Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(9): 306, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002030

RESUMO

This study examined plastics and toxic metals in municipal solid waste compost from various regions in Sri Lanka. Plastics were extracted using density separation, digested using wet peroxidation, and identified using Fourier Transform Infra-Red Spectroscopy in Attenuated Total Reflection mode. Compost and plastics were acid-digested to quantify total Cd, Cu, Co, Cr, Pb, and Zn concentrations and analyzed for the bioavailable fraction using 0.01 M CaCl2. Notably, plastics were highly abundant in most compost samples. The main plastic types detected were polyethylene, polypropylene, and cellophane. However, the average Cd, Cu, Co, Cr, Pb, and Zn levels were 0.727, 60.78, 3.670, 25.44, 18.95, and 130.7 mg/kg, respectively, which are well below the recommended levels. Zn was the most bioavailable (2.476 mg/kg), and Cd was the least bioavailable (0.053 mg/kg) metal associated with compost. The Contamination factor data show that there is considerable enhancement of Cd and Cu, however, Cr, Cu, Co, and Pb are at low contamination levels. Mean geo accumulation index values were 1.39, 1.07, - 1.06, - 0.84, - 0.32, and 0.08 for Cd, Cu, Co, Cr, Pb, and Zn. Therefore, the contamination level of compost samples with Cd and Cu ranges from uncontaminated to contaminated levels, whereas Co, Cr, Pb, and Zn are at uncontaminated levels. Despite no direct metal-plastic correlation, plastics in compost could harm plants, animals, and humans due to ingestion. Hence, reducing plastic and metal contamination in compost is crucial.


Assuntos
Compostagem , Metais Pesados , Plásticos , Poluentes do Solo , Resíduos Sólidos , Sri Lanka , Plásticos/análise , Resíduos Sólidos/análise , Metais Pesados/análise , Poluentes do Solo/análise , Monitoramento Ambiental , Solo/química , Espectroscopia de Infravermelho com Transformada de Fourier , Eliminação de Resíduos
2.
J Am Chem Soc ; 141(6): 2446-2450, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30563330

RESUMO

Infrared (IR) light represents an untapped energy source accounting for almost half of all solar energy. Thus, there is a need to develop systems to convert IR light to fuel and make full use of this plentiful resource. Herein, we report photocatalytic H2 evolution driven by near- to shortwave-IR light (up to 2500 nm) irradiation, based on novel CdS/Cu7S4 heterostructured nanocrystals. The apparent quantum yield reached 3.8% at 1100 nm, which exceeds the highest efficiencies achieved by IR light energy conversion systems reported to date. Spectroscopic results revealed that plasmon-induced hot-electron injection at p-n heterojunctions realizes exceptionally long-lived charge separation (>273 µs), which results in efficient IR light to hydrogen conversion. These results pave the way for the exploration of undeveloped low-energy light for solar fuel generation.

3.
Mater Sci Eng C Mater Biol Appl ; 63: 172-84, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27040209

RESUMO

Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value.


Assuntos
Materiais Revestidos Biocompatíveis/química , Durapatita/química , Nanopartículas/química , Titânio/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA