Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Environ Microbiol ; 22(8): 3188-3204, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32372496

RESUMO

Uncultured members of the Chloroflexi phylum are highly enriched in numerous subseafloor environments. Their metabolic potential was evaluated by reconstructing 31 Chloroflexi genomes from six different subseafloor habitats. The near ubiquitous presence of enzymes of the Wood-Ljungdahl pathway, electron bifurcation, and ferredoxin-dependent transport-coupled phosphorylation indicated anaerobic acetogenesis was central to their catabolism. Most of the genomes simultaneously contained multiple degradation pathways for complex carbohydrates, detrital protein, aromatic compounds, and hydrogen, indicating the coupling of oxidation of chemically diverse organic substrates to ubiquitous CO2 reduction. Such pathway combinations may confer a fitness advantage in subseafloor environments by enabling these Chloroflexi to act as primary fermenters and acetogens in one microorganism without the need for syntrophic H2 consumption. While evidence for catabolic oxygen respiration was limited to two phylogenetic clusters, the presence of genes encoding putative reductive dehalogenases throughout the phylum expanded the phylogenetic boundary for potential organohalide respiration past the Dehalococcoidia class.


Assuntos
Chloroflexi/metabolismo , Genoma Bacteriano , Microbiologia da Água , Organismos Aquáticos , Chloroflexi/genética , Ferredoxinas/metabolismo , Sedimentos Geológicos/microbiologia , Hidrogênio/metabolismo , Filogenia
2.
Proteomics ; 15(20): 3521-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26097212

RESUMO

Proteomics has great potential for studies of marine microbial biogeochemistry, yet high microbial diversity in many locales presents us with unique challenges. We addressed this challenge with a targeted metaproteomics workflow for NtcA and P-II, two nitrogen regulatory proteins, and demonstrated its application for cyanobacterial taxa within microbial samples from the Central Pacific Ocean. Using METATRYP, an open-source Python toolkit, we examined the number of shared (redundant) tryptic peptides in representative marine microbes, with the number of tryptic peptides shared between different species typically being 1% or less. The related cyanobacteria Prochlorococcus and Synechococcus shared an average of 4.8 ± 1.9% of their tryptic peptides, while shared intraspecies peptides were higher, 13 ± 15% shared peptides between 12 Prochlorococcus genomes. An NtcA peptide was found to target multiple cyanobacteria species, whereas a P-II peptide showed specificity to the high-light Prochlorococcus ecotype. Distributions of NtcA and P-II in the Central Pacific Ocean were similar except at the Equator likely due to differential nitrogen stress responses between Prochlorococcus and Synechococcus. The number of unique tryptic peptides coded for within three combined oceanic microbial metagenomes was estimated to be ∼4 × 10(7) , 1000-fold larger than an individual microbial proteome and 27-fold larger than the human proteome, yet still 20 orders of magnitude lower than the peptide diversity possible in all protein space, implying that peptide mapping algorithms should be able to withstand the added level of complexity in metaproteomic samples.


Assuntos
Biomarcadores , Metagenoma , Filogenia , Proteoma/genética , Variação Genética , Humanos , Oceanos e Mares , Prochlorococcus/genética , Especificidade da Espécie , Synechococcus/genética
3.
Nature ; 458(7234): 69-72, 2009 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-19182781

RESUMO

Phosphorus is an obligate requirement for the growth of all organisms; major biochemical reservoirs of phosphorus in marine plankton include nucleic acids and phospholipids. However, eukaryotic phytoplankton and cyanobacteria (that is, 'phytoplankton' collectively) have the ability to decrease their cellular phosphorus content when phosphorus in their environment is scarce. The biochemical mechanisms that allow phytoplankton to limit their phosphorus demand and still maintain growth are largely unknown. Here we show that phytoplankton, in regions of oligotrophic ocean where phosphate is scarce, reduce their cellular phosphorus requirements by substituting non-phosphorus membrane lipids for phospholipids. In the Sargasso Sea, where phosphate concentrations were less than 10 nmol l-1, we found that only 1.3 +/- 0.6% of phosphate uptake was used for phospholipid synthesis; in contrast, in the South Pacific subtropical gyre, where phosphate was greater than 100 nmol l-1, plankton used 17 6% (ref. 6). Examination of the planktonic membrane lipids at these two locations showed that classes of sulphur- and nitrogen-containing membrane lipids, which are devoid of phosphorus, were more abundant in the Sargasso Sea than in the South Pacific. Furthermore, these non-phosphorus, 'substitute lipids' were dominant in phosphorus-limited cultures of all of the phytoplankton species we examined. In contrast, the marine heterotrophic bacteria we examined contained no substitute lipids and only phospholipids. Thus heterotrophic bacteria, which compete with phytoplankton for nutrients in oligotrophic regions like the Sargasso Sea, appear to have a biochemical phosphorus requirement that phytoplankton avoid by using substitute lipids. Our results suggest that phospholipid substitutions are fundamental biochemical mechanisms that allow phytoplankton to maintain growth in the face of phosphorus limitation.


Assuntos
Metabolismo dos Lipídeos , Lipídeos/química , Fósforo/deficiência , Fitoplâncton/metabolismo , Água do Mar/química , Carbono/análise , Lipídeos de Membrana/química , Nitrogênio/análise , Nitrogênio/metabolismo , Oceanos e Mares , Fosfatos/metabolismo , Fosfolipídeos/biossíntese , Fósforo/análise , Água do Mar/microbiologia , Synechococcus/química , Synechococcus/metabolismo
4.
Sci Adv ; 9(8): eabq4632, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812328

RESUMO

Comprehensive sampling of natural genetic diversity with metagenomics enables highly resolved insights into the interplay between ecology and evolution. However, resolving adaptive, neutral, or purifying processes of evolution from intrapopulation genomic variation remains a challenge, partly due to the sole reliance on gene sequences to interpret variants. Here, we describe an approach to analyze genetic variation in the context of predicted protein structures and apply it to a marine microbial population within the SAR11 subclade 1a.3.V, which dominates low-latitude surface oceans. Our analyses reveal a tight association between genetic variation and protein structure. In a central gene in nitrogen metabolism, we observe decreased occurrence of nonsynonymous variants from ligand-binding sites as a function of nitrate concentrations, revealing genetic targets of distinct evolutionary pressures maintained by nutrient availability. Our work yields insights into the governing principles of evolution and enables structure-aware investigations of microbial population genetics.


Assuntos
Ecologia , Genética Populacional , Oceanos e Mares , Compostos Orgânicos , Sequência de Bases , Variação Genética , Evolução Molecular
5.
ISME J ; 17(9): 1406-1415, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37328571

RESUMO

After decades studying the microbial "deep biosphere" in subseafloor oceanic crust, the growth and life strategies in this anoxic, low energy habitat remain poorly described. Using both single cell genomics and metagenomics, we reveal the life strategies of two distinct lineages of uncultivated Aminicenantia bacteria from the basaltic subseafloor oceanic crust of the eastern flank of the Juan de Fuca Ridge. Both lineages appear adapted to scavenge organic carbon, as each have genetic potential to catabolize amino acids and fatty acids, aligning with previous Aminicenantia reports. Given the organic carbon limitation in this habitat, seawater recharge and necromass may be important carbon sources for heterotrophic microorganisms inhabiting the ocean crust. Both lineages generate ATP via several mechanisms including substrate-level phosphorylation, anaerobic respiration, and electron bifurcation driving an Rnf ion translocation membrane complex. Genomic comparisons suggest these Aminicenantia transfer electrons extracellularly, perhaps to iron or sulfur oxides consistent with mineralogy of this site. One lineage, called JdFR-78, has small genomes that are basal to the Aminicenantia class and potentially use "primordial" siroheme biosynthetic intermediates for heme synthesis, suggesting this lineage retain characteristics of early evolved life. Lineage JdFR-78 contains CRISPR-Cas defenses to evade viruses, while other lineages contain prophage that may help prevent super-infection or no detectable viral defenses. Overall, genomic evidence points to Aminicenantia being well adapted to oceanic crust environments by taking advantage of simple organic molecules and extracellular electron transport.


Assuntos
Bactérias , Sedimentos Geológicos , Sedimentos Geológicos/microbiologia , Oceanos e Mares , Bactérias/genética , Bactérias/metabolismo , Água do Mar/microbiologia , Carbono/metabolismo
6.
J Bacteriol ; 194(3): 732-3, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22247531

RESUMO

Strain HIMB30 was isolated from coastal Hawaii seawater by extinction culturing in seawater-based oligotrophic medium. It is a phylogenetically unique member of the class Gammaproteobacteria that is only distantly related to its closest cultured relatives. Here we present the genome sequence of strain HIMB30, including genes for proteorhodopsin-based phototrophy and the Calvin-Benson-Bassham cycle.


Assuntos
Gammaproteobacteria/genética , Genoma Bacteriano , Água do Mar/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Gammaproteobacteria/classificação , Gammaproteobacteria/isolamento & purificação , Gammaproteobacteria/metabolismo , Dados de Sequência Molecular , Fotossíntese
7.
J Bacteriol ; 194(9): 2393-4, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22493201

RESUMO

Strain HIMB55 is a phylogenetically unique member of the OM60/NOR5 clade of the Gammaproteobacteria isolated from coastal seawater of Kaneohe Bay on the northeastern shore of Oahu, Hawaii, by extinction culturing in seawater-based oligotrophic medium. Here we present the genome sequence of strain HIMB55, including genes for bacteriochlorophyll-based phototrophy.


Assuntos
Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Genoma Bacteriano , Cromossomos Bacterianos , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular
8.
Appl Environ Microbiol ; 78(20): 7467-75, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22904048

RESUMO

Relationships between corals and specific bacterial associates are thought to play an important role in coral health. In this study, the specificity of bacteria associating with the coral Pocillopora meandrina was investigated by exposing coral embryos to various strains of cultured marine bacteria, sterile seawater, or raw seawater and examining the identity, density, and location of incorporated cells. The isolates utilized in this experiment included members of the Roseobacter and SAR11 clades of the Alphaproteobacteria, a Pseudoalteromonas species of the Gammaproteobacteria, and a Synechococcus species of the Cyanobacteria phylum. Based on terminal restriction fragment length polymorphism analysis of small-subunit rRNA genes, similarities in bacterial communities associated with 170-h-old planulae were observed regardless of treatment, suggesting that bacteria may have been externally associated from the outset of the experiment. Microscopic examination of P. meandrina planulae by fluorescence in situ hybridization with bacterial and Roseobacter clade-specific oligonucleotide probes revealed differences in the densities and locations of planulae-associated cells. Planulae exposed to either raw seawater or strains of Pseudoalteromonas and Roseobacter harbored the highest densities of internally associated cells, of which 20 to 100% belonged to the Roseobacter clade. Planulae exposed to sterile seawater or strains of the SAR11 clade and Synechococcus did not show evidence of prominent bacterial associations. Additional analysis of the raw-seawater-exposed planulae via electron microscopy confirmed the presence of internally associated prokaryotic cells, as well as virus-like particles. These results suggest that the availability of specific microorganisms may be an important factor in the establishment of coral-bacterial relationships.


Assuntos
Antozoários/microbiologia , Bactérias/crescimento & desenvolvimento , Animais , Antozoários/embriologia , Bactérias/classificação , Bactérias/genética , Impressões Digitais de DNA , DNA Bacteriano/genética , DNA Ribossômico/genética , Endocitose , Hibridização in Situ Fluorescente , Microscopia Eletrônica , Microscopia de Fluorescência , Polimorfismo de Fragmento de Restrição
9.
Nature ; 438(7064): 82-5, 2005 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16267553

RESUMO

Proteorhodopsins are light-dependent proton pumps that are predicted to have an important role in the ecology of the oceans by supplying energy for microbial metabolism. Proteorhodopsin genes were first discovered through the cloning and sequencing of large genomic DNA fragments from seawater. They were later shown to be widely distributed, phylogenetically diverse, and active in the oceans. Proteorhodopsin genes have not been found in cultured bacteria, and on the basis of environmental sequence data, it has not yet been possible to reconstruct the genomes of uncultured bacterial strains that have proteorhodopsin genes. Although the metabolic effect of proteorhodopsins is uncertain, they are thought to function in cells for which the primary mode of metabolism is the heterotrophic assimilation of dissolved organic carbon. Here we report that SAR11 strain HTCC1062 ('Pelagibacter ubique'), the first cultivated member of the extraordinarily abundant SAR11 clade, expresses a proteorhodopsin gene when cultured in autoclaved seawater and in its natural environment, the ocean. The Pelagibacter proteorhodopsin functions as a light-dependent proton pump. The gene is expressed by cells grown in either diurnal light or in darkness, and there is no difference between the growth rates or cell yields of cultures grown in light or darkness.


Assuntos
Alphaproteobacteria/química , Rodopsina/química , Rodopsina/metabolismo , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Biologia Marinha , Filogenia , Plâncton/química , Plâncton/genética , Plâncton/metabolismo , Rodopsina/genética , Rodopsinas Microbianas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
PeerJ ; 9: e12274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760357

RESUMO

Surveys of microbial communities across transitions coupled with contextual measures of the environment provide a useful approach to dissect the factors determining distributions of microorganisms across ecological niches. Here, monthly time-series samples of surface seawater along a transect spanning the nearshore coastal environment within Kane'ohe Bay on the island of O'ahu, Hawai'i, and the adjacent offshore environment were collected to investigate the diversity and abundance of SAR11 marine bacteria (order Pelagibacterales) over a 2-year time period. Using 16S ribosomal RNA gene amplicon sequencing, the spatiotemporal distributions of major SAR11 subclades and exact amplicon sequence variants (ASVs) were evaluated. Seven of eight SAR11 subclades detected in this study showed distinct subclade distributions across the coastal to offshore environments. The SAR11 community was dominated by seven (of 106 total) SAR11 ASVs that made up an average of 77% of total SAR11. These seven ASVs spanned five different SAR11 subclades (Ia, Ib, IIa, IV, and Va), and were recovered from all samples collected from either the coastal environment, the offshore, or both. SAR11 ASVs were more often restricted spatially to coastal or offshore environments (64 of 106 ASVs) than they were shared among coastal, transition, and offshore environments (39 of 106 ASVs). Overall, offshore SAR11 communities contained a higher diversity of SAR11 ASVs than their nearshore counterparts, with the highest diversity within the little-studied subclade IIa. This study reveals ecological differentiation of SAR11 marine bacteria across a short physiochemical gradient, further increasing our understanding of how SAR11 genetic diversity partitions into distinct ecological units.

11.
mSystems ; : e0027621, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34184914

RESUMO

Among the thousands of species that comprise marine bacterioplankton communities, most remain functionally obscure. One key cosmopolitan group in this understudied majority is the OM252 clade of Gammaproteobacteria. Although frequently found in sequence data and even previously cultured, the diversity, metabolic potential, physiology, and distribution of this clade has not been thoroughly investigated. Here, we examined these features of OM252 bacterioplankton using a newly isolated strain and genomes from publicly available databases. We demonstrated that this group constitutes a globally distributed novel genus ("Candidatus Halomarinus"), sister to Litoricola, comprising two subclades and multiple distinct species. OM252 organisms have small genomes (median, 2.21 Mbp) and are predicted obligate aerobes capable of alternating between chemoorganoheterotrophic and chemolithotrophic growth using reduced sulfur compounds as electron donors. Subclade I genomes encode genes for the Calvin-Benson-Bassham cycle for carbon fixation. One representative strain of subclade I, LSUCC0096, had extensive halotolerance and a mesophilic temperature range for growth, with a maximum rate of 0.36 doublings/h at 35°C. Cells were curved rod/spirillum-shaped, ∼1.5 by 0.2 µm. Growth yield on thiosulfate as the sole electron donor under autotrophic conditions was roughly one-third that of heterotrophic growth, even though calculations indicated similar Gibbs energies for both catabolisms. These phenotypic data show that some "Ca. Halomarinus" organisms can switch between serving as carbon sources or sinks and indicate the likely anabolic cost of lithoautotrophic growth. Our results thus provide new hypotheses about the roles of these organisms in global biogeochemical cycling of carbon and sulfur. IMPORTANCE Marine microbial communities are teeming with understudied taxa due to the sheer numbers of species in any given sample of seawater. One group, the OM252 clade of Gammaproteobacteria, has been identified in gene surveys from myriad locations, and one isolated organism has even been genome sequenced (HIMB30). However, further study of these organisms has not occurred. Using another isolated representative (strain LSUCC0096) and publicly available genome sequences from metagenomic and single-cell genomic data sets, we examined the diversity within the OM252 clade and the distribution of these taxa in the world's oceans, reconstructed the predicted metabolism of the group, and quantified growth dynamics in LSUCC0096. Our results generate new knowledge about the previously enigmatic OM252 clade and point toward the importance of facultative chemolithoautotrophy for supporting some clades of ostensibly "heterotrophic" taxa.

12.
mSystems ; 6(3): e0124920, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34156291

RESUMO

Bacteria associated with coral hosts are diverse and abundant, with recent studies suggesting involvement of these symbionts in host resilience to anthropogenic stress. Despite their putative importance, the work dedicated to culturing coral-associated bacteria has received little attention. Combining published and unpublished data, here we report a comprehensive overview of the diversity and function of culturable bacteria isolated from corals originating from tropical, temperate, and cold-water habitats. A total of 3,055 isolates from 52 studies were considered by our metasurvey. Of these, 1,045 had full-length 16S rRNA gene sequences, spanning 138 formally described and 12 putatively novel bacterial genera across the Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria phyla. We performed comparative genomic analysis using the available genomes of 74 strains and identified potential signatures of beneficial bacterium-coral symbioses among the strains. Our analysis revealed >400 biosynthetic gene clusters that underlie the biosynthesis of antioxidant, antimicrobial, cytotoxic, and other secondary metabolites. Moreover, we uncovered genomic features-not previously described for coral-bacterium symbioses-potentially involved in host colonization and host-symbiont recognition, antiviral defense mechanisms, and/or integrated metabolic interactions, which we suggest as novel targets for the screening of coral probiotics. Our results highlight the importance of bacterial cultures to elucidate coral holobiont functioning and guide the selection of probiotic candidates to promote coral resilience and improve holistic and customized reef restoration and rehabilitation efforts. IMPORTANCE Our paper is the first study to synthesize currently available but decentralized data of cultured microbes associated with corals. We were able to collate 3,055 isolates across a number of published studies and unpublished collections from various laboratories and researchers around the world. This equated to 1,045 individual isolates which had full-length 16S rRNA gene sequences, after filtering of the original 3,055. We also explored which of these had genomes available. Originally, only 36 were available, and as part of this study, we added a further 38-equating to 74 in total. From this, we investigated potential genetic signatures that may facilitate a host-associated lifestyle. Further, such a resource is an important step in the selection of probiotic candidates, which are being investigated for promoting coral resilience and potentially applied as a novel strategy in reef restoration and rehabilitation efforts. In the spirit of open access, we have ensured this collection is available to the wider research community through the web site http://isolates.reefgenomics.org/ with the hope many scientists across the globe will ask for access to these cultures for future studies.

13.
mSystems ; 5(6)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33361323

RESUMO

While marine microorganisms are frequently studied in their natural environment, isolated strains are invaluable resources that can be used in controlled experiments to expand upon direct observations from natural systems. Here, we sought a means to enhance culture collections of SAR11 marine bacteria by testing the use of seawater cryopreserved with glycerol as an inoculum. Using a raw seawater sample collected from the tropical Pacific Ocean, a subsample was diluted in seawater growth medium to create 576 2-ml dilution cultures containing 5 cells each and incubated for a high-throughput culturing (HTC) experiment, while another portion was cryopreserved in 10% glycerol. After 10 months, a cryopreserved aliquot was thawed and used to create a second cultivation experiment of 480 2-ml cultures containing 5 cells each and 470 cultures containing 105 cells each. The raw seawater cultivation experiment resulted in the successful isolation of 54 monocultures and 29 mixed cultures, while cryopreserved seawater resulted in 59 monocultures and 29 mixed cultures. Combined, the cultures included 51 SAR11 isolates spanning 11 unique 16S rRNA gene amplicon sequence variants (ASVs) from the raw seawater inoculum and 74 SAR11 isolates spanning 13 unique ASVs from cryopreserved seawater. A vast majority (92%) of SAR11 isolates from the two HTC experiments were members of SAR11 subclade Ia, though subclades IIIa and Va were also recovered from cryopreserved seawater and subclade Ib was recovered from both. The four most abundant SAR11 subclade Ia ASVs found in the initial seawater environmental sample were isolated by both approaches.IMPORTANCE High-throughput dilution culture has proved to be a successful approach to bring some difficult-to-isolate planktonic microorganisms into culture, including the highly abundant SAR11 lineage of marine bacteria. While the long-term preservation of bacterial isolates by freezing them in the presence of cryoprotectants, such as glycerol, has been shown to be an effective method of storing viable cells over long time periods (i.e., years), to our knowledge it had not previously been tested for its efficacy in preserving raw seawater for later use as an inoculum for high-throughput cultivation experiments. We found that SAR11 and other abundant marine bacteria could be isolated from seawater that was previously cryopreserved for nearly 10 months at a rate of culturability similar to that of the same seawater used fresh, immediately after collection. Our findings (i) expand the potential of high-throughput cultivation experiments to include testing when immediate isolation experiments are impractical, (ii) allow for targeted isolation experiments from specific samples based on analyses such as microbial community structure, and (iii) enable cultivation experiments across a wide range of other conditions that would benefit from having source inocula available over extended periods of time.

14.
MethodsX ; 7: 101033, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32953465

RESUMO

The advanced instrumented GeoMICROBE sleds (Cowen et al., 2012) facilitate the collection of hydrothermal fluids and suspended particles in the subseafloor (basaltic) basement through Circulation Obviation Retrofit Kits (CORKs) installed within boreholes of the Integrated Ocean Drilling Program. The main components of the GeoMICROBE can be converted into a mobile pumping system (MPS) that is installed on the front basket of a submersible or remotely-operated-vehicle (ROV). Here, we provide details of a hydrothermal fluid-trap used on the MPS, through which a gastight sampler can withdraw fluids. We also applied the MPS to demonstrate the value of fixing samples at the seafloor in order to determine redox-sensitive dissolved iron concentrations and speciation measurements. To make the best use of the GeoMICROBE sleds, we describe a miniature and mobile version of the GeoMICROBE sled, which permits rapid turn-over and is relatively easy for preparation and operation. Similar to GeoMICROBE sleds, the Mobile GeoMICROBE (MGM) is capable of collecting fluid samples, filtration of suspended particles, and extraction of organics. We validate this approach by demonstrating the seafloor extraction of hydrophobic organics from a large volume (247L) of hydrothermal fluids.•We describe the design of a hydrothermal fluid-trap for use with a gastight sampler, as well as the use of seafloor fixation, through ROV- or submersible assisted mobile pumping systems.•We describe the design of a Mobile GeoMICROBE (MGM) that enhances large volume hydrothermal fluid sampling, suspended particle filtration, and organic matter extraction on the seafloor.•We provide an example of organic matter extracted and characterized from hydrothermal fluids via a MGM.

15.
Environ Microbiol ; 11(9): 2291-300, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19490029

RESUMO

A quantitative PCR assay for the SAR11 clade of marine Alphaproteobacteria was applied to nucleic acids extracted from monthly depth profiles sampled over a 3-year period (2004-2007) at the open-ocean Station ALOHA (A Long-term Oligotrophic Habitat Assessment; 22 degrees 45'N, 158 degrees 00'W) in the oligotrophic North Pacific Ocean. This analysis revealed a high contribution (averaging 36% of 16S rRNA gene copies) of SAR11 to the total detected 16S rRNA gene copies over depths ranging from the surface layer to 4000 m, and revealed consistent spatial and temporal variation in the relative abundance of SAR11 16S rRNA gene copies. On average, a higher proportion of SAR11 rRNA gene copies were detected in the photic zone (< 175 m depth; mean = 38%) compared with aphotic (> 175 m depth; mean = 30%), and in the winter months compared with the summer (mean = 44% versus 33%, integrated over 175 m depth). Partial least square to latent structure projections identified environmental variables that correlate with variation in the absolute abundance of SAR11, and provided tools for developing a predictive model to explain time and depth-dependent variations in SAR11. Moreover, this information was used to hindcast temporal dynamics of the SAR11 clade between 1997 and 2006 using the existing HOT data set, which suggested that interannual variations in upper ocean SAR11 abundances were related to ocean-climate variability such as the El Niño Southern Oscillation.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Água do Mar/microbiologia , Alphaproteobacteria/genética , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Clorofila/análise , Clorofila A , Clima , Meio Ambiente , Oceano Pacífico , Plâncton/genética , Plâncton/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/análise , Estações do Ano , Temperatura , Movimentos da Água
16.
mSystems ; 4(4)2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117027

RESUMO

In this study, a strain of SAR11 subgroup IIIa (termed HIMB114) was grown in seawater-based batch and continuous culture in order to quantify cellular features and metabolism relevant to SAR11 ecology. We report some of the first direct measurements of cellular elemental quotas for nitrogen (N) and phosphorus (P) for SAR11, grown in batch culture: 1.4 ± 0.9 fg N and 0.44 ± 0.01 fg P, respectively, that were consistent with the small size of HIMB114 cells (average volume of 0.09 µm3). However, the mean carbon (C) cellular quota of 50 ± 47 fg C was anomalously high, but variable. The rates of phosphate (PO4 3-) uptake measured from both batch and continuous cultures were exceptionally slow: in chemostats growing at 0.3 day-1, HIMB114 took up 1.1 ± 0.3 amol P cell-1 day-1, suggesting that <30% of the cellular P requirement of HIMB114 was met by PO4 3- assimilation. The mean rate of leucine incorporation, a measure of bacterial production, during late-log-phase growth of batch HIMB114 cultures was 0.042 ± 0.02 amol Leu cell-1 h-1 While only weakly correlated with changes in specific growth rates, the onset of stationary phase resulted in decreases in cell-specific leucine incorporation that were proportional to changes in growth rate. The rates of cellular production, respiratory oxygen consumption, and changes in total organic C concentrations constrained cellular growth efficiencies to 13% ± 4%. Hence, despite a small genome and diminutively sized cells, SAR11 strain HIMB114 appears to grow at efficiencies similar to those of naturally occurring bacterioplankton communities.IMPORTANCE While SAR11 bacteria contribute a significant fraction to the total picoplankton biomass in the ocean and likely are major players in organic C and nutrient cycling, the cellular characteristics and metabolic features of most lineages have either only been hypothesized from genomes or otherwise not measured in controlled laboratory experimentation. The dearth of data on even the most basic characteristics for what is arguably the most abundant heterotroph in seawater has limited the specific consideration of SAR11 in ocean ecosystem modeling efforts. In this study, we provide measures of cellular P, N, and C, aerobic respiration, and bacterial production for a SAR11 strain growing in natural seawater medium that can be used to directly relate these features of SAR11 to biogeochemical cycling in the oceans. Through the development of a chemostat system to measure nutrient uptake during steady-state growth, we have also documented inorganic P uptake rates that allude to the importance of organic phosphorous to meet cellular P demands, even in the presence of nonlimiting PO4 3- concentrations.

17.
Elife ; 82019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31478833

RESUMO

Members of the SAR11 order Pelagibacterales dominate the surface oceans. Their extensive diversity challenges emerging operational boundaries defined for microbial 'species' and complicates efforts of population genetics to study their evolution. Here, we employed single-amino acid variants (SAAVs) to investigate ecological and evolutionary forces that maintain the genomic heterogeneity within ubiquitous SAR11 populations we accessed through metagenomic read recruitment using a single isolate genome. Integrating amino acid and protein biochemistry with metagenomics revealed that systematic purifying selection against deleterious variants governs non-synonymous variation among very closely related populations of SAR11. SAAVs partitioned metagenomes into two main groups matching large-scale oceanic current temperatures, and six finer proteotypes that connect distant oceanic regions. These findings suggest that environmentally-mediated selection plays a critical role in the journey of cosmopolitan surface ocean microbial populations, and the idea 'everything is everywhere but the environment selects' has credence even at the finest resolutions.


Assuntos
Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Substituição de Aminoácidos , Variação Genética , Filogeografia , Água do Mar/microbiologia , Proteínas de Bactérias/genética , Metagenômica , Mutação de Sentido Incorreto , Seleção Genética
18.
Syst Appl Microbiol ; 42(1): 15-21, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30098831

RESUMO

Naming of uncultured Bacteria and Archaea is often inconsistent with the International Code of Nomenclature of Prokaryotes. The recent practice of proposing names for higher taxa without designation of lower ranks and nomenclature types is one of the most important inconsistencies that needs to be addressed to avoid nomenclatural instability. The Code requires names of higher taxa up to the rank of class to be derived from the type genus name, with a proposal pending to formalise this requirement for the rank of phylum. Designation of nomenclature types is crucial for providing priority to names and ensures their uniqueness and stability. However, only legitimate names proposed for axenic cultures can be used for this purpose. Candidatus names reserved for taxa lacking cultured representatives may be granted this right if recent proposals to use genome sequences as type material are endorsed, thereby allowing the Code to be fully applied to lineages represented by metagenome-assembled genomes (MAGs) or single amplified genomes (SAGs). Genome quality standards need to be considered to ensure unambiguous assignment of type material. Here, we illustrate the recommended practice by proposing nomenclature type material for four major uncultured prokaryotic lineages based on high-quality MAGs in accordance with the Code.


Assuntos
Archaea/classificação , Bactérias/classificação , Classificação/métodos , Terminologia como Assunto , Filogenia
19.
ISME J ; 13(6): 1457-1468, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728468

RESUMO

The exploration of Earth's terrestrial subsurface biosphere has led to the discovery of several new archaeal lineages of evolutionary significance. Similarly, the deep subseafloor crustal biosphere also harbors many unique, uncultured archaeal taxa, including those belonging to Candidatus Hydrothermarchaeota, formerly known as Marine Benthic Group-E. Recently, Hydrothermarchaeota was identified as an abundant lineage of Juan de Fuca Ridge flank crustal fluids, suggesting its adaptation to this extreme environment. Through the investigation of single-cell and metagenome-assembled genomes, we provide insight into the lineage's evolutionary history and metabolic potential. Phylogenomic analysis reveals the Hydrothermarchaeota to be an early-branching archaeal phylum, branching between the superphylum DPANN, Euryarchaeota, and Asgard lineages. Hydrothermarchaeota genomes suggest a potential for dissimilative and assimilative carbon monoxide oxidation (carboxydotrophy), as well as sulfate and nitrate reduction. There is also a prevalence of chemotaxis and motility genes, indicating adaptive strategies for this nutrient-limited fluid-rock environment. These findings provide the first genomic interpretations of the Hydrothermarchaeota phylum and highlight the anoxic, hot, deep marine crustal biosphere as an important habitat for understanding the evolution of early life.


Assuntos
Archaea/isolamento & purificação , Archaea/metabolismo , Monóxido de Carbono/metabolismo , Archaea/classificação , Archaea/genética , Ecossistema , Ambientes Extremos , Genômica , Sedimentos Geológicos/microbiologia , Metagenoma , Nitratos/metabolismo , Filogenia , Sulfatos/metabolismo
20.
ISME J ; 13(5): 1269-1279, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30651609

RESUMO

The methyl-coenzyme M reductase (MCR) complex is a key enzyme in archaeal methane generation and has recently been proposed to also be involved in the oxidation of short-chain hydrocarbons including methane, butane, and potentially propane. The number of archaeal clades encoding the MCR continues to grow, suggesting that this complex was inherited from an ancient ancestor, or has undergone extensive horizontal gene transfer. Expanding the representation of MCR-encoding lineages through metagenomic approaches will help resolve the evolutionary history of this complex. Here, a near-complete Archaeoglobi metagenome-assembled genome (MAG; Ca. Polytropus marinifundus gen. nov. sp. nov.) was recovered from the deep subseafloor along the Juan de Fuca Ridge flank that encodes two divergent McrABG operons similar to those found in Ca. Bathyarchaeota and Ca. Syntrophoarchaeum MAGs. Ca. P. marinifundus is basal to members of the class Archaeoglobi, and encodes the genes for ß-oxidation, potentially allowing an alkanotrophic metabolism similar to that proposed for Ca. Syntrophoarchaeum. Ca. P. marinifundus also encodes a respiratory electron transport chain that can potentially utilize nitrate, iron, and sulfur compounds as electron acceptors. Phylogenetic analysis suggests that the Ca. P. marinifundus MCR operons were horizontally transferred, changing our understanding of the evolution and distribution of this complex in the Archaea.


Assuntos
Proteínas Arqueais/genética , Euryarchaeota/enzimologia , Euryarchaeota/genética , Evolução Molecular , Oxirredutases/genética , Proteínas Arqueais/metabolismo , Butanos/metabolismo , Euryarchaeota/classificação , Euryarchaeota/metabolismo , Metagenoma , Metagenômica , Metano/metabolismo , Oxirredução , Oxirredutases/metabolismo , Filogenia , Água do Mar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA