Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nat Mater ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622325

RESUMO

A magnon is a collective excitation of the spin structure in a magnetic insulator and can transmit spin angular momentum with negligible dissipation. This quantum of a spin wave has always been manipulated through magnetic dipoles (that is, by breaking time-reversal symmetry). Here we report the experimental observation of chiral spin transport in multiferroic BiFeO3 and its control by reversing the ferroelectric polarization (that is, by breaking spatial inversion symmetry). The ferroelectrically controlled magnons show up to 18% modulation at room temperature. The spin torque that the magnons in BiFeO3 carry can be used to efficiently switch the magnetization of adjacent magnets, with a spin-torque efficiency comparable to the spin Hall effect in heavy metals. Utilizing such controllable magnon generation and transmission in BiFeO3, an all-oxide, energy-scalable logic is demonstrated composed of spin-orbit injection, detection and magnetoelectric control. Our observations open a new chapter of multiferroic magnons and pave another path towards low-dissipation nanoelectronics.

2.
J Am Chem Soc ; 145(22): 11969-11977, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37216443

RESUMO

Two-dimensional covalent organic frameworks (2D COFs) containing heterotriangulenes have been theoretically identified as semiconductors with tunable, Dirac-cone-like band structures, which are expected to afford high charge-carrier mobilities ideal for next-generation flexible electronics. However, few bulk syntheses of these materials have been reported, and existing synthetic methods provide limited control of network purity and morphology. Here, we report transimination reactions between benzophenone-imine-protected azatriangulenes (OTPA) and benzodithiophene dialdehydes (BDT), which afforded a new semiconducting COF network, OTPA-BDT. The COFs were prepared as both polycrystalline powders and thin films with controlled crystallite orientation. The azatriangulene nodes are readily oxidized to stable radical cations upon exposure to an appropriate p-type dopant, tris(4-bromophenyl)ammoniumyl hexachloroantimonate, after which the network's crystallinity and orientation are maintained. Oriented, hole-doped OTPA-BDT COF films exhibit electrical conductivities of up to 1.2 × 10-1 S cm-1, which are among the highest reported for imine-linked 2D COFs to date.

3.
Nano Lett ; 22(16): 6716-6723, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35925774

RESUMO

We report measurements of antiferromagnetic resonances in the van der Waals easy-axis antiferromagnet CrSBr. The interlayer exchange field and magnetocrystalline anisotropy fields are comparable to laboratory magnetic fields, allowing a rich variety of gigahertz-frequency dynamical modes to be accessed. By mapping the resonance frequencies as a function of the magnitude and angle of applied magnetic field, we identify the different regimes of antiferromagnetic dynamics. The spectra show good agreement with a Landau-Lifshitz model for two antiferromagnetically coupled sublattices, accounting for interlayer exchange and triaxial magnetic anisotropy. Fits allow us to quantify the parameters governing the magnetic dynamics: At 5 K, the interlayer exchange field is µ0HE = 0.395(2) T, and the hard and intermediate-axis anisotropy parameters are µ0Hc = 1.30(2) T and µ0Ha = 0.383(7) T. The existence of within-plane anisotropy makes it possible to control the degree of hybridization between the antiferromagnetic resonances using an in-plane magnetic field.

4.
Nano Lett ; 22(3): 1167-1173, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35077185

RESUMO

Magnon-mediated spin flow in magnetically ordered insulators enables long-distance spin-based information transport with low dissipation. In the materials studied to date, no anisotropy has been observed in the magnon propagation length as a function of propagation direction. Here, we report measurements of magnon spin transport in a spinel ferrite, magnesium aluminum ferrite MgAl0.5Fe1.5O4 (MAFO), which has a substantial in-plane 4-fold magnetic anisotropy. We observe spin diffusion lengths > 0.8 µm at room temperature in 6 nm films, with spin diffusion lengths 30% longer along the easy axes compared to the hard axes. The sign of this difference is opposite to the effects just of anisotropy in the magnetic energy for a uniform magnetic state. We suggest instead that accounting for anisotropy in exchange stiffness is necessary to explain these results. These findings provide an approach for controlling magnon transport via strain, which opens new opportunities for designing magnonic devices.

5.
Nano Lett ; 22(17): 7166-7172, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35994426

RESUMO

We demonstrate advantages of samples made by mechanical stacking of exfoliated van der Waals materials for controlling the topological surface state of a three-dimensional topological insulator (TI) via interaction with an adjacent magnet layer. We assemble bilayers with pristine interfaces using exfoliated flakes of the TI BiSbTeSe2 and the magnet Cr2Ge2Te6, thereby avoiding problems caused by interdiffusion that can affect interfaces made by top-down deposition methods. The samples exhibit an anomalous Hall effect (AHE) with abrupt hysteretic switching. For the first time in samples composed of a TI and a separate ferromagnetic layer, we demonstrate that the amplitude of the AHE can be tuned via gate voltage with a strong peak near the Dirac point. This is the signature expected for the AHE due to Berry curvature associated with an exchange gap induced by interaction between the topological surface state and an out-of-plane-oriented magnet.

6.
Nano Lett ; 20(10): 7482-7488, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32975955

RESUMO

We report measurements of current-induced thermoelectric and spin-orbit torque effects within devices in which multilayers of the semiconducting two-dimensional van der Waals magnet Cr2Ge2Te6 (CGT) are integrated with Pt and Ta metal overlayers. We show that the magnetic orientation of the CGT can be detected accurately either electrically (using an anomalous Hall effect) or optically (using magnetic circular dichroism) with good consistency. The samples exhibit large thermoelectric effects, but nevertheless, the spin-orbit torque can be measured quantitatively using the angle-dependent second harmonic Hall technique. For CGT/Pt, we measure the spin-orbit torque efficiency to be similar to conventional metallic-ferromagnet/Pt devices with the same Pt resistivity. The interfacial transparency for spin currents is therefore similar in both classes of devices. Our results demonstrate the promise of incorporating semiconducting 2D magnets within spin-orbitronic and magneto-thermal devices.

7.
J Am Chem Soc ; 142(50): 21131-21139, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33284624

RESUMO

Emergent quantum phenomena in electronically coupled two-dimensional heterostructures are central to next-generation optical, electronic, and quantum information applications. Tailoring electronic band gaps in coupled heterostructures would permit control of such phenomena and is the subject of significant research interest. Two-dimensional polymers (2DPs) offer a compelling route to tailored band structures through the selection of molecular constituents. However, despite the promise of synthetic flexibility and electronic design, fabrication of 2DPs that form electronically coupled 2D heterostructures remains an outstanding challenge. Here, we report the rational design and optimized synthesis of electronically coupled semiconducting 2DP/2D transition metal dichalcogenide van der Waals heterostructures, demonstrate direct exfoliation of the highly crystalline and oriented 2DP films down to a few nanometers, and present the first thickness-dependent study of 2DP/MoS2 heterostructures. Control over the 2DP layers reveals enhancement of the 2DP photoluminescence by two orders of magnitude in ultrathin sheets and an unexpected thickness-dependent modulation of the ultrafast excited state dynamics in the 2DP/MoS2 heterostructure. These results provide fundamental insight into the electronic structure of 2DPs and present a route to tune emergent quantum phenomena in 2DP hybrid van der Waals heterostructures.


Assuntos
Dissulfetos/química , Elétrons , Molibdênio/química , Polímeros/química , Modelos Moleculares , Conformação Molecular
8.
Phys Rev Lett ; 125(16): 165302, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33124841

RESUMO

Transition-metal dichalcogenides containing tellurium anions show remarkable charge-lattice modulated structures and prominent interlayer character. Using cryogenic scanning transmission electron microscopy (STEM), we map the atomic-scale structures of the high temperature (HT) and low temperature (LT) modulated phases in 1T^{'}-TaTe_{2}. At HT, we directly show in-plane metal distortions which form trimerized clusters and staggered, three-layer stacking. In the LT phase at 93 K, we visualize an additional trimerization of Ta sites and subtle distortions of Te sites by extracting structural information from contrast modulations in plan-view STEM data. Coupled with density functional theory calculations and image simulations, this approach opens the door for atomic-scale visualizations of low temperature phase transitions and complex displacements in a variety of layered systems.

9.
Nano Lett ; 19(6): 3663-3670, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31046294

RESUMO

Spin-orbit torques (SOT) in thin film heterostructures originate from strong spin-orbit interactions (SOI) that, in the bulk, generate a spin current due either to extrinsic spin-dependent, skew, or/and side-jump scattering or to intrinsic Berry curvature in the conduction bands. While most SOT studies have focused on materials with heavy metal components, the oxide perovskite SrRuO3 has been predicted to have a pronounced Berry curvature. Through quantification of its spin current by the SOT exerted on an adjacent Co ferromagnetic layer, we determine that SrRuO3 has a strongly temperature ( T)-dependent spin Hall conductivity σ SH, increasing with the electrical conductivity, consistent with expected behavior of the intrinsic effect in the "dirty metal" regime. σ SH is very high at low T, e.g., σ SH > (ℏ/2 e)3 × 105 Ω-1 m-1 at 60 K, and is largely unaffected by the SrRuO3 ferromagnetic transition at T c ≈ 150 K, which agrees with a recent theoretical determination that the intrinsic spin Hall effect is magnetization independent. Below T c smaller nonstandard SOT components also develop associated with the magnetism of the oxide. Our results are consistent with the degree of RuO6 octahedral tilt being correlated with the strength of the SOI in this complex oxide, as predicted by recent theoretical work on strontium iridate. These results establish SrRuO3 as a very promising candidate material for implementing strong spintronics functionalities in oxide electronics.

10.
Phys Rev Lett ; 123(5): 057203, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31491309

RESUMO

The effective spin-mixing conductance (G_{eff}^{↑↓}) of a heavy-metal-ferromagnet (HM-FM) interface characterizes the efficiency of the interfacial spin transport. Accurately determining G_{eff}^{↑↓} is critical to the quantitative understanding of measurements of direct and inverse spin Hall effects. G_{eff}^{↑↓} is typically ascertained from the inverse dependence of magnetic damping on the FM thickness under the assumption that spin pumping is the dominant mechanism affecting this dependence. We report that this assumption fails badly in many in-plane magnetized prototypical HM-FM systems in the nanometer-scale thickness regime. Instead, the majority of the damping is from two-magnon scattering at the FM interface, while spin-memory-loss scattering at the interface can also be significant. If these two effects are neglected, the results will be an unphysical "giant" apparent G_{eff}^{↑↓} and hence considerable underestimation of both the spin Hall ratio and the spin Hall conductivity in inverse or direct spin Hall experiments.

11.
Nano Lett ; 18(2): 1311-1316, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29328662

RESUMO

We present measurements of current-induced spin-orbit torques generated by NbSe2, a fully metallic transition-metal dichalcogenide material, made using the spin-torque ferromagnetic resonance (ST-FMR) technique with NbSe2/Permalloy bilayers. In addition to the out-of-plane Oersted torque expected from current flow in the metallic NbSe2 layer, we also observe an in-plane antidamping torque with torque conductivity σS ≈ 103 (ℏ/2e)(Ωm)-1 and indications of a weak field-like contribution to the out-of-plane torque oriented opposite to the Oersted torque. Furthermore, in some samples we also measure an in-plane field-like torque with the form m̂ × z, where m̂ is the Permalloy magnetization direction and z is perpendicular to the sample plane. The size of this component varies strongly between samples and is not correlated with the NbSe2 thickness. A torque of this form is not allowed by the bulk symmetries of NbSe2 but is consistent with symmetry breaking by a uniaxial strain that might result during device fabrication.

12.
Microsc Microanal ; 22(1): 237-49, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26750260

RESUMO

We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica de Transmissão e Varredura/instrumentação , Microscopia Eletrônica de Transmissão e Varredura/métodos , Imagem Óptica/instrumentação , Imagem Óptica/métodos
13.
Phys Rev Lett ; 114(3): 037401, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25659021

RESUMO

Using polarization-resolved photoluminescence spectroscopy, we investigate the breaking of valley degeneracy by an out-of-plane magnetic field in back-gated monolayer MoSe2 devices. We observe a linear splitting of -0.22 meV/T between luminescence peak energies in σ+ and σ- emission for both neutral and charged excitons. The optical selection rules of monolayer MoSe2 couple the photon handedness to the exciton valley degree of freedom; so this splitting demonstrates valley degeneracy breaking. In addition, we find that the luminescence handedness can be controlled with a magnetic field to a degree that depends on the back-gate voltage. An applied magnetic field, therefore, provides effective strategies for control over the valley degree of freedom.

14.
Nano Lett ; 13(11): 5497-502, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24124889

RESUMO

Using transient absorption (TA) microscopy as a hot electron thermometer, we show that disorder-assisted acoustic-phonon supercollisions (SCs) best describe the rate-limiting relaxation step in graphene over a wide range of lattice temperatures (Tl = 5-300 K), Fermi energies (E(F) = ± 0.35 eV), and optical probe energies (~0.3-1.1 eV). Comparison with simultaneously collected transient photocurrent, an independent hot electron thermometer, confirms that the rate-limiting optical and electrical response in graphene are best described by the SC-heat dissipation rate model, H = A(T(e)(3) - T(l)(3)). Our data further show that the electron cooling rate in substrate-supported graphene is twice as fast as in suspended graphene sheets, consistent with SC model prediction for disorder.


Assuntos
Absorção , Elétrons , Grafite/química , Nanoestruturas/química , Teste de Materiais
15.
Adv Mater ; 36(13): e2305739, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37800466

RESUMO

Magnetic van der Waals heterostructures provide a unique platform to study magnetism and spintronics device concepts in the 2D limit. Here, studies of exchange bias from the van der Waals antiferromagnet CrSBr acting on the van der Waals ferromagnet Fe3GeTe2 (FGT) are reported. The orientation of the exchange bias is along the in-plane easy axis of CrSBr, perpendicular to the out-of-plane anisotropy of the FGT, inducing a strongly tilted magnetic configuration in the FGT. Furthermore, the in-plane exchange bias provides sufficient symmetry breaking to allow deterministic spin-orbit torque switching of the FGT in CrSBr/FGT/Pt samples at zero applied magnetic field. A minimum thickness of the CrSBr of >10 nm is needed to provide a non-zero exchange bias at 30 K.

16.
Nat Commun ; 14(1): 1778, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997579

RESUMO

Spin-orbit torques (SOTs) have been widely understood as an interfacial transfer of spin that is independent of the bulk properties of the magnetic layer. Here, we report that SOTs acting on ferrimagnetic FexTb1-x layers decrease and vanish upon approaching the magnetic compensation point because the rate of spin transfer to the magnetization becomes much slower than the rate of spin relaxation into the crystal lattice due to spin-orbit scattering. These results indicate that the relative rates of competing spin relaxation processes within magnetic layers play a critical role in determining the strength of SOTs, which provides a unified understanding for the diverse and even seemingly puzzling SOT phenomena in ferromagnetic and compensated systems. Our work indicates that spin-orbit scattering within the magnet should be minimized for efficient SOT devices. We also find that the interfacial spin-mixing conductance of interfaces of ferrimagnetic alloys (such as FexTb1-x) is as large as that of 3d ferromagnets and insensitive to the degree of magnetic compensation.

17.
Sci Adv ; 9(36): eadi9039, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682997

RESUMO

Sagnac interferometry can provide a substantial improvement in signal-to-noise ratio compared to conventional magnetic imaging based on the magneto-optical Kerr effect. We show that this improvement is sufficient to allow quantitative measurements of current-induced magnetic deflections due to spin-orbit torque even in thin-film magnetic samples with perpendicular magnetic anisotropy, for which the Kerr rotation is second order in the magnetic deflection. Sagnac interferometry can also be applied beneficially for samples with in-plane anisotropy, for which the Kerr rotation is first order in the deflection angle. Optical measurements based on Sagnac interferometry can therefore provide a cross-check on electrical techniques for measuring spin-orbit torque. Different electrical techniques commonly give quantitatively inconsistent results so that Sagnac interferometry can help to identify which techniques are affected by unidentified artifacts.

18.
Sci Adv ; 9(50): eadi4540, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091392

RESUMO

We present measurements of thermally generated transverse spin currents in the topological insulator Bi2Se3, thereby completing measurements of interconversions among the full triad of thermal gradients, charge currents, and spin currents. We accomplish this by comparing the spin Nernst magneto-thermopower to the spin Hall magnetoresistance for bilayers of Bi2Se3/CoFeB. We find that Bi2Se3 does generate substantial thermally driven spin currents. A lower bound for the ratio of spin current density to thermal gradient is [Formula: see text] = (4.9 ± 0.9) × 106 [Formula: see text], and a lower bound for the magnitude of the spin Nernst ratio is -0.61 ± 0.11. The spin Nernst ratio for Bi2Se3 is the largest among all materials measured to date, two to three times larger compared to previous measurements for the heavy metals Pt and W. Strong thermally generated spin currents in Bi2Se3 can be understood via Mott relations to be due to an overall large spin Hall conductivity and its dependence on electron energy.

19.
Adv Mater ; 35(39): e2301608, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37272785

RESUMO

Spin-orbit torques generated by a spin current are key to magnetic switching in spintronic applications. The polarization of the spin current dictates the direction of switching required for energy-efficient devices. Conventionally, the polarizations of these spin currents are restricted to be along a certain direction due to the symmetry of the material allowing only for efficient in-plane magnetic switching. Unconventional spin-orbit torques arising from novel spin current polarizations, however, have the potential to switch other magnetization orientations such as perpendicular magnetic anisotropy, which is desired for higher density spintronic-based memory devices. Here, it is demonstrated that low crystalline symmetry is not required for unconventional spin-orbit torques and can be generated in a nonmagnetic high symmetry material, iridium dioxide (IrO2 ), using epitaxial design. It is shown that by reducing the relative crystalline symmetry with respect to the growth direction large unconventional spin currents can be generated and hence spin-orbit torques. Furthermore, the spin polarizations detected in (001), (110), and (111) oriented IrO2 thin films are compared to show which crystal symmetries restrict unconventional spin transport. Understanding and tuning unconventional spin transport generation in high symmetry materials can provide a new route towards energy-efficient magnetic switching in spintronic devices.

20.
Nat Commun ; 14(1): 2393, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100786

RESUMO

We present room-temperature measurements of magnon spin diffusion in epitaxial ferrimagnetic insulator MgAl0.5Fe1.5O4 (MAFO) thin films near zero applied magnetic field where the sample forms a multi-domain state. Due to a weak uniaxial magnetic anisotropy, the domains are separated primarily by 180° domain walls. We find, surprisingly, that the presence of the domain walls has very little effect on the spin diffusion - nonlocal spin transport signals in the multi-domain state retain at least 95% of the maximum signal strength measured for the spatially-uniform magnetic state, over distances at least five times the typical domain size. This result is in conflict with simple models of interactions between magnons and static domain walls, which predict that the spin polarization carried by the magnons reverses upon passage through a 180° domain wall.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA