Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
JMLR Workshop Conf Proc ; 52: 368-379, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28239434

RESUMO

Existing score-based causal model search algorithms such as GES (and a speeded up version, FGS) are asymptotically correct, fast, and reliable, but make the unrealistic assumption that the true causal graph does not contain any unmeasured confounders. There are several constraint-based causal search algorithms (e.g RFCI, FCI, or FCI+) that are asymptotically correct without assuming that there are no unmeasured confounders, but often perform poorly on small samples. We describe a combined score and constraint-based algorithm, GFCI, that we prove is asymptotically correct. On synthetic data, GFCI is only slightly slower than RFCI but more accurate than FCI, RFCI and FCI+.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA