ethnic differences. Caucasians have rates below replacement, while TFRs among African-Americans and Hispanics are higher. We review possible links between TFR and trends in a range of male reproductive problems, including testicular cancer, disorders of sex development, cryptorchidism, hypospadias, low testosterone levels, poor semen quality, childlessness, changed sex ratio, and increasing demand for assisted reproductive techniques. We present evidence that several adult male reproductive problems arise in utero and are signs of testicular dysgenesis syndrome (TDS). Although TDS might result from genetic mutations, recent evidence suggests that it most often is related to environmental exposures of the fetal testis. However, environmental factors can also affect the adult endocrine system. Based on our review of genetic and environmental factors, we conclude that environmental exposures arising from modern lifestyle, rather than genetics, are the most important factors in the observed trends. These environmental factors might act either directly or via epigenetic mechanisms. In the latter case, the effects of exposures might have an impact for several generations post-exposure. In conclusion, there is an urgent need to prioritize research in reproductive physiology and pathophysiology, particularly in highly industrialized countries facing decreasing populations. We highlight a number of topics that need attention by researchers in human physiology, pathophysiology, environmental health sciences, and demography.


Assuntos
Exposição Ambiental , Fertilidade/genética , Interação Gene-Ambiente , Infertilidade Masculina/epidemiologia , Estilo de Vida , Predisposição Genética para Doença , Humanos , Incidência , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/genética , Infertilidade Masculina/fisiopatologia , Masculino , Fenótipo , Dinâmica Populacional , Fatores de Risco
4.
Int J Cancer ; 151(5): 692-698, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35277970

RESUMO

With 74 500 new cases worldwide in 2020, testicular cancer ranks as the 20th leading cancer type, but is the most common cancer in young men of European ancestry. While testicular cancer incidence has been rising in many populations, mortality trends, at least those in high-income settings, have been in decline since the 1970s following the introduction of platinum-based chemotherapy. To examine current incidence and mortality patterns, we extracted the new cases of, and deaths from cancers of the testis from the GLOBOCAN 2020 database. In 2020, testicular cancer was the most common cancer in men aged 15 to 44 in 62 countries worldwide. Incidence rates were highest in West-, North- and South-Europe and Oceania (age-standardised rate, ASR ≥7/100 000), followed by North America (5.6/100 000 and lowest (<2/100 000) in Asia and Africa. The mortality rates were highest in Central and South America (0.84 and 0.54 per 100 000, respectively), followed by Eastern and Southern Europe, and Western and Southern Africa. The lowest mortality rates were in Northern Europe, Northern Africa and Eastern Asia (0.16, 0.14, 0.9 per 100 000, respectively). At the country level, incidence rates varied over 100-fold, from 10/100 000 in Norway, Slovenia, Denmark and Germany to ≤0.10/100 000 in Gambia, Guinea, Liberia, Lesotho. Mortality rates were highest in Fiji, Argentina and Mexico. Our results indicate a higher mortality burden in countries undergoing economic transitions and reinforce the need for more equitable access to testicular cancer diagnosis and treatment globally.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Europa (Continente)/epidemiologia , Saúde Global , Humanos , Incidência , Masculino , Neoplasias Embrionárias de Células Germinativas/epidemiologia , Neoplasias Embrionárias de Células Germinativas/mortalidade , Neoplasias Testiculares/epidemiologia , Neoplasias Testiculares/mortalidade
5.
BMC Med ; 20(1): 399, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266662

RESUMO

BACKGROUND: Reduced androgen action during early fetal development has been suggested as the origin of reproductive disorders comprised within the testicular dysgenesis syndrome (TDS). This hypothesis has been supported by studies in rats demonstrating that normal male development and adult reproductive function depend on sufficient androgen exposure during a sensitive fetal period, called the masculinization programming window (MPW). The main aim of this study was therefore to examine the effects of manipulating androgen production during different timepoints during early human fetal testis development to identify the existence and timing of a possible window of androgen sensitivity resembling the MPW in rats. METHODS: The effects of experimentally reduced androgen exposure during different periods of human fetal testis development and function were examined using an established and validated human ex vivo tissue culture model. The androgen production was reduced by treatment with ketoconazole and validated by treatment with flutamide which blocks the androgen receptor. Testicular hormone production ex vivo was measured by liquid chromatography-tandem mass spectrometry or ELISA assays, and selected protein markers were assessed by immunohistochemistry. RESULTS: Ketoconazole reduced androgen production in testes from gestational weeks (GW) 7-21, which were subsequently divided into four age groups: GW 7-10, 10-12, 12-16 and 16-21. Additionally, reduced secretion of testicular hormones INSL3, AMH and Inhibin B was observed, but only in the age groups GW 7-10 and 10-12, while a decrease in the total density of germ cells and OCT4+ gonocytes was found in the GW 7-10 age group. Flutamide treatment in specimens aged GW 7-12 did not alter androgen production, but the secretion of INSL3, AMH and Inhibin B was reduced, and a reduced number of pre-spermatogonia was observed. CONCLUSIONS: This study showed that reduced androgen action during early development affects the function and density of several cell types in the human fetal testis, with similar effects observed after ketoconazole and flutamide treatment. The effects were only observed within the GW 7-14 period-thereby indicating the presence of a window of androgen sensitivity in the human fetal testis.


Assuntos
Hormônios Testiculares , Testículo , Humanos , Masculino , Androgênios/farmacologia , Androgênios/metabolismo , Flutamida/farmacologia , Flutamida/metabolismo , Cetoconazol/metabolismo , Cetoconazol/farmacologia , Receptores Androgênicos/metabolismo , Hormônios Testiculares/metabolismo , Hormônios Testiculares/farmacologia , Testosterona/farmacologia
6.
BJU Int ; 130(5): 646-654, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35575005

RESUMO

OBJECTIVE: To evaluate whether optimized and standardized diagnostic procedures would improve detection of germ cell neoplasia in situ (GCNIS) in the contralateral testis of patients with testicular germ cell tumour (TGCT) and decrease the rate of metachronous tumours, which in a nationwide Danish study was estimated to be 1.9%. PATIENTS AND METHODS: This was a retrospective analysis of outcomes in 655 patients with TGCT who underwent contralateral biopsies (1996-2007) compared with those in 459 non-biopsied TGCT controls (1984-1988). The biopsies were performed using a standardized procedure with immunohistochemical GCNIS markers and assessed by experienced evaluators. Initial histopathology reports were reviewed, and pathology and survival data were retrieved from national Danish registers. In 604/608 patients diagnosed as GCNIS-negative (four were lost to follow-up), the cumulative incidence of metachronous TGCT was estimated in a competing risk setting using the Grey method. All cases of metachronous TGCT were re-examined using immunohistochemistry. RESULTS: Germ cell neoplasia in situ was found in 47/655 biopsied patients (7.2%, 95% confidence interval [CI] 5.4-9.5%). During the follow-up period (median 17.3 years) five of the 604 GCNIS-negative patients developed a TGCT. In 1/5 false-negative biopsies, GCNIS was found on histological revision using immunohistochemistry and 2/5 biopsies were inadequate because of too small size. The estimated cumulative incidence rate of second tumour after 20 years of follow-up was 0.95% (95% CI 0.10%-1.8%) compared with 2.9% (95% CI 1.3%-4.4%) among the non-biopsied TGCT patients (P = 0.012). The estimates should be viewed with caution due to the small number of patients with metachronous TGCT. CONCLUSIONS: Optimized diagnostic procedures improved the detection rate of GCNIS in patients with TGCT and minimized their risk of developing metachronous bilateral cancer. Urologists should be aware of the importance of careful tissue excision (to avoid mechanical compression) and the need of adequate biopsy size. Performing contralateral biopsies is beneficial for patients' care and should be offered as a part of their management.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Segunda Neoplasia Primária , Neoplasias Testiculares , Masculino , Humanos , Segunda Neoplasia Primária/diagnóstico , Segunda Neoplasia Primária/epidemiologia , Testículo/patologia , Estudos Retrospectivos , Neoplasias Embrionárias de Células Germinativas/diagnóstico , Neoplasias Embrionárias de Células Germinativas/patologia , Neoplasias Testiculares/patologia , Biópsia , Células Germinativas/patologia
7.
Hum Genet ; 140(1): 183-201, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31950241

RESUMO

Azoospermia is a condition defined as the absence of spermatozoa in the ejaculate, but the testicular phenotype of men with azoospermia may be very variable, ranging from full spermatogenesis, through arrested maturation of germ cells at different stages, to completely degenerated tissue with ghost tubules. Hence, information regarding the cell-type-specific expression patterns is needed to prioritise potential pathogenic variants that contribute to the pathogenesis of azoospermia. Thanks to technological advances within next-generation sequencing, it is now possible to obtain detailed cell-type-specific expression patterns in the testis by single-cell RNA sequencing. However, to interpret single-cell RNA sequencing data properly, substantial knowledge of the highly sophisticated data processing and visualisation methods is needed. Here we review the complex cellular structure of the human testis in different types of azoospermia and outline how known genetic alterations affect the pathology of the testis. We combined the currently available single-cell RNA sequencing datasets originating from the human testis into one dataset covering 62,751 testicular cells, each with a median of 2637 transcripts quantified. We show what effects the most common data-processing steps have, and how different visualisation methods can be used. Furthermore, we calculated expression patterns in pseudotime, and show how splicing rates can be used to determine the velocity of differentiation during spermatogenesis. With the combined dataset we show expression patterns and network analysis of genes known to be involved in the pathogenesis of azoospermia. Finally, we provide the combined dataset as an interactive online resource where expression of genes and different visualisation methods can be explored ( https://testis.cells.ucsc.edu/ ).


Assuntos
Azoospermia/genética , Testículo/patologia , Transcriptoma/genética , Animais , Humanos , Masculino , Espermatogênese/genética , Espermatozoides/patologia
8.
Am J Hum Genet ; 102(3): 487-493, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29478779

RESUMO

Emerging evidence from murine studies suggests that mammalian sex determination is the outcome of an imbalance between mutually antagonistic male and female regulatory networks that canalize development down one pathway while actively repressing the other. However, in contrast to testis formation, the gene regulatory pathways governing mammalian ovary development have remained elusive. We performed exome or Sanger sequencing on 79 46,XX SRY-negative individuals with either unexplained virilization or with testicular/ovotesticular disorders/differences of sex development (TDSD/OTDSD). We identified heterozygous frameshift mutations in NR2F2, encoding COUP-TF2, in three children. One carried a c.103_109delGGCGCCC (p.Gly35Argfs∗75) mutation, while two others carried a c.97_103delCCGCCCG (p.Pro33Alafs∗77) mutation. In two of three children the mutation was de novo. All three children presented with congenital heart disease (CHD), one child with congenital diaphragmatic hernia (CDH), and two children with blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). The three children had androgen production, virilization of external genitalia, and biochemical or histological evidence of testicular tissue. We demonstrate a highly significant association between the NR2F2 loss-of-function mutations and this syndromic form of DSD (p = 2.44 × 10-8). We show that COUP-TF2 is highly abundant in a FOXL2-negative stromal cell population of the fetal human ovary. In contrast to the mouse, these data establish COUP-TF2 as a human "pro-ovary" and "anti-testis" sex-determining factor in female gonads. Furthermore, the data presented here provide additional evidence of the emerging importance of nuclear receptors in establishing human ovarian identity and indicate that nuclear receptors may have divergent functions in mouse and human biology.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual/genética , Fator II de Transcrição COUP/genética , Mutação com Perda de Função/genética , Testículo/anormalidades , Testículo/crescimento & desenvolvimento , Sequência de Aminoácidos , Sequência de Bases , Fator II de Transcrição COUP/química , Criança , Feminino , Proteína Forkhead Box L2/metabolismo , Mutação da Fase de Leitura/genética , Heterozigoto , Humanos , Masculino , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Fenótipo
9.
Hum Reprod ; 36(11): 2992-3002, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34568940

RESUMO

STUDY QUESTION: How are germ cell numbers and initiation of folliculogenesis affected in fetal Turner syndrome (TS) ovaries? SUMMARY ANSWER: Germ cell development was severely affected already in early second trimester pregnancies, including accelerated oogonia loss and impaired initiation of primordial follicle formation in TS ovaries, while the phenotype in TS mosaic ovaries was less severe. WHAT IS KNOWN ALREADY: Females with TS are characterized by premature ovarian insufficiency (POI). This phenotype is proposed to be a consequence of germ cell loss during development, but the timing and mechanisms behind this are not characterized in detail. Only few studies have evaluated germ cell development in fetal TS and TS mosaic ovaries, and with a sparse number of specimens included per study. STUDY DESIGN, SIZE, DURATION: This study included a total of 102 formalin-fixed and paraffin-embedded fetal ovarian tissue specimens. Specimens included were from fetuses with 45,X (N = 42 aged gestational week (GW) 12-20, except one GW 40 sample), 45,X/46,XX (N = 7, aged GW 12-20), and from controls (N = 53, aged GW 12-42) from a biobank (ethics approval # H-2-2014-103). PARTICIPANTS/MATERIALS, SETTING, METHODS: The number of OCT4 positive germ cells/mm2, follicles (primordial and primary)/mm2 and cPARP positive cells/mm2 were quantified in fetal ovarian tissue from TS, TS mosaic and controls following morphological and immunohistochemical analysis. MAIN RESULTS AND THE ROLE OF CHANCE: After adjusting for gestational age, the number of OCT4+ oogonia was significantly higher in control ovaries (N = 53) versus 45,X ovaries (N = 40, P < 0.001), as well as in control ovaries versus 45,X/46,XX mosaic ovaries (N = 7, P < 0.043). Accordingly, the numbers of follicles were significantly higher in control ovaries versus 45,X and 45,X/46,XX ovaries from GW 16-20 with a median range of 154 (N = 11) versus 0 (N = 24) versus 3 (N = 5) (P < 0.001 and P < 0.015, respectively). The number of follicles was also significantly higher in 45,X/46,XX mosaic ovaries from GW 16-20 compared with 45,X ovaries (P < 0.005). Additionally, the numbers of apoptotic cells determined as cPARP+ cells/mm2 were significantly higher in ovaries 45,X (n = 39) versus controls (n = 15, P = 0.001) from GW 12-20 after adjusting for GW. LIMITATIONS, REASONS FOR CAUTION: The analysis of OCT4+ cells/mm2, cPARP+ cells/mm2 and follicles (primordial and primary)/mm2 should be considered semi-quantitative as it was not possible to use quantification by stereology. The heterogeneous distribution of follicles in the ovarian cortex warrants a cautious interpretation of the exact quantitative numbers reported. Moreover, only one 45,X specimen and no 45,X/46,XX specimens aged above GW 20 were available for this study, which unfortunately made it impossible to assess whether the ovarian folliculogenesis was delayed or absent in the TS and TS mosaic specimens. WIDER IMPLICATIONS OF THE FINDINGS: This human study provides insights about the timing of accelerated fetal germ cell loss in TS. Knowledge about the biological mechanism of POI in girls with TS is clinically useful when counseling patients about expected ovarian function and fertility preservation strategies. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC). TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Oogônios , Síndrome de Turner , Idoso , Feminino , Desenvolvimento Fetal , Humanos , Masculino , Folículo Ovariano , Ovário , Gravidez , Síndrome de Turner/genética
10.
Int J Cancer ; 147(3): 820-828, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31773729

RESUMO

Testicular cancer is the most common cancer among young men of European ancestry, with about one-third of all cases occurring in Europe. With the historically increasing trends in some high-incidence populations reported to have stabilised in recent years, we aimed to assess recent trends and predict the future testicular cancer incidence burden across Europe. We extracted testicular cancer (ICD-10 C62) incidence data from Cancer Incidence in Five Continents Volumes VII-XI and complemented this with data published by registries from 28 European countries. We predicted cancer incidence rates and the number of incident cases in Europe in the year 2035 using the NORDPRED age-period-cohort model. Testicular cancer incidence rates will increase in 21 out of 28 countries over the period 2010-2035, with trends attenuating in the high-incidence populations of Denmark, Norway, Switzerland and Austria. Although population ageing would be expected to reduce the number of cases, this demographic effect is outweighed by increasing risk, leading to an overall increase in the number of cases by 2035 in Europe, and by region (21, 13 and 32% in Northern, Western and Eastern Europe, respectively). Declines are however predicted in Italy and Spain, amounting to 12% less cases in 2035 in Southern Europe overall. In conclusion, the burden of testicular cancer incidence in Europe will continue to increase, particularly in historically lower-risk countries. The largest increase in the number of testicular cancer patients is predicted in Eastern Europe, where survival is lower, reinforcing the need to ensure the provision of effective treatment across Europe.


Assuntos
Envelhecimento/etnologia , Neoplasias Testiculares/epidemiologia , Adolescente , Adulto , Distribuição por Idade , Criança , Pré-Escolar , Europa (Continente)/epidemiologia , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Sistema de Registros , Adulto Jovem
11.
Am J Med Genet C Semin Med Genet ; 184(2): 239-255, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32449318

RESUMO

Klinefelter syndrome (KS; 47,XXY) is the most common sex chromosomal anomaly and causes a multitude of symptoms. Often the most noticeable symptom is infertility caused by azoospermia with testicular histology showing hyalinization of tubules, germ cells loss, and Leydig cell hyperplasia. The germ cell loss begins early in life leading to partial hyalinization of the testis at puberty, but the mechanistic drivers behind this remain poorly understood. In this systematic review, we summarize the current knowledge on developmental changes in the cellularity of KS gonads supplemented by a comparative analysis of the fetal and adult gonadal transcriptome, and blood transcriptome and methylome of men with KS. We identified a high fraction of upregulated genes that escape X-chromosome inactivation, thus supporting previous hypotheses that these are the main drivers of the testicular phenotype in KS. Enrichment analysis showed overrepresentation of genes from the X- and Y-chromosome and testicular transcription factors. Furthermore, by re-evaluation of recent single cell RNA-sequencing data originating from adult KS testis, we found novel evidence that the Sertoli cell is the most affected cell type. Our results are consistent with disturbed cross-talk between somatic and germ cells in the KS testis, and with X-escapee genes acting as mediators.


Assuntos
Metilação de DNA/genética , Infertilidade Masculina/genética , Síndrome de Klinefelter/sangue , Transcriptoma/genética , Adulto , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Gônadas/crescimento & desenvolvimento , Gônadas/metabolismo , Humanos , Infertilidade Masculina/patologia , Síndrome de Klinefelter/genética , Síndrome de Klinefelter/patologia , Masculino , Células de Sertoli/metabolismo , Células de Sertoli/patologia , Testículo/metabolismo , Testículo/patologia
12.
Hum Mol Genet ; 27(3): 430-439, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29186436

RESUMO

In humans, the most common sex chromosomal disorder is Klinefelter syndrome (KS), caused by the presence of one or more extra X-chromosomes. KS patients display a varying adult phenotype but usually present with azoospermia due to testicular degeneration, which accelerates at puberty. The timing of the germ cell loss and whether it is caused by dysgenetic fetal development of the testes is not known. We investigated eight fetal KS testes and found a marked reduction in MAGE-A4-positive pre-spermatogonia compared with testes from 15 age-matched controls, indicating a failure of the gonocytes to differentiate into pre-spermatogonia. Transcriptome analysis by RNA-sequencing of formalin-fixed, paraffin-embedded testes originating from four fetal KS and five age-matched controls revealed 211 differentially expressed transcripts in the fetal KS testis. We found a significant enrichment of upregulated X-chromosomal transcripts and validated the expression of the pseudoautosomal region 1 (PAR1) gene, AKAP17A. Moreover, we found enrichment of long non-coding RNAs in the KS testes (e.g. LINC01569 and RP11-485F13.1). In conclusion, our data indicate that the testicular phenotype observed among adult men with KS is initiated already in fetal life by failure of the gonocyte differentiation into pre-spermatogonia, which could be due to aberrant expression of long non-coding RNAs.


Assuntos
Perfilação da Expressão Gênica/métodos , Síndrome de Klinefelter/genética , RNA Longo não Codificante/genética , Testículo/metabolismo , Adolescente , Adulto , Antígenos/genética , Células Germinativas/metabolismo , Humanos , Masculino , Glicoproteínas de Membrana/genética , Maturidade Sexual , Espermatogênese/genética , Espermatogônias/metabolismo , Adulto Jovem
13.
Hum Mol Genet ; 27(7): 1228-1240, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29373757

RESUMO

SOX8 is an HMG-box transcription factor closely related to SRY and SOX9. Deletion of the gene encoding Sox8 in mice causes reproductive dysfunction but the role of SOX8 in humans is unknown. Here, we show that SOX8 is expressed in the somatic cells of the early developing gonad in the human and influences human sex determination. We identified two individuals with 46, XY disorders/differences in sex development (DSD) and chromosomal rearrangements encompassing the SOX8 locus and a third individual with 46, XY DSD and a missense mutation in the HMG-box of SOX8. In vitro functional assays indicate that this mutation alters the biological activity of the protein. As an emerging body of evidence suggests that DSDs and infertility can have common etiologies, we also analysed SOX8 in a cohort of infertile men (n = 274) and two independent cohorts of women with primary ovarian insufficiency (POI; n = 153 and n = 104). SOX8 mutations were found at increased frequency in oligozoospermic men (3.5%; P < 0.05) and POI (5.06%; P = 4.5 × 10-5) as compared with fertile/normospermic control populations (0.74%). The mutant proteins identified altered SOX8 biological activity as compared with the wild-type protein. These data demonstrate that SOX8 plays an important role in human reproduction and SOX8 mutations contribute to a spectrum of phenotypes including 46, XY DSD, male infertility and 46, XX POI.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual/genética , Transtorno 46,XY do Desenvolvimento Sexual/genética , Mutação de Sentido Incorreto , Oligospermia/genética , Insuficiência Ovariana Primária/genética , Fatores de Transcrição SOXE/genética , Adolescente , Criança , Feminino , Humanos , Masculino
14.
Hum Reprod ; 35(9): 1991-2003, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32667987

RESUMO

STUDY QUESTION: Is WNT signalling functional in normal and/or neoplastic human male germ cells? SUMMARY ANSWER: Regulated WNT signalling component synthesis in human testes indicates that WNT pathway function changes during normal spermatogenesis and is active in testicular germ cell tumours (TGCTs), and that WNT pathway blockade may restrict seminoma growth and migration. WHAT IS KNOWN ALREADY: Regulated WNT signalling governs many developmental processes, including those affecting male fertility during early germ cell development at embryonic and adult (spermatogonial) ages in mice. In addition, although many cancers arise from WNT signalling alterations, the functional relevance and WNT pathway components in TGCT, including germ cell neoplasia in situ (GCNIS), are unknown. STUDY DESIGN, SIZE, DURATION: The cellular distribution of transcripts and proteins in WNT signalling pathways was assessed in fixed human testis sections with normal spermatogenesis, GCNIS and seminoma (2-16 individuals per condition). Short-term (1-7 h) ligand activation and long-term (1-5 days) functional outcomes were examined using the well-characterised seminoma cell line, TCam-2. Pathway inhibition used siRNA or chemical exposures over 5 days to assess survival and migration. PARTICIPANTS/MATERIALS, SETTING, METHODS: The cellular localisation of WNT signalling components was determined using in situ hybridisation and immunohistochemistry on Bouin's- and formalin-fixed human testis sections with complete spermatogenesis or germ cell neoplasia, and was also assessed in TCam-2 cells. Pathway function tests included exposure of TCam-2 cells to ligands, small molecules and siRNAs. Outcomes were measured by monitoring beta-catenin (CTNNB1) intracellular localisation, cell counting and gap closure measurements. MAIN RESULTS AND THE ROLE OF CHANCE: Detection of nuclear-localised beta-catenin (CTNNB1), and key WNT signalling components (including WNT3A, AXIN2, TCF7L1 and TCF7L2) indicate dynamic and cell-specific pathway activity in the adult human testis. Their presence in germ cell neoplasia and functional analyses in TCam-2 cells indicate roles for active canonical WNT signalling in TGCT relating to viability and migration. All data were analysed to determine statistical significance. LARGE SCALE DATA: No large-scale datasets were generated in this study. LIMITATIONS, REASONS FOR CAUTION: As TGCTs are rare and morphologically heterogeneous, functional studies in primary cancer cells were not performed. Functional analysis was performed with the only well-characterised, widely accepted seminoma-derived cell line. WIDER IMPLICATIONS OF THE FINDINGS: This study demonstrated the potential sites and involvement of the WNT pathway in human spermatogenesis, revealing similarities with murine testis that suggest the potential for functional conservation during normal spermatogenesis. Evidence that inhibition of canonical WNT signalling leads to loss of viability and migratory activity in seminoma cells suggests that potential treatments using small molecule or siRNA inhibitors may be suitable for patients with metastatic TGCTs. STUDY FUNDING AND COMPETING INTEREST(S): This study was funded by National Health and Medical Research Council of Australia (Project ID 1011340 to K.L.L. and H.E.A., and Fellowship ID 1079646 to K.L.L.) and supported by the Victorian Government's Operational Infrastructure Support Program. None of the authors have any competing interests.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Adulto , Animais , Austrália , Humanos , Masculino , Camundongos , Neoplasias Embrionárias de Células Germinativas/genética , Espermatogênese , Neoplasias Testiculares/genética , Testículo , Via de Sinalização Wnt
15.
Hum Reprod ; 35(12): 2663-2676, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33094328

RESUMO

STUDY QUESTION: What are the consequences of ageing on human Leydig cell number and hormonal function? SUMMARY ANSWER: Leydig cell number significantly decreases in parallel with INSL3 expression and Sertoli cell number in aged men, yet the in vitro Leydig cell androgenic potential does not appear to be compromised by advancing age. WHAT IS KNOWN ALREADY: There is extensive evidence that ageing is accompanied by decline in serum testosterone levels, a general involution of testis morphology and reduced spermatogenic function. A few studies have previously addressed single features of the human aged testis phenotype one at a time, but mostly in tissue from patients with prostate cancer. STUDY DESIGN, SIZE, DURATION: This comprehensive study examined testis morphology, Leydig cell and Sertoli cell number, steroidogenic enzyme expression, INSL3 expression and androgen secretion by testicular fragments in vitro. The majority of these endpoints were concomitantly evaluated in the same individuals that all displayed complete spermatogenesis. PARTICIPANTS/MATERIALS, SETTING, METHODS: Testis biopsies were obtained from 15 heart beating organ donors (age range: 19-85 years) and 24 patients (age range: 19-45 years) with complete spermatogenesis. Leydig cells and Sertoli cells were counted following identification by immunohistochemical staining of specific cell markers. Gene expression analysis of INSL3 and steroidogenic enzymes was carried out by qRT-PCR. Secretion of 17-OH-progesterone, dehydroepiandrosterone, androstenedione and testosterone by in vitro cultured testis fragments was measured by LC-MS/MS. All endpoints were analysed in relation to age. MAIN RESULTS AND THE ROLE OF CHANCE: Increasing age was negatively associated with Leydig cell number (R = -0.49; P < 0.01) and concomitantly with the Sertoli cell population size (R= -0.55; P < 0.001). A positive correlation (R = 0.57; P < 0.001) between Sertoli cell and Leydig cell numbers was detected at all ages, indicating that somatic cell attrition is a relevant cellular manifestation of human testis status during ageing. INSL3 mRNA expression (R= -0.52; P < 0.05) changed in parallel with Leydig cell number and age. Importantly, steroidogenic capacity of Leydig cells in cultured testis tissue fragments from young and old donors did not differ. Consistently, age did not influence the mRNA expression of steroidogenic enzymes. The described changes in Leydig cell phenotype with ageing are strengthened by the fact that the different age-related effects were mostly evaluated in tissue from the same men. LIMITATIONS, REASONS FOR CAUTION: In vitro androgen production analysis could not be correlated with in vivo hormone values of the organ donors. In addition, the number of samples was relatively small and there was scarce information about the concomitant presence of potential confounding variables. WIDER IMPLICATIONS OF THE FINDINGS: This study provides a novel insight into the effects of ageing on human Leydig cell status. The correlation between Leydig cell number and Sertoli cell number at any age implies a connection between these two cell types, which may be of particular relevance in understanding male reproductive disorders in the elderly. However aged Leydig cells do not lose their in vitro ability to produce androgens. Our data have implications in the understanding of the physiological role and regulation of intratesticular sex steroid levels during the complex process of ageing in humans. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by grants from Prin 2010 and 2017. The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Células Intersticiais do Testículo , Espectrometria de Massas em Tandem , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida , Humanos , Insulina , Masculino , Pessoa de Meia-Idade , Proteínas , Células de Sertoli , Espermatogênese , Testículo , Adulto Jovem
16.
Bioessays ; 45(1): e2200212, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470674
17.
J Infect Dis ; 220(8): 1312-1324, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31253993

RESUMO

BACKGROUND: Viruses and other infectious agents cause more than 15% of human cancer cases. High-throughput sequencing-based studies of virus-cancer associations have mainly focused on cancer transcriptome data. METHODS: In this study, we applied a diverse selection of presequencing enrichment methods targeting all major viral groups, to characterize the viruses present in 197 samples from 18 sample types of cancerous origin. Using high-throughput sequencing, we generated 710 datasets constituting 57 billion sequencing reads. RESULTS: Detailed in silico investigation of the viral content, including exclusion of viral artefacts, from de novo assembled contigs and individual sequencing reads yielded a map of the viruses detected. Our data reveal a virome dominated by papillomaviruses, anelloviruses, herpesviruses, and parvoviruses. More than half of the included samples contained 1 or more viruses; however, no link between specific viruses and cancer types were found. CONCLUSIONS: Our study sheds light on viral presence in cancers and provides highly relevant virome data for future reference.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenoma/genética , Neoplasias/virologia , Anelloviridae/genética , Anelloviridae/isolamento & purificação , Biópsia , Conjuntos de Dados como Assunto , Feminino , Herpesviridae/genética , Herpesviridae/isolamento & purificação , Humanos , Masculino , Neoplasias/patologia , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Parvovirus/genética , Parvovirus/isolamento & purificação
18.
Hum Mol Genet ; 26(7): 1219-1229, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369266

RESUMO

Klinefelter syndrome (KS) (47,XXY) is the most common male sex chromosome aneuploidy. Diagnosis and clinical supervision remain a challenge due to varying phenotypic presentation and insufficient characterization of the syndrome. Here we combine health data-driven epidemiology and molecular level systems biology to improve the understanding of KS and the molecular interplay influencing its comorbidities. In total, 78 overrepresented KS comorbidities were identified using in- and out-patient registry data from the entire Danish population covering 6.8 million individuals. The comorbidities extracted included both clinically well-known (e.g. infertility and osteoporosis) and still less established KS comorbidities (e.g. pituitary gland hypofunction and dental caries). Several systems biology approaches were applied to identify key molecular players underlying KS comorbidities: Identification of co-expressed modules as well as central hubs and gene dosage perturbed protein complexes in a KS comorbidity network build from known disease proteins and their protein-protein interactions. The systems biology approaches together pointed to novel aspects of KS disease phenotypes including perturbed Jak-STAT pathway, dysregulated genes important for disturbed immune system (IL4), energy balance (POMC and LEP) and erythropoietin signalling in KS. We present an extended epidemiological study that links KS comorbidities to the molecular level and identify potential causal players in the disease biology underlying the identified comorbidities.


Assuntos
Cromossomos Humanos X/genética , Dosagem de Genes/genética , Síndrome de Klinefelter/genética , Biologia de Sistemas , Aneuploidia , Comorbidade , Dinamarca , Cárie Dentária/genética , Cárie Dentária/patologia , Humanos , Interleucina-4/genética , Janus Quinase 1/genética , Síndrome de Klinefelter/epidemiologia , Síndrome de Klinefelter/patologia , Masculino , Hipófise/metabolismo , Hipófise/patologia , Pró-Proteína Convertases/genética , Fatores de Transcrição STAT/genética , Testosterona/genética
19.
Int J Mol Sci ; 19(10)2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30262754

RESUMO

We question whether the expression of GalNAc-T3, the only known O-GalNAc-transferase present in germ cells, is correlated with qualitative and functional parameters of spermatozoa. We investigated the expression of GalNAc-T3 in ejaculated spermatozoa with immunocytochemistry in swim-up purified and acrosome-reacted spermatozoa from quality-control semen donors and in semen samples from 206 randomly selected men representing a broad spectrum of semen quality. Using donor ejaculates and immunofluorescence detection we found that expression of GalNAc-T3 and the presence of the immature O-glycans Tn and T localized to the equatorial segment of spermatozoa. The proportion of GalNAc-T3-positive spermatozoa in the ejaculate increased after swim-up and appeared unaffected by induction of acrosomal exocytosis. The fraction of spermatozoa with equatorial expression of GalNAc-T3 correlated with classical semen parameters (concentration p = 9 × 10-6, morphology p = 7 × 10-8, and motility p = 1.8 × 10-5) and was significantly lower in men with oligoteratoasthenozoospermia (p = 0.0048). In conclusion, GalNAc-T3 was highly expressed by motile spermatozoa and the expression correlated positively with the classical semen parameters. Therefore, GalNAc-T3 expression seems related to the quality of the spermatozoa, and we propose that reduced expression of GalNAc-T3 may lead to impaired O-glycosylation of proteins and thereby abnormal maturation and reduced functionality of the spermatozoa.


Assuntos
Astenozoospermia/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Adulto , Astenozoospermia/genética , Humanos , Masculino , N-Acetilgalactosaminiltransferases/genética , Espermatozoides/citologia , Espermatozoides/fisiologia , Polipeptídeo N-Acetilgalactosaminiltransferase
20.
Semin Cell Dev Biol ; 45: 124-37, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26410164

RESUMO

Development of human gonads is a sex-dimorphic process which evolved to produce sex-specific types of germ cells. The process of gonadal sex differentiation is directed by the action of the somatic cells and ultimately results in germ cells differentiating to become functional gametes through spermatogenesis or oogenesis. This tightly controlled process depends on the proper sequential expression of many genes and signalling pathways. Disturbances of this process can be manifested as a large spectrum of disorders, ranging from severe disorders of sex development (DSD) to - in the genetic male - mild reproductive problems within the testicular dysgenesis syndrome (TDS), with large overlap between the syndromes. These disorders carry an increased but variable risk of germ cell neoplasia. In this review, we discuss the pathogenesis of germ cell neoplasia associated with gonadal dysgenesis, especially in individuals with 46,XY DSD. We summarise knowledge concerning development and sex differentiation of human gonads, with focus on sex-dimorphic steps of germ cell maturation, including meiosis. We also briefly outline the histopathology of germ cell neoplasia in situ (GCNIS) and gonadoblastoma (GDB), which are essentially the same precursor lesion but with different morphological structure dependent upon the masculinisation of the somatic niche. To assess the risk of germ cell neoplasia in different types of DSD, we have performed a PubMed search and provide here a synthesis of the evidence from studies published since 2006. We present a model for pathogenesis of GCNIS/GDB in TDS/DSD, with the risk of malignancy determined by the presence of the testis-inducing Y chromosome and the degree of masculinisation. The associations between phenotype and the risk of neoplasia are likely further modulated in each individual by the constellation of the gene polymorphisms and environmental factors.


Assuntos
Disgenesia Gonadal/genética , Neoplasias Embrionárias de Células Germinativas/patologia , Neoplasias Testiculares/patologia , Testículo/patologia , Animais , Carcinogênese/genética , Carcinogênese/patologia , Células Germinativas/fisiologia , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Testiculares/genética , Testículo/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA