Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Phytother Res ; 38(3): 1262-1277, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185917

RESUMO

Hippocampal synaptic dysfunction, oxidative stress, neuroinflammation, and neuronal loss play critical roles in the pathophysiology of diabetes-associated cognitive decline (DACD). The study aimed to investigate the effects of vanillic acid (VA), a phenolic compound, against DACD and explore the potential underlying mechanisms. Following confirmation of diabetes, rats were treated with VA (50 mg/kg/day; P.O.) or insulin (6 IU/rat/day; S.C.) for 8 consecutive weeks. The cognitive performance of the rats was evaluated using passive-avoidance and water-maze tasks. Long-term potentiation (LTP) was induced at hippocampal dentate gyrus (DG) synapses in response to high-frequency stimulation (HFS) applied to the perforant pathway (PP) to evaluate synaptic plasticity. Oxidative stress factors, inflammatory markers, and histological changes were evaluated in the rat hippocampus. This study showed that streptozotocin (STZ)-induced diabetes caused cognitive decline that was associated with inhibition of LTP induction, suppression of enzymatic antioxidant activities, enhanced lipid peroxidation, elevated levels of inflammatory proteins, and neuronal loss. Interestingly, chronic treatment with VA alleviated blood glucose levels, improved cognitive decline, ameliorated LTP impairment, modulated oxidative-antioxidative status, inhibited inflammatory response, and prevented neuronal loss in diabetic rats at a level comparable to insulin therapy. The results suggest that the antihyperglycemic, antioxidative, anti-inflammatory, and neuroplastic properties of VA may be the mechanisms behind its neuroprotective effect against DACD.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Fármacos Neuroprotetores , Ratos , Animais , Diabetes Mellitus Experimental/complicações , Fármacos Neuroprotetores/farmacologia , Ácido Vanílico/farmacologia , Ratos Wistar , Hipocampo , Antioxidantes/farmacologia , Plasticidade Neuronal , Disfunção Cognitiva/patologia , Insulina
2.
Neurochem Res ; 48(8): 2285-2308, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36943668

RESUMO

Parkinson's disease (PD) is a common age-related neurodegenerative disorder whose pathogenesis is not completely understood. Mitochondrial dysfunction and increased oxidative stress have been considered as major causes and central events responsible for the progressive degeneration of dopaminergic (DA) neurons in PD. Therefore, investigating mitochondrial disorders plays a role in understanding the pathogenesis of PD and can be an important therapeutic target for this disease. This study discusses the effect of environmental, genetic and biological factors on mitochondrial dysfunction and also focuses on the mitochondrial molecular mechanisms underlying neurodegeneration, and its possible therapeutic targets in PD, including reactive oxygen species generation, calcium overload, inflammasome activation, apoptosis, mitophagy, mitochondrial biogenesis, and mitochondrial dynamics. Other potential therapeutic strategies such as mitochondrial transfer/transplantation, targeting microRNAs, using stem cells, photobiomodulation, diet, and exercise were also discussed in this review, which may provide valuable insights into clinical aspects. A better understanding of the roles of mitochondria in the pathophysiology of PD may provide a rationale for designing novel therapeutic interventions in our fight against PD.


Assuntos
Doenças Mitocondriais , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/patologia , Estresse Oxidativo/fisiologia , Neurônios Dopaminérgicos/metabolismo
3.
Brain Res Bull ; 206: 110852, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141790

RESUMO

Lead (Pb) is a well-known toxic pollutant that has negative effects on behavioral functions. Sesamin, a phytonutrient of the lignan class, has shown neuroprotective effects in various neurological disorder models. The present study was undertaken to evaluate the putative protective effects of sesamin against Pb-induced behavioral deficits and to identify the role of oxidative stress in male rats. The rats were exposed to 500 ppm of Pb acetate in their drinking water and simultaneously treated orally with sesamin at a dose of 30 mg/kg/day for eight consecutive weeks. Standard behavioral paradigms were used to assess the behavioral functions of the animals during the eighth week of the study. Subsequently, oxidative stress factors were evaluated in both the cerebral cortex and hippocampal regions of the rats. The results of this study showed that Pb exposure triggered anxiety-/depression-like behaviors and impaired object recognition memory, but locomotor activity was indistinguishable from the normal control rats. These behavioral deficiencies were associated with suppressed enzymatic and non-enzymatic antioxidant levels, and enhanced lipid peroxidation in the investigated brain regions. Notably, correlations were detected between behavioral deficits and oxidative stress generation in the Pb-exposed rats. Interestingly, sesamin treatment mitigated anxio-depressive-like behaviors, ameliorated object recognition memory impairment, and modulated oxidative-antioxidative status in the rats exposed to Pb. The results suggest that the anti-oxidative properties of sesamin may be one of the underlying mechanisms behind its beneficial effect in ameliorating behavioral deficits associated with Pb exposure.


Assuntos
Dioxóis , Chumbo , Lignanas , Ratos , Animais , Masculino , Ratos Wistar , Chumbo/farmacologia , Estresse Oxidativo , Antioxidantes/farmacologia , Lignanas/farmacologia , Lignanas/uso terapêutico
4.
Biomed Pharmacother ; 157: 114010, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36402029

RESUMO

Lead (Pb) is a highly poisonous environmental pollutant that can induce cognitive decline. Chrysin, a natural flavonoid compound, has anti-oxidative, anti-inflammatory, and neuroprotective properties in different neurodegenerative disorders. The present study was designed to examine the putative effects of chrysin against Pb-induced cognitive impairment and the possible involved mechanisms. Adult male Wistar rats were exposed to Pb acetate (500 ppm in standard drinking water) either alone or in combination with daily oral administration of chrysin (30 mg/kg) for eight consecutive weeks. During the eight-week period of the study, the cognitive capacity of the rats was evaluated by employing both novel object recognition and passive avoidance tests. On day 56, hippocampal synaptic plasticity (long-term potentiation; LTP) was recorded in perforant path-dentate gyrus (PP-DG) synapses to assess field excitatory postsynaptic potentials (fEPSPs) slope and population spike (PS) amplitude. Subsequently, pro- and anti-inflammatory cytokines and histological changes were evaluated in the cerebral cortex and hippocampus of the rats. Moreover, Pb levels in blood and brain tissues were assessed. The results showed that Pb exposure causes cognitive decline, inhibition of hippocampal LTP induction, imbalance of pro- and anti-inflammatory cytokines, enhancement of Pb levels in blood and brain tissues, and neuronal loss. However, chrysin treatment improved cognitive dysfunction, ameliorated hippocampal LTP impairment, modulated inflammatory status, reduced Pb concentration, and prevented neuronal loss in the Pb-exposed rats. The results suggest that chrysin alleviates Pb-induced cognitive deficit, possibly through mitigation of hippocampal synaptic dysfunction, modulation of inflammatory status, reduction of Pb concentration, and prevention of neuronal loss.


Assuntos
Disfunção Cognitiva , Giro Denteado , Animais , Ratos , Masculino , Giro Denteado/fisiologia , Ratos Wistar , Potenciação de Longa Duração , Potenciais Pós-Sinápticos Excitadores , Plasticidade Neuronal , Hipocampo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle
5.
J Alzheimers Dis ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37212117

RESUMO

BACKGROUND: Oxidative stress plays a major role in the progression of Alzheimer's disease (AD)-related cognitive deficits. OBJECTIVE: This study was done to determine the protective effects of coenzyme Q10 (CoQ10) and high-intensity interval training (HIIT) alone and in combination for eight continuous weeks, on oxidative status, cognitive functions, and histological changes in the hippocampus in amyloid-ß (Aß)-induced AD rats. METHODS: Ninety male Wistar rats were randomly assigned to the sham, control, Q10 (50 mg/kg of CoQ10; P.O.), HIIT (high intensity: 4 min running at 85-90% VO2max, low intensity: 3 min running at 50-60% VO2max), Q10 + HIIT, AD, AD+Q10, AD+HIIT, and AD+Q10 + HIIT groups. RESULTS: The results showed that Aß injection reduced cognitive functions in the Morris water maze (MWM) test and recognition memory in the novel object recognition test (NORT), which was accompanied by a decrease in total thiol groups, catalase, and glutathione peroxidase activities, an increase in malondialdehyde levels, and neuronal loss in the hippocampus. Interestingly, pretreatment with CoQ10, HIIT, or both, could markedly improve the oxidative status and cognitive decline in the MWM and NOR tests, and hinder neuronal loss in the hippocampus of Aß-induced AD rats. CONCLUSION: Therefore, a combination of CoQ10 and HIIT can improve Aß-related cognitive deficits, probably through an amelioration in hippocampal oxidative status and prevention of neuronal loss.

6.
Front Neurosci ; 17: 1188839, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424991

RESUMO

Neurological disorders affect the nervous system. Biochemical, structural, or electrical abnormalities in the spinal cord, brain, or other nerves lead to different symptoms, including muscle weakness, paralysis, poor coordination, seizures, loss of sensation, and pain. There are many recognized neurological diseases, like epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), stroke, autosomal recessive cerebellar ataxia 2 (ARCA2), Leber's hereditary optic neuropathy (LHON), and spinocerebellar ataxia autosomal recessive 9 (SCAR9). Different agents, such as coenzyme Q10 (CoQ10), exert neuroprotective effects against neuronal damage. Online databases, such as Scopus, Google Scholar, Web of Science, and PubMed/MEDLINE were systematically searched until December 2020 using keywords, including review, neurological disorders, and CoQ10. CoQ10 is endogenously produced in the body and also can be found in supplements or foods. CoQ10 has antioxidant and anti-inflammatory effects and plays a role in energy production and mitochondria stabilization, which are mechanisms, by which CoQ10 exerts its neuroprotective effects. Thus, in this review, we discussed the association between CoQ10 and neurological diseases, including AD, depression, MS, epilepsy, PD, LHON, ARCA2, SCAR9, and stroke. In addition, new therapeutic targets were introduced for the next drug discoveries.

7.
Psychopharmacology (Berl) ; 240(4): 755-767, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36723631

RESUMO

RATIONALE: Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by cognitive decline and synaptic failure. OBJECTIVE: The present study was designed to explore the possible protective effects of policosanol (PCO) on spatial cognitive capacity, long-term potentiation (LTP) induction, oxidant/antioxidant status, and Aß plaques formation in an AD rat model induced by intracerebroventricular (ICV) injection of Aß1-40. METHODS: Healthy adult male Wistar rats were randomly divided into control, sham (ICV injection of 5 µl phosphate-buffered saline), AG (50 mg/kg; P.O., as PCO vehicle), PCO (50 mg/kg; P.O.), AD model (ICV injection of 5 µl Aß), AD + AG (50 mg/kg; P.O.), and AD + PCO (50 mg/kg; P.O.). Treatments were performed for eight consecutive weeks. At the end of the treatment course, spatial learning and memory functions, hippocampal long-term potentiation (LTP) induction, malondialdehyde (MDA), and total thiol group (TTG) levels, as well as the formation of Aß plaques, were examined. RESULTS: The results showed that injection of Aß reduced spatial learning and memory abilities in the Barnes maze test, which was accompanied by decreases in field excitatory postsynaptic potential (fEPSP) slope, population spike (PS) amplitude, and TTG level and increases in Aß plaque accumulation and MDA content. In contrast, PCO treatment improved all the above-mentioned changes in the Aß-infused rats. CONCLUSIONS: The results suggest that amelioration of hippocampal synaptic plasticity impairment, modulation of oxidant/antioxidant status, and inhibition of Aß plaque formation by PCO may be the mechanisms behind its protective effect against AD-associated spatial cognitive decline.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Ratos , Masculino , Animais , Doença de Alzheimer/induzido quimicamente , Ratos Wistar , Antioxidantes/farmacologia , Transtornos da Memória/complicações , Peptídeos beta-Amiloides , Hipocampo , Potenciação de Longa Duração , Fragmentos de Peptídeos , Oxidantes/efeitos adversos , Modelos Animais de Doenças
8.
Mol Neurobiol ; 60(5): 2507-2519, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36680733

RESUMO

Alzheimer's disease (AD), the most common form of dementia, is characterized by a progressive decline in cognitive performance and memory formation. The present study was designed to investigate the effect of policosanol (PCO) on cognitive function, oxidative-antioxidative status, and amyloid-beta (Aß) plaque formation in an AD rat model induced by intracerebroventricular (ICV) injection of Aß1-40. Healthy adult male Wistar rats were randomly divided into seven groups: control, sham (5 µL, ICV injection of phosphate-buffered saline), AD model (5 µL, ICV injection of Aß), acacia gum (50 mg/kg, 8 weeks, gavage), PCO (50 mg/kg, 8 weeks, gavage), AD + acacia gum (50 mg/kg, 8 weeks, gavage), and AD + PCO (50 mg/kg, 8 weeks, gavage). During the ninth and tenth weeks of the study, the cognitive function of the rats was assessed by commonly used behavioral paradigms. Subsequently, oxidative-antioxidative status was examined in the serum. Moreover, compact Aß plaques were detected by Congo red staining. The results showed that injection of Aß impaired recognition memory in the novel object recognition test, reduced the spatial cognitive ability in the Morris water maze, and alleviated retention and recall capability in the passive avoidance task. Additionally, injection of Aß resulted in increased total oxidant status, decreased total antioxidant capacity, and enhanced Aß plaque formation in the rats. Intriguingly, PCO treatment improved all the above-mentioned neuropathological changes in the Aß-induced AD rats. The results suggest that PCO improves Aß-induced cognitive decline, possibly through modulation of oxidative-antioxidative status and inhibition of Aß plaque formation.


Assuntos
Doença de Alzheimer , Ratos , Masculino , Animais , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/induzido quimicamente , Ratos Wistar , Goma Arábica/efeitos adversos , Transtornos da Memória/complicações , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/patologia , Peptídeos beta-Amiloides/toxicidade , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Modelos Animais de Doenças , Aprendizagem em Labirinto , Hipocampo/patologia , Fragmentos de Peptídeos/toxicidade
9.
Eur J Pharmacol ; 951: 175714, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37054939

RESUMO

Alzheimer's disease (AD) is the most progressive and irreversible neurodegenerative disease that leads to synaptic loss and cognitive decline. The present study was designed to evaluate the effects of geraniol (GR), a valuable acyclic monoterpene alcohol, with protective and therapeutic effects, on passive avoidance memory, hippocampal synaptic plasticity, and amyloid-beta (Aß) plaques formation in an AD rat model induced by intracerebroventricular (ICV) microinjection of Aß1-40. Seventy male Wistar rats were randomly into sham, control, control-GR (100 mg/kg; P.O. (orally), AD, GR-AD (100 mg/kg; P.O.; pretreatment), AD-GR (100 mg/kg; P.O.; treatment), and GR-AD-GR (100 mg/kg; P.O.; pretreatment & treatment). Administration of GR was continued for four consecutive weeks. Training for the passive avoidance test was carried out on the 36th day and a memory retention test was performed 24 h later. On day 38, hippocampal synaptic plasticity (long-term potentiation; LTP) was recorded in perforant path-dentate gyrus (PP-DG) synapses to assess field excitatory postsynaptic potentials (fEPSPs) slope and population spike (PS) amplitude. Subsequently, Aß plaques were identified in the hippocampus by Congo red staining. The results showed that Aß microinjection increased passive avoidance memory impairment, suppressed of hippocampal LTP induction, and enhanced of Aß plaque formation in the hippocampus. Interestingly, oral administration of GR improved passive avoidance memory deficit, ameliorated hippocampal LTP impairment, and reduced Aß plaque accumulation in the Aß-infused rats. The results suggest that GR mitigates Aß-induced passive avoidance memory impairment, possibly through alleviation of hippocampal synaptic dysfunction and inhibition of Aß plaque formation.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Ratos , Masculino , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Monoterpenos Acíclicos/farmacologia , Ratos Wistar , Hipocampo , Plasticidade Neuronal , Potenciação de Longa Duração , Peptídeos beta-Amiloides/farmacologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Modelos Animais de Doenças , Fragmentos de Peptídeos/farmacologia
10.
Brain Res Bull ; 204: 110779, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37827266

RESUMO

Traumatic brain injury (TBI) is recognized as an important risk factor for cognitive deficits. The present study was designed to determine the potential neuroprotective effects of chrysin, a natural flavonoid compound, against TBI-induced spatial cognitive decline and the possible mechanisms involved. Oral administration of chrysin (25, 50, or 100 mg/kg/day) was initiated in rats immediately following the induction of the diffuse TBI model using the weight-dropping Marmarou model. Spatial cognitive ability, hippocampal synaptic plasticity, blood-brain barrier (BBB) permeability, brain water content, and histological changes were assessed at scheduled time points. The animals subjected to TBI exhibited spatial cognitive decline in the Morris water maze (MWM) test, which was accompanied by inhibition of hippocampal long-term potentiation (LTP) induction at the perforant path-dentate gyrus (PP-DG) synapses. Additionally, TBI caused BBB disruption, brain edema, and neuronal loss. Interestingly, treatment with chrysin (especially in the dose of 100 mg/kg) alleviated all the above-mentioned neuropathological changes related to TBI. The results provide evidence that chrysin improves TBI-induced spatial cognitive decline, which may be partly related to the amelioration of hippocampal synaptic dysfunction, alleviation of BBB disruption, reduction of brain edema, and prevention of neuronal loss.


Assuntos
Concussão Encefálica , Edema Encefálico , Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Fármacos Neuroprotetores , Ratos , Animais , Concussão Encefálica/complicações , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Edema Encefálico/tratamento farmacológico , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/complicações , Hipocampo , Aprendizagem em Labirinto
11.
J Trace Elem Med Biol ; 72: 126993, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35550983

RESUMO

BACKGROUND: Lead (Pb) is one of the most hazardous pollutants that induce a wide spectrum of neurological changes such as learning and memory deficits. Sesamin, a phytonutrient of the lignan class, exhibits anti-inflammatory, anti-apoptotic, and neuroprotective properties. The present study was designed to investigate the effects of sesamin against Pb-induced learning and memory deficits, disruption of hippocampal theta and gamma rhythms, inflammatory response, inhibition of blood δ-aminolevulinic acid dehydratase (δ-ALA-D) activity, Pb accumulation, and neuronal loss in rats. METHODS: Sesamin treatment (30 mg/kg/day; P.O.) was started simultaneously with Pb acetate exposure (500 ppm in standard drinking water) in rats, and they continued for eight consecutive weeks. RESULTS: The results showed that chronic exposure to Pb disrupted the learning and memory functions in both passive-avoidance and water-maze tests, which was accompanied by increase in spectral theta power and theta/gamma ratio, and a decrease in spectral gamma power in the hippocampus. Additionally, Pb exposure resulted in an enhanced tumor necrosis factor-alpha (TNF-α) content, decreased interleukin-10 (IL-10) production, inhibited blood δ-ALA-D activity, increased Pb accumulation, and neuronal loss of rats. In contrast, sesamin treatment improved all the above-mentioned Pb-induced pathological changes. CONCLUSION: This data suggests that sesamin could improve Pb-induced learning and memory deficits, possibly through amelioration of hippocampal theta and gamma rhythms, modulation of inflammatory status, restoration of the blood δ-ALA-D activity, reduction of Pb accumulation in the blood and the brain tissues, and prevention of neuronal loss.


Assuntos
Chumbo , Lignanas , Animais , Dioxóis , Ritmo Gama , Hipocampo , Chumbo/toxicidade , Lignanas/farmacologia , Lignanas/uso terapêutico , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/patologia , Ratos
12.
Int Immunopharmacol ; 112: 109295, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36194986

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most progressive form of neurodegenerative disease resulting in cognitive and non-cognitive deficits. Aluminum is recognized as a risk factor for the etiology, pathogenesis, and progression of AD. The present study was designed to determine the effects of p-coumaric acid (p-CA), a phenolic compound, on spatial cognitive ability and non-cognitive functions and to identify the role of oxidative stress and inflammation in an AD rat model induced by aluminum chloride (AlCl3). METHODS: Both AlCl3 (100 mg/kg/day; P.O.) and p-CA (100 mg/kg/day; P.O.) treatments were given for six consecutive weeks. During the fifth and sixth weeks of the treatment period, the cognitive and non-cognitive functions of the rats were assessed using standard behavioral tests. Additionally, oxidative-antioxidative status, inflammatory markers, and histological changes were evaluated in the cerebral cortex and hippocampal regions of the rats. RESULTS: The results of this study showed that AlCl3 exposure enhanced anxiety-/depression-like behaviors, reduced locomotor/exploratory activities, and impaired spatial learning and memory. These cognitive and non-cognitive disturbances were accompanied by increasing oxidative stress, enhancing inflammatory response, and neuronal loss in the studied brain regions. Interestingly, treatment with p-CA alleviated all the above-mentioned neuropathological changes in the AlCl3-induced AD rat model. CONCLUSION: The findings suggest that both anti-oxidative and anti-inflammatory properties of p-CA may be the underlying mechanisms behind its beneficial effect in preventing neuronal loss and improving cognitive and non-cognitive deficits associated with AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Ratos , Animais , Doença de Alzheimer/tratamento farmacológico , Cloreto de Alumínio/efeitos adversos , Alumínio/efeitos adversos , Doenças Neurodegenerativas/tratamento farmacológico , Ratos Wistar , Modelos Animais de Doenças , Estresse Oxidativo , Inflamação/tratamento farmacológico , Inflamação/patologia , Hipocampo , Fármacos Neuroprotetores/farmacologia , Aprendizagem em Labirinto
13.
Int Immunopharmacol ; 92: 107356, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33440305

RESUMO

Neuroinflammation and loss of neurotrophic support have key roles in the pathophysiology of diabetes-associated behavioral deficits (DABD). Sesamin (Ses), a major lignan of sesame seed and its oil, shows anti-hyperglycemic, anti-oxidative, and neuroprotective effects. The present study was designed to assess the potential protective effects of Ses against DABD and investigate the roles of inflammatory markers and neurotrophic factors in streptozotocin (STZ)-induced diabetic rats. After confirmation of diabetes, Ses (30 mg/kg/day; P.O.) or insulin (6 IU/rat/day; S.C.) was administered to rats for eight consecutive weeks. During the eighth-week period of the study, behavioral functions of the animals were evaluated by employing standard behavioral paradigms. Moreover, inflammation status, neurotrophic factors, and histological changes were assessed in the cerebral cortex and hippocampal regions of the rats. The results of behavioral tests showed that STZ-induced diabetes increased anxiety-/depression-like behaviors, decreased locomotor/exploratory activities, and impaired passive avoidance learning and memory. These DABD were accompanied by neuroinflammation, lack of neurotrophic support, and neuronal loss in both cerebral cortex and hippocampus of the rats. Intriguingly, chronic treatment with Ses improved all the above-mentioned diabetes-related behavioral, biochemical, and histological deficits, and in some cases, it was even more effective than insulin therapy. In conclusion, the results suggest that Ses was capable of improving DABD, which might be ascribed, at least partly, to the reduction of blood glucose level, inhibition of neuroinflammation, and potentiation of neurotrophic factors.


Assuntos
Ansiedade/tratamento farmacológico , Depressão/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Dioxóis/farmacologia , Inflamação/metabolismo , Lignanas/farmacologia , Transtornos da Memória/tratamento farmacológico , Fatores de Crescimento Neural/metabolismo , Animais , Antioxidantes/farmacologia , Ansiedade/etiologia , Ansiedade/patologia , Ansiedade/psicologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Depressão/etiologia , Depressão/patologia , Depressão/psicologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inflamação/patologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Transtornos da Memória/psicologia , Fármacos Neuroprotetores/farmacologia , Ratos
14.
Psychopharmacology (Berl) ; 237(6): 1607-1619, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32088834

RESUMO

RATIONALE: Cortical and hippocampal neuronal apoptosis and neuroinflammation are associated with behavioral deficits following traumatic brain injury (TBI). OBJECTIVES: The present study was designed to investigate the potential protective effects of flavonoid chrysin against TBI-induced vestibulomotor impairment, exploratory/locomotor dysfunctions, recognition memory decline, and anxiety/depression-like behaviors, as well as the verified possible involved mechanisms. METHODS: Chrysin (25, 50, or 100 mg/kg/day; P.O.) was administered to rats immediately after diffuse TBI induction, and it was continued for 3 or 14 days. Behavioral functions were assessed by employing standard behavioral paradigms at scheduled points in time. Three days post-TBI, inflammation status was assayed in both cerebral cortex and hippocampus using ELISA kits. Moreover, apoptosis and expression of Bcl-2 family proteins were examined by TUNEL staining and immunohistochemistry, respectively. RESULTS: The results indicated that treatment with chrysin improved vestibulomotor dysfunction, ameliorated recognition memory deficit, and attenuated anxiety/depression-like behaviors in the rats with TBI. Chrysin treatment also modulated inflammation status, reduced apoptotic index, and regulated Bcl-2 family proteins expression in the brains of rats with TBI. CONCLUSIONS: In conclusion, the results suggest that chrysin could be beneficial for protection against TBI-associated behavioral deficits, owing to its anti-apoptotic and anti-inflammatory properties.


Assuntos
Ansiedade/tratamento farmacológico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Depressão/tratamento farmacológico , Flavonoides/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Reconhecimento Psicológico/efeitos dos fármacos , Animais , Ansiedade/etiologia , Ansiedade/psicologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/psicologia , Depressão/etiologia , Depressão/psicologia , Flavonoides/farmacologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/psicologia , Ratos , Ratos Wistar
16.
Life Sci ; 225: 8-19, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30943382

RESUMO

AIMS: Diabetes mellitus (DM), a chronic metabolic disease, is associated with behavioral deficits. It has been suggested that ellagic acid (EA), a natural polyphenol compound, has potent anti-diabetic, anti-inflammatory, and neuroprotective properties. The present study was aimed to explore the potential protective effects of EA against diabetes-associated behavioral deficits and verified possible involved mechanisms. MAIN METHODS: Fifty adult male Wistar rats were randomly divided into five groups: i.e., CON: normal rats treated with vehicle (5 ml/kg/day; P.O.), EA: normal rats treated with EA (50 mg/kg/day; P.O.), STZ: diabetic rats treated with vehicle (5 ml/kg/day; P.O.), STZ + INS: diabetic rats treated with insulin (6 IU/rat/day; S.C.), STZ + EA: diabetic rats treated with EA (50 mg/kg/day; P.O.). All the groups were under treatment for eight consecutive weeks. During the seventh and eighth weeks, behavioral functions of the rats were assessed by commonly used behavioral tests. Subsequently, pro- and anti-inflammatory cytokines, neurotrophic factors, and also histological changes were evaluated in both cerebral cortex and hippocampus of the rats. KEY FINDINGS: Chronic EA treatment attenuated anxiety/depression-like behaviors, improved exploratory/locomotor activities, and ameliorated cognitive deficits in diabetic rats. These results were accompanied by decreased blood glucose levels, modulation of inflammation status, improved neurotrophic support, and amelioration of neuronal loss in diabetic rats. In some aspects, treatment with EA was even more effective than insulin therapy. SIGNIFICANCE: The current work's data confirms that EA could potentially serve as a novel, promising, and accessible protective agent against diabetes-associated behavioral deficits, owing to its anti-hyperglycemic, anti-inflammatory, and neurotrophic properties.


Assuntos
Comportamento Animal/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Ácido Elágico/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Glicemia/metabolismo , Córtex Cerebral/efeitos dos fármacos , Transtornos Cognitivos/etiologia , Hipocampo/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar
17.
Life Sci ; 228: 285-294, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31063733

RESUMO

AIMS: Oxidative stress and apoptosis have major roles in the progression of traumatic brain injury (TBI)-associated motor and cognitive deficits. The present study was aimed to elucidate the putative effects of chrysin, a natural flavonoid compound, against TBI-induced motor and cognitive dysfunctions and possible involved mechanisms. MAIN METHODS: Chrysin (25, 50 or 100 mg/kg) was orally administered to rats starting immediately following TBI induction by Marmarou's weight-drop technique and continuously for 3 or 14 days. Neurological functions, motor coordination, learning and memory performances, histological changes, cell apoptosis, expression of pro- and anti-apoptotic proteins, and oxidative status were assayed at scheduled time points after experimental TBI. KEY FINDINGS: The results indicated that treatment with chrysin improved learning and memory disabilities in passive avoidance task, and ameliorated motor coordination impairment in rotarod test after TBI. These beneficial effects were accompanied by increased the concentrations of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH), decreased malondialdehyde (MDA) content, prevented neuronal loss, diminished apoptotic index, elevated the expression of anti-apoptotic Bcl-2 protein, and reduced the expression of pro-apoptotic Bax protein in the cerebral cortex and hippocampus tissues. SIGNIFICANCE: Our findings suggest that both anti-oxidative and anti-apoptotic properties of chrysin (especially in the dose of 100 mg/kg) are possible mechanisms that improve cognitive/motor deficits and prevent neuronal cell death after TBI.


Assuntos
Antioxidantes/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Flavonoides/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Modelos Animais de Doenças , Flavonoides/administração & dosagem , Aprendizagem/efeitos dos fármacos , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Ratos Wistar
18.
Life Sci ; 230: 169-177, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31150685

RESUMO

AIMS: Hippocampal oxidative stress and apoptosis of CA1 neurons play significant roles in the pathophysiology of diabetes-associated cognitive decline (DACD). The present study was aimed to elucidate the putative effects of sesamin, a major lignan of sesame seed, against DACD, and possible involvement of anti-oxidative and anti-apoptotic mechanisms. MAIN METHODS: Fifty adult male Wistar rats were randomly divided into control, control-sesamin (30 mg/kg/day), diabetic, diabetic-sesamin (30 mg/kg/day), and diabetic-insulin (6 IU/rat/day) groups. Diabetic rats were treated with sesamin (P.O.) or insulin (S.C.) for eight consecutive weeks. Cognitive performance was evaluated in a Morris Water Maze (MWM) test; in addition, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) concentrations were assayed in the hippocampus using assay kits. Moreover, hematoxylin-eosin (HE), TUNEL, and immunohistochemistry (IHC) stainings were conducted to evaluate histological changes, the apoptosis status and expression of pro- and anti-apoptotic proteins in the hippocampal CA1 neurons, respectively. KEY FINDINGS: The results showed that diabetes reduced the spatial cognitive ability in MWM, which was accompanied by decrease in SOD, CAT, and GPx activities and increase in MDA level in the hippocampus. Additionally, diabetes resulted in neuronal loss, enhanced apoptotic index, elevated the expression of pro-apoptotic Bax protein, and decreased the expression of anti-apoptotic Bcl-2 protein in the hippocampal CA1 neurons. Interestingly, sesamin treatment improved all the above-mentioned deficits of diabetes at a comparable level with insulin therapy. SIGNIFICANCE: The results suggest that sesamin could be a promising potential therapeutic agent against DACD, possibly through its intertwined anti-hyperglycemic, anti-oxidative, and anti-apoptotic properties.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Complicações do Diabetes/tratamento farmacológico , Dioxóis/farmacologia , Lignanas/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Dioxóis/metabolismo , Glutationa Peroxidase/metabolismo , Hipocampo/metabolismo , Insulina/farmacologia , Lignanas/metabolismo , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
20.
Life Sci ; 211: 126-132, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30195619

RESUMO

Ischemic stroke is one of the leading causes of neurological deterioration and mortality worldwide. Neuroprotective strategies are being investigated to minimize cognitive deficits after ischemic events. Here we investigated the neuroprotective potential of vanillic acid (VA) in an animal model of transient bilateral common carotid artery occlusion and reperfusion (BCCAO/R). Adult male Wistar rats (250-300 g) were randomly divided in 4 groups and submitted to either cerebral hypoperfusion-reperfusion or a sham surgery after two-weeks of pretreatment with VA and/or normal saline. To induce the animal model of hypoperfusion, bilateral common carotid arteries were occluded (2VO model) for 30 min, followed by 72 h of reperfusion. Subsequently, their cognitive performance was evaluated in a Morris water maze (MWM) test, and also hippocampi were removed for ELISA assays and TUNEL staining test. The results showed that 2VO significantly reduced the spatial memory performance in MWM. As well as, BCCAO/R increased the level of IL-6, TNF-α and TUNEL positive cells, and also decreased the contents of IL-10 in the hippocampus of vehicle- pretreated groups as compared to the sham-operated groups. Furthermore, 14 consecutive days pretreatment with VA significantly restored the spatial memory, decreased the levels of IL-6, TNF-α and TUNEL positive cells and also increased the IL-10 levels in the hippocampi of the BCCAO/R rats. VA alone did not show any change neither in the status of various cytokines nor behavioral and TUNEL staining tests over sham values. Our data confirm that VA could potentially serve as a novel, promising, and accessible neuroprotective agent against cerebrovascular insufficiency states and vascular dementia.


Assuntos
Transtornos Cerebrovasculares/complicações , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Inflamação/prevenção & controle , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Ácido Vanílico/farmacologia , Animais , Hipocampo/imunologia , Hipocampo/patologia , Inflamação/etiologia , Inflamação/patologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Reperfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA