Assuntos
Infecções por Vírus Epstein-Barr/diagnóstico , Herpesvirus Humano 4/fisiologia , Síndromes de Imunodeficiência/diagnóstico , Células Matadoras Naturais/imunologia , Receptores de IgG/genética , Citotoxicidade Celular Dependente de Anticorpos , Células Cultivadas , Criança , Feminino , Humanos , Masculino , Linhagem , RNA Viral/análiseRESUMO
Natural killer (NK) cells respond rapidly in early HIV-1 infection. HIV-1 prevention and control strategies harnessing NK cells could be enabled by mechanistic understanding of how NK cells recognize HIV-infected T cells. Here, we profiled the phenotype of human primary NK cells responsive to autologous HIV-1-infected CD4 + T cells in vitro. We characterized the patterns of NK cell ligand expression on CD4 + T cells at baseline and after infection with a panel of transmitted/founder HIV-1 strains to identify key receptor-ligand pairings. CRISPR editing of CD4 + T cells to knockout the NKp30 ligand B7-H6, or the NKG2D ligands MICB or ULBP2 reduced NK cell responses to HIV-infected cells in some donors. In contrast, overexpression of NKp30 or NKG2D in NK cells enhanced their targeting of HIV-infected cells. Collectively, we identified receptor-ligand pairs including NKp30:B7-H6 and NKG2D:MICB/ULBP2 that contribute to NK cell recognition of HIV-infected cells.
RESUMO
While preventing vertical HIV transmission has been very successful, HIV-exposed uninfected infants (iHEU) experience an elevated risk to infections compared to HIV-unexposed and uninfected infants (iHUU). Here we present a longitudinal multimodal analysis of infant immune ontogeny that highlights the impact of HIV/ARV exposure. Using mass cytometry, we show alterations in T cell memory differentiation between iHEU and iHUU being significant from week 15 of life. The altered memory T cell differentiation in iHEU was preceded by lower TCR Vß clonotypic diversity and linked to TCR clonal depletion within the naïve T cell compartment. Compared to iHUU, iHEU had elevated CD56loCD16loPerforin+CD38+CD45RA+FcεRIγ+ NK cells at 1 month postpartum and whose abundance pre-vaccination were predictive of vaccine-induced pertussis and rotavirus antibody responses post 3 months of life. Collectively, HIV/ARV exposure disrupted the trajectory of innate and adaptive immunity from birth which may underlie relative vulnerability to infections in iHEU.
Assuntos
Infecções por HIV , Memória Imunológica , Transmissão Vertical de Doenças Infecciosas , Humanos , Infecções por HIV/imunologia , Infecções por HIV/virologia , Lactente , Feminino , Recém-Nascido , Células T de Memória/imunologia , Masculino , Células Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Imunidade Adaptativa/imunologia , Diferenciação Celular/imunologia , Estudos LongitudinaisRESUMO
While preventing vertical HIV transmission has been very successful, the increasing number of HIV-exposed uninfected infants (iHEU) experience an elevated risk to infections compared to HIV-unexposed and uninfected infants (iHUU). Immune developmental differences between iHEU and iHUU remains poorly understood and here we present a longitudinal multimodal analysis of infant immune ontogeny that highlights the impact of HIV/ARV exposure. Using mass cytometry, we show alterations and differences in the emergence of NK cell populations and T cell memory differentiation between iHEU and iHUU. Specific NK cells observed at birth were also predictive of acellular pertussis and rotavirus vaccine-induced IgG and IgA responses, respectively, at 3 and 9 months of life. T cell receptor Vß clonotypic diversity was significantly and persistently lower in iHEU preceding the expansion of T cell memory. Our findings show that HIV/ARV exposure disrupts innate and adaptive immunity from birth which may underlie relative vulnerability to infections.
RESUMO
High grade non-muscle-invasive bladder tumours are treated with transurethral resection followed by recurrent intravesical instillations of Bacillus Calmette Guérin (BCG). Although most bladder cancer patients respond well to BCG, there is no clinical parameter predictive of treatment response, and when treatment fails, the prognosis is very poor. Further, a high percentage of NMIBC patients treated with BCG suffer unwanted effects that force them to stop treatment. Thus, early identification of patients in which BCG treatment will fail is really important. Here, to identify early stage non-invasive biomarkers of non-responder patients and patients at risk of abandoning the treatment, we longitudinally analysed the phenotype of cells released into the urine of bladder cancer patients 3-7 days after BCG instillations. Mass cytometry (CyTOF) analyses revealed a large proportion of granulocytes and monocytes, mostly expressing activation markers. A novel population of CD15+CD66b+CD14+CD16+ cells was highly abundant in several samples; expression of these markers was confirmed using flow cytometry and qPCR. A stronger inflammatory response was associated with increased cell numbers in the urine; this was not due to hematuria because the cell proportions were distinct from those in the blood. This pilot study represents the first CyTOF analysis of cells recruited to urine during BCG treatment, allowing identification of informative markers associated with treatment response for sub-selection of markers to confirm using conventional techniques. Further studies should jointly evaluate cells and soluble factors in urine in larger cohorts of patients to characterise the arms of the immune response activated in responders and to identify patients at risk of complications from BCG treatment.
Assuntos
Neoplasias da Bexiga Urinária , Administração Intravesical , Vacina BCG/uso terapêutico , Humanos , Projetos Piloto , Prognóstico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologiaRESUMO
The latent HIV-1 reservoir represents a major barrier to achieving a long-term antiretroviral therapy (ART)-free remission or cure for HIV-1. Natural Killer (NK) cells are innate immune cells that play a critical role in controlling viral infections and have been shown to be involved in preventing HIV-1 infection and, in those who are infected, delaying time to progression to AIDS. However, their role in limiting HIV-1 persistence on long term ART is still uncharacterized. To identify associations between markers of HIV-1 persistence and the NK cell receptor-ligand repertoire, we used twin mass cytometry panels to characterize the peripheral blood NK receptor-ligand repertoire in individuals with long-term antiretroviral suppression enrolled in the AIDS Clinical Trial Group A5321 study. At the time of testing, participants had been on ART for a median of 7 years, with virological suppression <50 copies/mL since at most 48 weeks on ART. We found that the NK cell receptor and ligand repertoires did not change across three longitudinal samples over one year-a median of 25 weeks and 50 weeks after the initial sampling. To determine the features of the receptor-ligand repertoire that associate with markers of HIV-1 persistence, we performed a LASSO normalized regression. This analysis revealed that the NK cell ligands CD58, HLA-B, and CRACC, as well as the killer cell immunoglobulin-like receptors (KIRs) KIR2DL1, KIR2DL3, and KIR2DS4 were robustly predictive of markers of HIV-1 persistence, as measured by total HIV-1 cell-associated DNA, HIV-1 cell-associated RNA, and single copy HIV-RNA assays. To characterize the roles of cell populations defined by multiple markers, we augmented the LASSO analysis with FlowSOM clustering. This analysis found that a less mature NK cell phenotype (CD16+CD56dimCD57-LILRB1-NKG2C-) was associated with lower HIV-1 cell associated DNA. Finally, we found that surface expression of HLA-Bw6 measured by CyTOF was associated with lower HIV-1 persistence. Genetic analysis revealed that this was driven by lower HIV-1 persistence in HLA-Bw4/6 heterozygotes. These findings suggest that there may be a role for NK cells in controlling HIV-1 persistence in individuals on long-term ART, which must be corroborated by future studies.
Assuntos
Infecções por HIV , HIV-1 , Infecções por HIV/tratamento farmacológico , Humanos , Ligantes , Receptores de Células Matadoras Naturais/metabolismo , Receptores de Células Matadoras Naturais/uso terapêutico , Latência ViralRESUMO
The SARS-CoV-2 pandemic has differentially impacted populations across race and ethnicity. A multi-omic approach represents a powerful tool to examine risk across multi-ancestry genomes. We leverage a pandemic tracking strategy in which we sequence viral and host genomes and transcriptomes from nasopharyngeal swabs of 1049 individuals (736 SARS-CoV-2 positive and 313 SARS-CoV-2 negative) and integrate them with digital phenotypes from electronic health records from a diverse catchment area in Northern California. Genome-wide association disaggregated by admixture mapping reveals novel COVID-19-severity-associated regions containing previously reported markers of neurologic, pulmonary and viral disease susceptibility. Phylodynamic tracking of consensus viral genomes reveals no association with disease severity or inferred ancestry. Summary data from multiomic investigation reveals metagenomic and HLA associations with severe COVID-19. The wealth of data available from residual nasopharyngeal swabs in combination with clinical data abstracted automatically at scale highlights a powerful strategy for pandemic tracking, and reveals distinct epidemiologic, genetic, and biological associations for those at the highest risk.
Assuntos
COVID-19 , Pandemias , COVID-19/epidemiologia , Genoma Viral , Estudo de Associação Genômica Ampla , Humanos , SARS-CoV-2/genéticaRESUMO
Severe cases of coronavirus disease 2019 (COVID-19), caused by infection with SARS-CoV-2, are characterized by a hyperinflammatory immune response that leads to numerous complications. Production of proinflammatory neutrophil extracellular traps (NETs) has been suggested to be a key factor in inducing a hyperinflammatory signaling cascade, allegedly causing both pulmonary tissue damage and peripheral inflammation. Accordingly, therapeutic blockage of neutrophil activation and NETosis, the cell death pathway accompanying NET formation, could limit respiratory damage and death from severe COVID-19. Here, we demonstrate that synthetic glycopolymers that activate signaling of the neutrophil checkpoint receptor Siglec-9 suppress NETosis induced by agonists of viral toll-like receptors (TLRs) and plasma from patients with severe COVID-19. Thus, Siglec-9 agonism is a promising therapeutic strategy to curb neutrophilic hyperinflammation in COVID-19.
RESUMO
Our understanding of protective versus pathological immune responses to SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is limited by inadequate profiling of patients at the extremes of the disease severity spectrum. Here, we performed multi-omic single-cell immune profiling of 64 COVID-19 patients across the full range of disease severity, from outpatients with mild disease to fatal cases. Our transcriptomic, epigenomic, and proteomic analyses revealed widespread dysfunction of peripheral innate immunity in severe and fatal COVID-19, including prominent hyperactivation signatures in neutrophils and NK cells. We also identified chromatin accessibility changes at NF-κB binding sites within cytokine gene loci as a potential mechanism for the striking lack of pro-inflammatory cytokine production observed in monocytes in severe and fatal COVID-19. We further demonstrated that emergency myelopoiesis is a prominent feature of fatal COVID-19. Collectively, our results reveal disease severity-associated immune phenotypes in COVID-19 and identify pathogenesis-associated pathways that are potential targets for therapeutic intervention.
Assuntos
COVID-19/sangue , COVID-19/imunologia , Imunidade Inata/fisiologia , Adulto , Idoso , COVID-19/genética , COVID-19/mortalidade , Estudos de Casos e Controles , Citocinas/genética , Epigênese Genética , Feminino , Hematopoese , Humanos , Células Matadoras Naturais/patologia , Células Matadoras Naturais/virologia , Masculino , Pessoa de Meia-Idade , Monócitos/patologia , Monócitos/virologia , NF-kappa B/metabolismo , Neutrófilos/patologia , Neutrófilos/virologia , Proteômica , Índice de Gravidade de Doença , Análise de Célula ÚnicaRESUMO
Severe cases of coronavirus disease 2019 (COVID-19), caused by infection with SARS-Cov-2, are characterized by a hyperinflammatory immune response that leads to numerous complications. Production of proinflammatory neutrophil extracellular traps (NETs) has been suggested to be a key factor in inducing a hyperinflammatory signaling cascade, allegedly causing both pulmonary tissue damage and peripheral inflammation. Accordingly, therapeutic blockage of neutrophil activation and NETosis, the cell death pathway accompanying NET formation, could limit respiratory damage and death from severe COVID-19. Here, we demonstrate that synthetic glycopolymers that activate the neutrophil checkpoint receptor Siglec-9 suppress NETosis induced by agonists of viral toll-like receptors (TLRs) and plasma from patients with severe COVID-19. Thus, Siglec-9 agonism is a promising therapeutic strategy to curb neutrophilic hyperinflammation in COVID-19.
.
RESUMO
Natural killer (NK) cells are among the first responders to viral infections. The ability of NK cells to rapidly recognize and kill virally infected cells is regulated by their expression of germline-encoded inhibitory and activating receptors. The engagement of these receptors by their cognate ligands on target cells determines whether the intercellular interaction will result in NK cell killing. This protocol details the design and optimization of two complementary mass cytometry (CyTOF) panels. One panel was designed to phenotype NK cells based on receptor expression. The other panel was designed to interrogate expression of known ligands for NK cell receptors on several immune cell subsets. Together, these two panels allow for the profiling of the human NK cell receptor-ligand repertoire. Furthermore, this protocol also details the process by which we stain samples for CyTOF. This process has been optimized for improved reproducibility and standardization. An advantage of CyTOF is its ability to measure over 40 markers in each panel, with minimal signal overlap, allowing researchers to capture the breadth of the NK cell receptor-ligand repertoire. Palladium barcoding also reduces inter-sample variation, as well as consumption of reagents, making it easier to stain samples with each panel in parallel. Limitations of this protocol include the relatively low throughput of CyTOF and the inability to recover cells after analysis. These panels were designed for the analysis of clinical samples from patients suffering from acute and chronic viral infections, including dengue virus, human immunodeficiency virus (HIV), and influenza. However, they can be utilized in any setting to investigate the human NK cell receptor-ligand repertoire. Importantly, these methods can be applied broadly to the design and execution of future CyTOF panels.
Assuntos
Receptores de Células Matadoras Naturais/metabolismo , Anticorpos/metabolismo , Linhagem Celular , DNA/metabolismo , Liofilização , Humanos , Substâncias Intercalantes/metabolismo , Células Matadoras Naturais/imunologia , Ligantes , Reprodutibilidade dos Testes , Coloração e RotulagemRESUMO
Highly exposed seronegative (HESN) individuals present a unique setting to study mechanisms of protection against HIV acquisition. As natural killer (NK) cell activation and function have been implicated as a correlate of protection in HESN individuals, we sought to better understand the features of NK cells that may confer protection. We used mass cytometry to phenotypically profile NK cells from a cohort of Beninese sex workers and healthy controls. We found that NK cells from HESN women had increased expression of NKG2A, NKp30 and LILRB1, as well as the Fc receptor CD16, and decreased expression of DNAM-1, CD94, Siglec-7, and NKp44. Using functional assessments of NK cells from healthy donors against autologous HIV-infected CD4+ T cells, we observed that NKp30+ and Siglec-7+ cells had improved functional activity. Further, we found that NK cells from HESN women trended towards increased antibody-dependent cellular cytotoxicity (ADCC) activity; this activity correlated with increased CD16 expression. Overall, we identify features of NK cells in HESN women that may contribute to protection from HIV infection. Follow up studies with larger cohorts are warranted to confirm these findings.
Assuntos
Infecções por HIV/patologia , Células Matadoras Naturais/metabolismo , Adulto , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Genótipo , Infecções por HIV/imunologia , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Lectinas/metabolismo , Modelos Lineares , Receptor 3 Desencadeador da Citotoxicidade Natural/metabolismo , Fenótipo , Receptores de IgG/genética , Receptores de IgG/metabolismo , Profissionais do SexoRESUMO
Daclizumab beta is a humanized monoclonal antibody that binds to CD25 and selectively inhibits high-affinity IL-2 receptor signaling. As a former treatment for relapsing forms of multiple sclerosis (RMS), daclizumab beta induces robust expansion of the CD56bright subpopulation of NK cells that is correlated with the drug's therapeutic effects. As NK cells represent a heterogeneous population of lymphocytes with a range of phenotypes and functions, the goal of this study was to better understand how daclizumab beta altered the NK cell repertoire to provide further insight into the possible mechanism(s) of action in RMS. We used mass cytometry to evaluate expression patterns of NK cell markers and provide a comprehensive assessment of the NK cell repertoire in individuals with RMS treated with daclizumab beta or placebo over the course of 1 year. Treatment with daclizumab beta significantly altered the NK cell repertoire compared to placebo treatment. As previously reported, daclizumab beta significantly increased expression of CD56 on total NK cells. Within the CD56bright NK cells, treatment was associated with multiple phenotypic changes, including increased expression of NKG2A and NKp44, and diminished expression of CD244, CD57, and NKp46. These alterations occurred broadly across the CD56bright population, and were not associated with a specific subset of CD56bright NK cells. While the changes were less dramatic, CD56dim NK cells responded distinctly to daclizumab beta treatment, with higher expression of CD2 and NKG2A, and lower expression of FAS-L, HLA-DR, NTB-A, NKp30, and Perforin. Together, these data indicate that the expanded CD56bright NK cells share features of both immature and mature NK cells. These findings show that daclizumab beta treatment is associated with unique changes in NK cells that may enhance their ability to kill autoreactive T cells or to exert immunomodulatory functions.
Assuntos
Daclizumabe/administração & dosagem , Imunossupressores/administração & dosagem , Células Matadoras Naturais/efeitos dos fármacos , Espectrometria de Massas/métodos , Esclerose Múltipla/sangue , Esclerose Múltipla/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD4-Positivos/imunologia , Antígeno CD56/metabolismo , Estudos de Coortes , Feminino , Humanos , Células Matadoras Naturais/imunologia , Masculino , Pessoa de Meia-Idade , Receptores de Células Matadoras Naturais/metabolismo , Adulto JovemRESUMO
OBJECTIVE: Our objective was to investigate the mechanisms that govern natural killer (NK)-cell responses to HIV, with a focus on specific receptor--ligand interactions involved in HIV recognition by NK cells. DESIGN AND METHODS: We first performed a mass cytometry-based screen of NK-cell receptor expression patterns in healthy controls and HIV individuals. We then focused mechanistic studies on the expression and function of T cell immunoreceptor with Ig and ITIM domains (TIGIT). RESULTS: The mass cytometry screen revealed that TIGIT is upregulated on NK cells of untreated HIV women, but not in antiretroviral-treated women. TIGIT is an inhibitory receptor that is thought to mark exhausted NK cells; however, blocking TIGIT did not improve anti-HIV NK-cell responses. In fact, the TIGIT ligands CD112 and CD155 were not upregulated on CD4 T cells in vitro or in vivo, providing an explanation for the lack of benefit from TIGIT blockade. TIGIT expression marked a unique subset of NK cells that express significantly higher levels of NK-cell-activating receptors (DNAM-1, NTB-A, 2B4, CD2) and exhibit a mature/adaptive phenotype (CD57, NKG2C, LILRB1, FcRγ, Syk). Furthermore, TIGIT NK cells had increased responses to mock-infected and HIV-infected autologous CD4 T cells, and to PMA/ionomycin, cytokine stimulation and the K562 cancer cell line. CONCLUSION: TIGIT expression is increased on NK cells from untreated HIV individuals. Although TIGIT does not participate directly to the response to HIV-infected cells, it marks a population of mature/adaptive NK cells with increased functional responses.
Assuntos
Infecções por HIV , HIV/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Receptores Imunológicos/fisiologia , Adulto , Benin , Feminino , Regulação da Expressão Gênica , HIV/genética , HIV-1 , Humanos , Leucócitos Mononucleares , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Profissionais do SexoRESUMO
BACKGROUNDElevated levels of inflammatory cytokines have been associated with poor outcomes among COVID-19 patients. It is unknown, however, how these levels compare with those observed in critically ill patients with acute respiratory distress syndrome (ARDS) or sepsis due to other causes.METHODSWe used a Luminex assay to determine expression of 76 cytokines from plasma of hospitalized COVID-19 patients and banked plasma samples from ARDS and sepsis patients. Our analysis focused on detecting statistical differences in levels of 6 cytokines associated with cytokine storm (IL-1ß, IL-1RA, IL-6, IL-8, IL-18, and TNF-α) between patients with moderate COVID-19, severe COVID-19, and ARDS or sepsis.RESULTSFifteen hospitalized COVID-19 patients, 9 of whom were critically ill, were compared with critically ill patients with ARDS (n = 12) or sepsis (n = 16). There were no statistically significant differences in baseline levels of IL-1ß, IL-1RA, IL-6, IL-8, IL-18, and TNF-α between patients with COVID-19 and critically ill controls with ARDS or sepsis.CONCLUSIONLevels of inflammatory cytokines were not higher in severe COVID-19 patients than in moderate COVID-19 or critically ill patients with ARDS or sepsis in this small cohort. Broad use of immunosuppressive therapies in ARDS has failed in numerous Phase 3 studies; use of these therapies in unselected patients with COVID-19 may be unwarranted.FUNDINGFunding was received from NHLBI K23 HL125663 (AJR); The Bill and Melinda Gates Foundation OPP1113682 (AJR and CAB); Burroughs Wellcome Fund Investigators in the Pathogenesis of Infectious Diseases #1016687 NIH/NIAID U19AI057229-16; Stanford Maternal Child Health Research Institute; and Chan Zuckerberg Biohub (CAB).
Assuntos
Infecções por Coronavirus/imunologia , Síndrome da Liberação de Citocina/imunologia , Citocinas/imunologia , Pneumonia Viral/imunologia , Síndrome do Desconforto Respiratório/imunologia , Sepse/imunologia , Adulto , Idoso , COVID-19 , Estudos de Casos e Controles , Infecções por Coronavirus/sangue , Síndrome da Liberação de Citocina/sangue , Citocinas/sangue , Feminino , Humanos , Proteína Antagonista do Receptor de Interleucina 1/sangue , Proteína Antagonista do Receptor de Interleucina 1/imunologia , Interleucina-18/sangue , Interleucina-18/imunologia , Interleucina-1beta/sangue , Interleucina-1beta/imunologia , Interleucina-6/sangue , Interleucina-6/imunologia , Interleucina-8/sangue , Interleucina-8/imunologia , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/sangue , Síndrome do Desconforto Respiratório/sangue , Sepse/sangue , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/imunologiaRESUMO
There is an urgent need to better understand the pathophysiology of Coronavirus disease 2019 (COVID-19), the global pandemic caused by SARS-CoV-2, which has infected more than three million people worldwide1. Approximately 20% of patients with COVID-19 develop severe disease and 5% of patients require intensive care2. Severe disease has been associated with changes in peripheral immune activity, including increased levels of pro-inflammatory cytokines3,4 that may be produced by a subset of inflammatory monocytes5,6, lymphopenia7,8 and T cell exhaustion9,10. To elucidate pathways in peripheral immune cells that might lead to immunopathology or protective immunity in severe COVID-19, we applied single-cell RNA sequencing (scRNA-seq) to profile peripheral blood mononuclear cells (PBMCs) from seven patients hospitalized for COVID-19, four of whom had acute respiratory distress syndrome, and six healthy controls. We identify reconfiguration of peripheral immune cell phenotype in COVID-19, including a heterogeneous interferon-stimulated gene signature, HLA class II downregulation and a developing neutrophil population that appears closely related to plasmablasts appearing in patients with acute respiratory failure requiring mechanical ventilation. Importantly, we found that peripheral monocytes and lymphocytes do not express substantial amounts of pro-inflammatory cytokines. Collectively, we provide a cell atlas of the peripheral immune response to severe COVID-19.
Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus , Imunidade Celular , Leucócitos Mononucleares , Pandemias , Pneumonia Viral , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19 , Estudos de Casos e Controles , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Citocinas/genética , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/genética , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , RNA-Seq/métodos , SARS-CoV-2 , Índice de Gravidade de Doença , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto JovemRESUMO
There is an urgent need to better understand the pathophysiology of Coronavirus disease 2019 (COVID-19), the global pandemic caused by SARS-CoV-2. Here, we apply single-cell RNA sequencing (scRNA-seq) to peripheral blood mononuclear cells (PBMCs) of 7 patients hospitalized with confirmed COVID-19 and 6 healthy controls. We identify substantial reconfiguration of peripheral immune cell phenotype in COVID-19, including a heterogeneous interferon-stimulated gene (ISG) signature, HLA class II downregulation, and a novel B cell-derived granulocyte population appearing in patients with acute respiratory failure requiring mechanical ventilation. Importantly, peripheral monocytes and lymphocytes do not express substantial amounts of pro-inflammatory cytokines, suggesting that circulating leukocytes do not significantly contribute to the potential COVID-19 cytokine storm. Collectively, we provide the most thorough cell atlas to date of the peripheral immune response to severe COVID-19.
RESUMO
Adaptive immune responses are defined as antigen sensitization-dependent and antigen-specific responses leading to establishment of long-lived immunological memory. Although natural killer (NK) cells have traditionally been considered cells of the innate immune system, mounting evidence in mice and nonhuman primates warrants reconsideration of the existing paradigm that B and T cells are the sole mediators of adaptive immunity. However, it is currently unknown whether human NK cells can exhibit adaptive immune responses. We therefore tested whether human NK cells mediate adaptive immunity to virally encoded antigens using humanized mice and human volunteers. We found that human NK cells displayed vaccination-dependent, antigen-specific recall responses in vitro, when isolated from livers of humanized mice previously vaccinated with HIV-encoded envelope protein. Furthermore, we discovered that large numbers of cytotoxic NK cells with a tissue-resident phenotype were recruited to sites of varicella-zoster virus (VZV) skin test antigen challenge in VZV-experienced human volunteers. These NK-mediated recall responses in humans occurred decades after initial VZV exposure, demonstrating that NK memory in humans is long-lived. Our data demonstrate that human NK cells exhibit adaptive immune responses upon vaccination or infection. The existence of human memory NK cells may allow for the development of vaccination-based approaches capable of establishing potent NK-mediated memory functions contributing to host protection.
Assuntos
Imunidade Adaptativa/imunologia , Antígenos Virais/imunologia , Memória Imunológica/imunologia , Células Matadoras Naturais/imunologia , Adulto , Idoso , Animais , Varicela/imunologia , Varicela/virologia , Feminino , Antígenos HIV/imunologia , Herpesvirus Humano 3/imunologia , Humanos , Fígado/citologia , Fígado/imunologia , Camundongos , Pessoa de Meia-Idade , Fenótipo , Pele/citologia , Pele/imunologia , Baço/citologia , Baço/imunologia , Vacinação , Proteínas do Envelope Viral/imunologia , Adulto JovemRESUMO
The pleiotropic actions of interleukin-2 (IL-2) are essential for regulation of immune responses and maintenance of immune tolerance. The IL-2 receptor (IL-2R) is composed of IL-2Rα, IL-2Rß, and IL-2Rγ subunits, with defects in IL-2Rα and IL-2Rγ and their downstream signaling effectors resulting in known primary immunodeficiency disorders. Here, we report the first human defect in IL-2Rß, occurring in two infant siblings with a homozygous IL2RB mutation in the WSXWS motif, manifesting as multisystem autoimmunity and susceptibility to CMV infection. The hypomorphic mutation results in diminished IL-2Rß surface expression and dysregulated IL-2/15 signaling, with an anticipated reduction in regulatory T cells. However, in contrast to the IL-2Rß-/- animal model, which lacks NK cells, these siblings demonstrate an expansion of NK cells, particularly the CD56bright subset, and a lack of terminally differentiated NK cells. Thus, the early-onset autoimmunity and immunodeficiency are linked to functional deficits arising from altered IL-2Rß expression and signaling in T and NK cells.
Assuntos
Subunidade beta de Receptor de Interleucina-2/genética , Células Matadoras Naturais/imunologia , Mutação/genética , Linfócitos T/imunologia , Autoimunidade/genética , Compartimento Celular , Proliferação de Células/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Homozigoto , Humanos , Imunofenotipagem , Interleucina-15/metabolismo , Interleucina-2/metabolismo , Subunidade beta de Receptor de Interleucina-2/química , Modelos Moleculares , Fenótipo , Irmãos , Transdução de Sinais , Resultado do TratamentoRESUMO
BACKGROUND: Infection is a leading cause of death worldwide in babies under 1 month of age. Better vaccines and therapeutics are desperately needed for this vulnerable population. METHODS: Because newborns rely heavily on the innate immune system, we evaluated cell phenotype and function of some of the earliest cellular responders during infection, natural killer (NK) cells. We used mass cytometry to provide a comprehensive comparison of NK cells from umbilical cord blood and adult peripheral blood. RESULTS: In unsupervised analyses, including viSNE and principal component analysis, the structure of the cord blood and adult NK cell repertoires are highly similar, distinguishable mainly by maturity-related markers expressed on rare subpopulations of cells. However, in functional analyses, cord blood NK cells show reduced degranulation and cytokine production following target recognition, as well as antibody-dependent cell-mediated cytotoxicity and apoptosis induction in targets. CONCLUSIONS: These findings show that the structure of the NK cell repertoire is intact at birth, suggesting great potential for vaccine and therapeutic strategies targeting this cell population. © 2016 International Clinical Cytometry Society.