Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Lett ; 22(12): 2111-2119, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31621153

RESUMO

In contrast to the situation in plants inhabiting most of the world's ecosystems, mycorrhizal fungi are usually absent from roots of the only two native vascular plant species of maritime Antarctica, Deschampsia antarctica and Colobanthus quitensis. Instead, a range of ascomycete fungi, termed dark septate endophytes (DSEs), frequently colonise the roots of these plant species. We demonstrate that colonisation of Antarctic vascular plants by DSEs facilitates not only the acquisition of organic nitrogen as early protein breakdown products, but also as non-proteinaceous d-amino acids and their short peptides, accumulated in slowly-decomposing organic matter, such as moss peat. Our findings suggest that, in a warming maritime Antarctic, this symbiosis has a key role in accelerating the replacement of formerly dominant moss communities by vascular plants, and in increasing the rate at which ancient carbon stores laid down as moss peat over centuries or millennia are returned to the atmosphere as CO2 .


Assuntos
Magnoliopsida , Micorrizas , Regiões Antárticas , Ecossistema , Simbiose
2.
Proc Natl Acad Sci U S A ; 106(12): 4770-5, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19273851

RESUMO

DNA replication stress has been implicated in the etiology of genetic diseases, including cancers. It has been proposed that genomic sites that inhibit or slow DNA replication fork progression possess recombination hotspot activity and can form potential fragile sites. Here we used the fission yeast, Schizosaccharomyces pombe, to demonstrate that hotspot activity is not a universal feature of replication fork barriers (RFBs), and we propose that most sites within the genome that form RFBs do not have recombination hotspot activity under nonstressed conditions. We further demonstrate that Swi1, the TIMELESS homologue, differentially controls the recombination potential of RFBs, switching between being a suppressor and an activator of recombination in a site-specific fashion.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Recombinação Genética/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Modelos Genéticos , Sequências Reguladoras de Ácido Nucleico/genética
3.
Biochim Biophys Acta ; 1783(2): 203-13, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18062930

RESUMO

Translin is a conserved protein which associates with the breakpoint junctions of chromosomal translocations linked with the development of some human cancers. It binds to both DNA and RNA and has been implicated in mRNA metabolism and regulation of genome stability. It has a binding partner, translin-associated protein X (TRAX), levels of which are regulated by the translin protein in higher eukaryotes. In this study we find that this regulatory function is conserved in the lower eukaryotes, suggesting that translin and TRAX have important functions which provide a selective advantage to both unicellular and multi-cellular eukaryotes, indicating that this function may not be tissue-specific in nature. However, to date, the biological importance of translin and TRAX remains unclear. Here we systematically investigate proposals that suggest translin and TRAX play roles in controlling mitotic cell proliferation, DNA damage responses, genome stability, meiotic/mitotic recombination and stability of GT-rich repeat sequences. We find no evidence for translin and/or TRAX primary function in these pathways, indicating that the conserved biochemical function of translin is not implicated in primary pathways for regulating genome stability and/or segregation.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Homologia de Sequência de Aminoácidos , Sequência de Bases , Proliferação de Células/efeitos dos fármacos , DNA Fúngico/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/efeitos dos fármacos , Células Eucarióticas/metabolismo , Meiose/efeitos dos fármacos , Instabilidade de Microssatélites/efeitos dos fármacos , Repetições de Microssatélites , Mitose/efeitos dos fármacos , Mutagênicos/toxicidade , Proteínas Mutantes/metabolismo , Mutação/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/efeitos dos fármacos , Recombinação Genética/efeitos dos fármacos , Sais/farmacologia , Schizosaccharomyces/citologia , Schizosaccharomyces/efeitos dos fármacos , Tiabendazol/farmacologia
4.
Genes (Basel) ; 10(6)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31208064

RESUMO

"Candidatus Micrarchaeota" are widely distributed in acidic environments; however, their cultivability and our understanding of their interactions with potential hosts are very limited. Their habitats were so far attributed with acidic sites, soils, peats, freshwater systems, and hypersaline mats. Using cultivation and culture-independent approaches (16S rRNA gene clonal libraries, high-throughput amplicon sequencing of V3-V4 region of 16S rRNA genes), we surveyed the occurrence of these archaea in geothermal areas on Kamchatka Peninsula and Kunashir Island and assessed their taxonomic diversity in relation with another type of low-pH environment, acid mine drainage stream (Wales, UK). We detected "Ca. Micrarchaeota" in thermophilic heterotrophic enrichment cultures of Kunashir and Kamchatka that appeared as two different phylotypes, namely "Ca. Mancarchaeum acidiphilum"-, and ARMAN-2-related, alongside their potential hosts, Cuniculiplasma spp. and other Thermoplasmatales archaea without defined taxonomic position. These clusters of "Ca. Micrarchaeota" together with three other groups were also present in mesophilic acid mine drainage community. Present work expands our knowledge on the diversity of "Ca. Micrarchaeota" in thermophilic and mesophilic acidic environments, suggests cultivability patterns of acidophilic archaea and establishes potential links between low-abundance species of thermophilic "Ca. Micrarchaeota" and certain Thermoplasmatales, such as Cuniculiplasma spp. in situ.


Assuntos
Ácidos/química , Archaea/genética , Microbiologia do Solo , Thermoplasmales/genética , Archaea/química , Archaea/classificação , Ecossistema , Água Doce/microbiologia , Genoma Arqueal/genética , Fontes Termais , Filogenia , RNA Ribossômico 16S/genética , Rios/microbiologia , Solo/química , Thermoplasmales/química , País de Gales
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA