Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 29(39): 395201, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-29968581

RESUMO

A graphene-MoS2 (GM) heterostructure based diode is fabricated using asymmetric contacts to MoS2, as well as an asymmetric top gate (ATG). The GM diode exhibits a rectification ratio of 5 from asymmetric contacts, which is improved to 105 after the incorporation of an ATG. This improvement is attributed to the asymmetric modulation of carrier concentration and effective Schottky barrier height (SBH) by the ATG during forward and reverse bias. This is further confirmed from the temperature dependent measurement, where a difference of 0.22 eV is observed between the effective SBH for forward and reverse bias. Moreover, the rectification ratio also depends on carrier concentration in MoS2 and can be varied with the change in temperature as well as back gate voltage. Under laser light illumination, the device demonstrates strong opto-electric response with 100 times improvement in the relative photo current, as well as a responsivity of 1.9 A W-1 and a specific detectivity of 2.4 × 1010 Jones. These devices can also be implemented using other two dimensional (2D) materials and suggest a promising approach to incorporate diverse 2D materials for future nano-electronics and optoelectronics applications.

2.
Nanotechnology ; 29(33): 335202, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-29786609

RESUMO

Molybdenum disulfide (MoS2) based field effect transistors (FETs) are of considerable interest in electronic and opto-electronic applications but often have large hysteresis and threshold voltage instabilities. In this study, by using advanced transfer techniques, hexagonal boron nitride (hBN) encapsulated FETs based on a single, homogeneous and atomic-thin MoS2 flake are fabricated on hBN and SiO2 substrates. This allows for a better and a precise comparison between the charge traps at the semiconductor-dielectric interfaces at MoS2-SiO2 and hBN interfaces. The impact of ambient environment and entities on hysteresis is minimized by encapsulating the active MoS2 layer with a single hBN on both the devices. The device to device variations induced by different MoS2 layer is also eliminated by employing a single MoS2 layer for fabricating both devices. After eliminating these additional factors which induce variation in the device characteristics, it is found from the measurements that the trapped charge density is reduced to 1.9 × 1011 cm-2 on hBN substrate as compared to 1.1 × 1012 cm-2 on SiO2 substrate. Further, reduced hysteresis and stable threshold voltage are observed on hBN substrate and their dependence on gate sweep rate, sweep range, and gate stress is also studied. This precise comparison between encapsulated devices on SiO2 and hBN substrates further demonstrate the requirement of hBN substrate and encapsulation for improved and stable performance of MoS2 FETs.

3.
J Nanosci Nanotechnol ; 18(6): 4243-4247, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442769

RESUMO

We demonstrate a high-performance photodetector with multilayer tin diselenide (SnSe2) exfoliated from a high-quality crystal which was synthesized by the temperature gradient growth method. This SnSe2 photodetector exhibits high photoresponsivity of 5.11 × 105 A W-1 and high specific detectivity of 2.79 × 1013 Jones under laser irradiation (λ = 450 nm). We also observed a reproducible and stable time-resolved photoresponse to the incident laser beam from this SnSe2 photodetector, which can be used as a promising material for future optoelectronic applications.

4.
Nanotechnology ; 28(36): 365501, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28675152

RESUMO

In this work, we report on the hydrogen (H2) sensing behavior of reduced graphene oxide (RGO)/molybdenum disulfide (MoS2) nano particles (NPs) based composite film. The RGO/MoS2 composite exhibited a highly enhanced H2 response (∼15.6%) for 200 ppm at an operating temperature of 60 °C. Furthermore, the RGO/MoS2 composite showed excellent selectivity to H2 with respect to ammonia (NH3) and nitric oxide (NO) which are highly reactive gas species. The composite's response to H2 is 2.9 times higher than that of NH3 whereas for NO it is 3.5. This highly improved H2 sensing response and selectivity of RGO/MoS2 at low operating temperatures were attributed to the structural integration of MoS2 nanoparticles in the nanochannels and pores in the RGO layer.

5.
Nanotechnology ; 27(33): 335201, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27378597

RESUMO

We fabricated a non-local spin valve with a thin layer of graphite with Co transparent electrodes. The spin-valve effect and spin precession were observed at room temperature. The magnitude of the mangetoresistance increases when temperature decreases. The spin-relaxation time, [Formula: see text], obtained from the fitting of the Hanle curves increases with decreasing temperature with a weak dependence [Formula: see text] while the spin-diffusion constant D decreases. At room temperature, [Formula: see text] exceeds 100 ps and the spin-diffusion length, [Formula: see text], is ∼2 µm. The temperature dependence of [Formula: see text] is not monotonic, and it has the largest value at room temperature. Our results show that multilayer graphene is a suitable material for spintronic devices.

6.
Nanotechnology ; 27(22): 225201, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27098430

RESUMO

We investigated the n-type doping effect of hydrazine on the electrical characteristics of a molybdenum disulphide (MoS2)-based field-effect transistor (FET). The threshold voltage of the MoS2 FET shifted towards more negative values (from -20 to -70 V) on treating with 100% hydrazine solution with the channel current increasing from 0.5 to 25 µA at zero gate bias. The inverse subthreshold slope decreased sharply on doping, while the ON/OFF ratio increased by a factor of 100. Gate-channel coupling improved with doping, which facilitates the reduction of channel length between the source and drain electrodes without compromising on the transistor performance, making the MoS2-based FET easily scalable.

7.
Nano Lett ; 15(8): 5017-24, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26091357

RESUMO

Lateral and vertical two-dimensional heterostructure devices, in particular graphene-MoS2, have attracted profound interest as they offer additional functionalities over normal two-dimensional devices. Here, we have carried out electrical and optical characterization of graphene-MoS2 heterostructure. The few-layer MoS2 devices with metal electrode at one end and monolayer graphene electrode at the other end show nonlinearity in drain current with drain voltage sweep due to asymmetrical Schottky barrier height at the contacts and can be modulated with an external gate field. The doping effect of MoS2 on graphene was observed as double Dirac points in the transfer characteristics of the graphene field-effect transistor (FET) with a few-layer MoS2 overlapping the middle part of the channel, whereas the underlapping of graphene have negligible effect on MoS2 FET characteristics, which showed typical n-type behavior. The heterostructure also exhibits a strongest optical response for 520 nm wavelength, which decreases with higher wavelengths. Another distinct feature observed in the heterostructure is the peak in the photocurrent around zero gate voltage. This peak is distinguished from conventional MoS2 FETs, which show a continuous increase in photocurrent with back-gate voltage. These results offer significant insight and further enhance the understanding of the graphene-MoS2 heterostructure.

8.
Nanotechnology ; 26(45): 455203, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26486939

RESUMO

We report a facile and highly effective n-doping method using hydrazine solution to realize enhanced electron conduction in a WSe2 field-effect transistor (FET) with three different metal contacts of varying work functions-namely, Ti, Co, and Pt. Before hydrazine treatment, the Ti- and Co-contacted WSe2 FETs show weak ambipolar behaviour with electron dominant transport, whereas in the Pt-contacted WSe2 FETs, the p-type unipolar behaviour was observed with the transport dominated by holes. In the hydrazine treatment, a p-type WSe2 FET (Pt contacted) was converted to n-type with enhanced electron conduction, whereas highly n-doped properties were achieved for both Ti- and Co-contacted WSe2 FETs with on-current increasing by three orders of magnitude for Ti. All n-doped WSe2 FETs exhibited enhanced hysteresis in their transfer characteristics, which opens up the possibility of developing memories using transition metal dichalcogenides.

9.
Sci Rep ; 8(1): 7144, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739956

RESUMO

The fractions of various functional groups in graphene oxide (GO) are directly related to its electrical and chemical properties and can be controlled by various reduction methods like thermal, chemical and optical. However, a method with sufficient controllability to regulate the reduction process has been missing. In this work, a hybrid method of thermal and joule heating processes is demonstrated where a progressive control of the ratio of various functional groups can be achieved in a localized area. With this precise control of carbon-oxygen ratio, negative differential resistance (NDR) is observed in the current-voltage characteristics of a two-terminal device in the ambient environment due to charge-activated electrochemical reactions at the GO surface. This experimental observation correlates with the optical and chemical characterizations. This NDR behavior offers new opportunities for the fabrication and application of such novel electronic devices in a wide range of devices applications including switches and oscillators.

10.
ACS Appl Mater Interfaces ; 10(28): 23961-23967, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29938500

RESUMO

Two-dimensional (2D) material-based heterostructures provide a unique platform where interactions between stacked 2D layers can enhance the electrical and opto-electrical properties as well as give rise to interesting new phenomena. Here, the operation of a van der Waals heterostructure device comprising of vertically stacked bilayer MoS2 and few layered WSe2 has been demonstrated in which an atomically thin MoS2 layer has been employed as a tunneling layer to the underlying WSe2 layer. In this way, simultaneous contacts to both MoS2 and WSe2 2D layers have been established by forming a direct metal-semiconductor to MoS2 and a tunneling-based metal-insulator-semiconductor contacts to WSe2, respectively. The use of MoS2 as a dielectric tunneling layer results in an improved contact resistance (80 kΩ µm) for WSe2 contact, which is attributed to reduction in the effective Schottky barrier height and is also confirmed from the temperature-dependent measurement. Furthermore, this unique contact engineering and type-II band alignment between MoS2 and WSe2 enables a selective and independent carrier transport across the respective layers. This contact engineered dual channel heterostructure exhibits an excellent gate control and both channel current and carrier types can be modulated by the vertical electric field of the gate electrode, which is also reflected in the on/off ratio of 104 for both electron (MoS2) and hole (WSe2) channels. Moreover, the charge transfer at the heterointerface is studied quantitatively from the shift in the threshold voltage of the pristine MoS2 and the heterostructure device, which agrees with the carrier recombination-induced optical quenching as observed in the Raman spectra of the pristine and heterostructure layers. This observation of dual channel ambipolar transport enabled by the hybrid tunneling contacts and strong interlayer coupling can be utilized for high-performance opto-electrical devices and applications.

11.
ACS Appl Mater Interfaces ; 9(32): 26983-26989, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28715168

RESUMO

The self-biasing effects of ion gel from source and drain electrodes on electrical characteristics of single layer and few layer molybdenum disulfide (MoS2) field-effect transistor (FET) have been studied. The self-biasing effect of ion gel is tested for two different configurations, covered and open, where ion gel is in contact with either one or both, source and drain electrodes, respectively. In open configuration, the linear output characteristics of the pristine device becomes nonlinear and on-off ratio drops by 3 orders of magnitude due to the increase in "off" current for both single and few layer MoS2 FETs. However, the covered configuration results in a highly asymmetric output characteristics with a rectification of around 103 and an ideality factor of 1.9. This diode like behavior has been attributed to the reduction of Schottky barrier width by the electric field of self-biased ion gel, which enables an efficient injection of electrons by tunneling at metal-MoS2 interface. Finally, finite element method based simulations are carried out and the simulated results matches well in principle with the experimental analysis. These self-biased diodes can perform a crucial role in the development of high-frequency optoelectronic and valleytronic devices.

12.
Nanoscale ; 9(4): 1645-1652, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-28074961

RESUMO

HfSe2 field effect transistors are systematically studied in order to selectively tune their electrical properties by optimizing layer thickness and oxygen plasma treatment. The optimized plasma-treated HfSe2 field effect transistors showed a high on/off ratio improvement of four orders of magnitude, from 27 to 105, a field effect mobility increase from 2.16 to 3.04 cm2 V-1 s-1, a subthreshold swing improvement from 30.6 to 4.8 V dec-1, and a positive threshold voltage shift between depletion mode and enhancement mode, from -7.02 to 11.5 V. The plasma-treated HfSe2 photodetector also demonstrates a reasonable photoresponsivity from the visible to the near-infrared region of light.

13.
Adv Mater ; 28(43): 9519-9525, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27619888

RESUMO

An ambipolar dual-channel field-effect transistor (FET) with a WSe2 /MoS2 heterostructure formed by separately controlled individual channel layers is demonstrated. The FET shows a switchable ambipolar behavior with independent carrier transport of electrons and holes in the individual layers of MoS2 and WSe2 , respectively. Moreover, the photoresponse is studied at the heterointerface of the WSe2 /MoS2 dual-channel FET.

14.
ACS Appl Mater Interfaces ; 7(25): 13768-75, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26042360

RESUMO

Alternating current dielectrophoresis (DEP) is an excellent technique to assemble nanoscale materials. For efficient DEP, the optimization of the key parameters like peak-to-peak voltage, applied frequency, and processing time is required for good device. In this work, we have assembled graphene oxide (GO) nanostructures mixed with platinum (Pt) nanoparticles between the micro gap electrodes for a proficient hydrogen gas sensors. The Pt-decorated GO nanostructures were well located between a pair of prepatterned Ti/Au electrodes by controlling the DEP technique with the optimized parameters and subsequently thermally reduced before sensing. The device fabricated using the DEP technique with the optimized parameters showed relatively high sensitivity (∼10%) to 200 ppm hydrogen gas at room temperature. The results indicates that the device could be used in several industry applications, such as gas storage and leak detection.

15.
ACS Appl Mater Interfaces ; 6(17): 14812-8, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25140383

RESUMO

The material properties of semiconductor nanowires are greatly affected by electrical, optical, and chemical processes occurring at their surfaces because of the very large surface-to-volume ratio. Precise control over doping as well as the surface charge properties has been demonstrated in thin films and nanowires for fundamental physics and application-oriented research. However, surface doping behavior is expected to differ markedly from bulk doping in conventional semiconductor materials. Here, we show that placing gold nanoparticles, in controlled manner, on the surface of an insulating vanadium dioxide nanowire introduces local charge carriers in the nanowire, and one could, in principle, completely and continuously alter the material properties of the nanowire and obtain any intermediate level of conductivity. The current in the nanowire increased by nearly 3 times when gold nanoparticles of 10(11) cm(-2) order of density were controllably placed on the nanowire surface. A strong quadratic space-charge limited (SCL) transport behavior was also observed from the conductance curve suggesting the formation of two-dimensional (2D) electron-gas-like confined layer in the nanowire with adsorbed Au NPs. In addition to stimulating scientific interest, such unusual surface doping phenomena may lead to new applications of vanadium dioxide-based electronic, optical, and chemical sensing nanodevices.

16.
ACS Appl Mater Interfaces ; 6(22): 19718-25, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25343172

RESUMO

In order to investigate the metal-insulator transition characteristics of VO2 devices annealed in reducing atmosphere after device fabrication at various temperature, electrical, chemical, and thermal characteristics are measured and analyzed. It is found that the sheet resistance and the insulator-metal transition point, induced by both voltage and thermal, decrease when the devices are annealed from 200 to 500 °C. The V 2p3/2 peak variation in X-ray photoelectron spectroscopy (XPS) characterization verifies the reduction of thin-films. A decrease of the transition temperature from voltage hysteresis measurements further endorse the reducing effects of the annealing on VO2 thin-film.

17.
Nanoscale ; 6(7): 3830-6, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24584834

RESUMO

Next generation graphene-based electronics essentially need a dielectric layer with several requirements such as high flexibility, high transparency, and low process temperature. Here, we propose and investigate a flexible and transparent poly-4-vinylphenol and poly(melamine-co-formaldehyde) (PVP/PMF) insulating layer to achieve intrinsic graphene and an excellent gate dielectric layer at sub 200 °C. Chemical and electrical effects of PVP/PMF layer on graphene as well as its dielectric property are systematically investigated through various measurements by adjusting the ratio of PVP to PMF and annealing temperature. The optimized PVP/PMF insulating layer not only removes the native -OH functional groups which work as electron-withdrawing agents on graphene (Dirac point close to zero) but also shows an excellent dielectric property (low hysteresis voltage). Finally, a flexible, wearable, and transparent (95.8%) graphene transistor with Dirac point close to zero is demonstrated on polyethylene terephthalate (PET) substrate by exploiting PVP/PMF layer which can be scaled down to 20 nm.


Assuntos
Grafite/química , Polímeros/química , Transistores Eletrônicos , Fenóis/química , Polietilenotereftalatos/química , Temperatura , Triazinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA