Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Regen Biomater ; 11: rbae042, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027361

RESUMO

In-stent restenosis can be caused by the activation, proliferation and migration of vascular smooth muscle cells (VSMCs), which affects long-term efficacy of interventional therapy. Copper (Cu) has been proved to accelerate the endothelialization and reduce thrombosis formation, but little is known about its inhibition effect on the excessive proliferation of VSMCs. In this study, 316L-Cu stainless steel and L605-Cu cobalt-based alloy with varying Cu content were fabricated and their effects on surface property, blood compatibility and VSMCs were studied in vitro and in vivo. CCK-8 assay and EdU assay indicated that the Cu-bearing metals had obvious inhibitory effect on proliferation of VSMCs. Blood clotting and hemolysis tests showed that the Cu-bearing metals had good blood compatibility. The inhibition effect of the Cu-bearing metals on migration of cells was detected by Transwell assay. Further studies showed that Cu-bearing metals significantly decreased the mRNA expressions of bFGF, PDGF-B, HGF, Nrf2, GCLC, GCLM, NQO1 and HO1. The phosphorylation of AKT and Nrf2 protein expressions in VSMCs were significantly decreased by Cu-bearing metals. Furthermore, it was also found that SC79 and TBHQ treatments could recover the protein expressions of phospho-AKT and Nrf2, and their downstream proteins as well. Moreover, 316L-Cu stent proved its inhibitory action on the proliferation of VSMCs in vivo. In sum, the results demonstrated that the Cu-bearing metals possessed apparent inhibitory effect on proliferation and migration of VSMCs via regulating the AKT/Nrf2/ARE pathway, showing the Cu-bearing metals as promising stent materials for long-term efficacy of implantation.

2.
Discov Oncol ; 14(1): 175, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37733108

RESUMO

Human Hox genes (Homeobox) play a crucial role in embryonic development and cancer. The HOXC10 gene, a member of the HOX family, has been reported abnormally expressed in several cancers. However, the association between HOXC10 and hepatocellular carcinoma (HCC) remains to be elucidated. In the present study, tissue microarray cohort data showed that high levels of HOXC10 expression predicted a poor survival in HCC patients. Meanwhile, HOXC10 was significantly upregulated in the Huh7 cell line compared with the well differentiated cell line HepG2 and human normal liver cells. Functionally, silencing HOXC10 in Huh7 cells inhibited cell proliferation, increased apoptosis, and inhibited invasion and migration of HCC cells. HOXC10 overexpression in HepG2 cells increased cell proliferation, decreased apoptosis, and increased invasion and migration of HCC cells. In the HepG2 xenograft models, HOXC10 increased the tumor volume and weight compared with control. Mechanistically, the m6A modification of HOXC10 by METTL3 enhanced its expression by enhancing its mRNA stability. Both the in vitro and in vivo results showed that overexpressed HOXC10 activated the PTEN/AKT/mTOR pathway. In summary, the findings highlight the importance of HOXC10 in the regulation of HCC progression. HOXC10 is potentially a future therapeutic target for HCC treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA