RESUMO
This cohort study aimed to characterize the prodromal phase of hereditary spastic paraplegia type 4 (SPG4) using biomarkers and clinical signs and symptoms that develop before manifest gait abnormalities. Fifty-six first-degree relatives at risk of developing SPG4 underwent blinded genotyping and standardized phenotyping, including the Spastic Paraplegia Rating Scale (SPRS), complicating symptoms, non-motor affection, Three-Minute Walk, and neurophysiological assessment. Automated MR image analysis was used to compare volumetric properties. CSF of 33 probands was analysed for neurofilament light chain (NfL), tau, and amyloid-ß (Aß). Thirty participants turned out to be SPAST mutation carriers, whereas 26 did not inherit a SPAST mutation. Increased reflexes, ankle clonus, and hip abduction weakness were more frequent in prodromal mutation carriers but were also observed in non-mutation carriers. Only Babinski's sign differentiated reliably between the two groups. Timed walk and non-motor symptoms did not differ between groups. Whereas most mutation carriers had total SPRS scores of 2 points or more, only two non-mutation carriers reached more than 1 point. Motor evoked potentials revealed no differences between mutation and non-mutation carriers. We found NfL but not tau or Aß to rise in CSF of mutation carriers when approaching the time point of predicted disease manifestation. Serum NfL did not differ between groups. Volumetric MRI analyses did not reveal group differences apart from a smaller cingulate gyrus in mutation carriers. This study depicts subtle clinical signs which develop before gait abnormalities in SPG4. Long-term follow-up is needed to study the evolution of SPG4 in the prodromal stage and conversion into manifest disease. NfL in CSF is a promising fluid biomarker that may indicate disease activity in prodromal SPG4 but needs further evaluation in longitudinal studies.
Assuntos
Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , Estudos de Coortes , Paraplegia/genética , Mutação/genética , Peptídeos beta-Amiloides/genética , Espastina/genéticaRESUMO
PURPOSE: Biallelic variants in UCHL1 have been associated with a progressive early-onset neurodegenerative disorder, autosomal recessive spastic paraplegia type 79. In this study, we investigated heterozygous UCHL1 variants on the basis of results from cohort-based burden analyses. METHODS: Gene-burden analyses were performed on exome and genome data of independent cohorts of patients with hereditary ataxia and spastic paraplegia from Germany and the United Kingdom in a total of 3169 patients and 33,141 controls. Clinical data of affected individuals and additional independent families were collected and evaluated. Patients' fibroblasts were used to perform mass spectrometry-based proteomics. RESULTS: UCHL1 was prioritized in both independent cohorts as a candidate gene for an autosomal dominant disorder. We identified a total of 34 cases from 18 unrelated families, carrying 13 heterozygous loss-of-function variants (15 families) and an inframe insertion (3 families). Affected individuals mainly presented with spasticity (24/31), ataxia (28/31), neuropathy (11/21), and optic atrophy (9/17). The mass spectrometry-based proteomics showed approximately 50% reduction of UCHL1 expression in patients' fibroblasts. CONCLUSION: Our bioinformatic analysis, in-depth clinical and genetic workup, and functional studies established haploinsufficiency of UCHL1 as a novel disease mechanism in spastic ataxia.
Assuntos
Ataxia Cerebelar , Atrofia Óptica , Paraplegia Espástica Hereditária , Ataxias Espinocerebelares , Ubiquitina Tiolesterase , Ataxia/genética , Ataxia Cerebelar/genética , Humanos , Mutação com Perda de Função , Espasticidade Muscular/genética , Mutação , Atrofia Óptica/genética , Linhagem , Paraplegia Espástica Hereditária/genética , Ataxias Espinocerebelares/genética , Ubiquitina Tiolesterase/genéticaRESUMO
BACKGROUND: Variants in genes of the nucleotide excision repair (NER) pathway have been associated with heterogeneous clinical presentations ranging from xeroderma pigmentosum to Cockayne syndrome and trichothiodystrophy. NER deficiencies manifest with photosensitivity and skin cancer, but also developmental delay and early-onset neurological degeneration. Adult-onset neurological features have been reported in only a few xeroderma pigmentosum cases, all showing at least mild skin manifestations. OBJECTIVE: The aim of this multicenter study was to investigate the frequency and clinical features of patients with biallelic variants in NER genes who are predominantly presenting with neurological signs. METHODS: In-house exome and genome datasets of 14,303 patients, including 3543 neurological cases, were screened for deleterious variants in NER-related genes. Clinical workup included in-depth neurological and dermatological assessments. RESULTS: We identified 13 patients with variants in ERCC4 (n = 8), ERCC2 (n = 4), or XPA (n = 1), mostly proven biallelic, including five different recurrent and six novel variants. All individuals had adult-onset progressive neurological deterioration with ataxia, dementia, and frequently chorea, neuropathy, and spasticity. Brain magnetic resonance imaging showed profound global brain atrophy in all patients. Dermatological examination did not show any skin cancer or pronounced ultraviolet damage. CONCLUSIONS: We introduce NERDND as adult-onset neurodegeneration (ND ) within the spectrum of autosomal recessive NER disorders (NERD). Our study demonstrates that NERDND is probably an underdiagnosed cause of neurodegeneration in adulthood and should be considered in patients with overlapping cognitive and movement abnormalities. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Síndrome de Cockayne , Neoplasias Cutâneas , Xeroderma Pigmentoso , Adulto , Síndrome de Cockayne/complicações , Síndrome de Cockayne/genética , Reparo do DNA/genética , Humanos , Pele , Neoplasias Cutâneas/genética , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/patologia , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/metabolismoRESUMO
BACKGROUND: Pathogenic variants in SPTAN1 have been linked to a remarkably broad phenotypical spectrum. Clinical presentations include epileptic syndromes, intellectual disability, and hereditary motor neuropathy. OBJECTIVES: We investigated the role of SPTAN1 variants in rare neurological disorders such as ataxia and spastic paraplegia. METHODS: We screened 10,000 NGS datasets across two international consortia and one local database, indicative of the level of international collaboration currently required to identify genes causative for rare disease. We performed in silico modeling of the identified SPTAN1 variants. RESULTS: We describe 22 patients from 14 families with five novel SPTAN1 variants. Of six patients with cerebellar ataxia, four carry a de novo SPTAN1 variant and two show a sporadic inheritance. In this group, one variant (p.Lys2083del) is recurrent in four patients. Two patients have novel de novo missense mutations (p.Arg1098Cys, p.Arg1624Cys) associated with cerebellar ataxia, in one patient accompanied by intellectual disability and epilepsy. We furthermore report a recurrent missense mutation (p.Arg19Trp) in 15 patients with spastic paraplegia from seven families with a dominant inheritance pattern in four and a de novo origin in one case. One further patient carrying a de novo missense mutation (p.Gln2205Pro) has a complex spastic ataxic phenotype. Through protein modeling we show that mutated amino acids are located at crucial interlinking positions, interconnecting the three-helix bundle of a spectrin repeat. CONCLUSIONS: We show that SPTAN1 is a relevant candidate gene for ataxia and spastic paraplegia. We suggest that for the mutations identified in this study, disruption of the interlinking of spectrin helices could be a key feature of the pathomechanism. © 2022 International Parkinson and Movement Disorder Society.
Assuntos
Proteínas de Transporte , Ataxia Cerebelar , Deficiência Intelectual , Proteínas dos Microfilamentos , Paraplegia Espástica Hereditária , Proteínas de Transporte/genética , Ataxia Cerebelar/genética , Humanos , Deficiência Intelectual/genética , Proteínas dos Microfilamentos/genética , Mutação/genética , Paraplegia/genética , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/genética , Espectrina/genéticaRESUMO
BACKGROUND: Charcot-Marie-Tooth disease (CMT) is a clinically and genetically heterogeneous disorder of the peripheral nervous system. Biallelic variants in SLC12A6 have been associated with autosomal-recessive hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC). We identified heterozygous de novo variants in SLC12A6 in three unrelated patients with intermediate CMT. METHODS: We evaluated the clinical reports and electrophysiological data of three patients carrying de novo variants in SLC12A6 identified by diagnostic trio exome sequencing. For functional characterisation of the identified variants, potassium influx of mutated KCC3 cotransporters was measured in Xenopus oocytes. RESULTS: We identified two different de novo missense changes (p.Arg207His and p.Tyr679Cys) in SLC12A6 in three unrelated individuals with early-onset progressive CMT. All presented with axonal/demyelinating sensorimotor neuropathy accompanied by spasticity in one patient. Cognition and brain MRI were normal. Modelling of the mutant KCC3 cotransporter in Xenopus oocytes showed a significant reduction in potassium influx for both changes. CONCLUSION: Our findings expand the genotypic and phenotypic spectrum associated with SLC12A6 variants from autosomal-recessive HMSN/ACC to dominant-acting de novo variants causing a milder clinical presentation with early-onset neuropathy.
Assuntos
Agenesia do Corpo Caloso/genética , Doença de Charcot-Marie-Tooth/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Doenças do Sistema Nervoso Periférico/genética , Simportadores/genética , Adolescente , Idade de Início , Agenesia do Corpo Caloso/diagnóstico por imagem , Agenesia do Corpo Caloso/patologia , Doença de Charcot-Marie-Tooth/diagnóstico por imagem , Doença de Charcot-Marie-Tooth/patologia , Criança , Feminino , Genótipo , Neuropatias Hereditárias Sensoriais e Autônomas/diagnóstico por imagem , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Mutação , Linhagem , Doenças do Sistema Nervoso Periférico/diagnóstico por imagem , Doenças do Sistema Nervoso Periférico/patologia , FenótipoRESUMO
Nasal colonization is a major risk factor for S. aureus infections. The mechanisms responsible for colonization are still not well understood and involve several factors on the host and the bacterial side. One key factor is the cell wall teichoic acid (WTA) of S. aureus, which governs direct interactions with nasal epithelial surfaces. We report here the first receptor for the cell wall glycopolymer WTA on nasal epithelial cells. In several assay systems this type F-scavenger receptor, termed SREC-I, bound WTA in a charge dependent manner and mediated adhesion to nasal epithelial cells in vitro. The impact of WTA and SREC-I interaction on epithelial adhesion was especially pronounced under shear stress, which resembles the conditions found in the nasal cavity. Most importantly, we demonstrate here a key role of the WTA-receptor interaction in a cotton rat model of nasal colonization. When we inhibited WTA mediated adhesion with a SREC-I antibody, nasal colonization in the animal model was strongly reduced at the early onset of colonization. More importantly, colonization stayed low over an extended period of 6 days. Therefore we propose targeting of this glycopolymer-receptor interaction as a novel strategy to prevent or control S. aureus nasal colonization.
Assuntos
Aderência Bacteriana/genética , Células Epiteliais/microbiologia , Cavidade Nasal/microbiologia , Receptores Depuradores Classe F/fisiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/fisiologia , Ácidos Teicoicos/metabolismo , Animais , Células CHO , Parede Celular/metabolismo , Células Cultivadas , Cricetinae , Cricetulus , Interações Hospedeiro-Patógeno/genética , Humanos , Ratos , Receptores Depuradores Classe F/metabolismo , Sigmodontinae , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologiaRESUMO
Colonization of the human nose by Staphylococcus aureus in one-third of the population represents a major risk factor for invasive infections. The basis for adaptation of S. aureus to this specific habitat and reasons for the human predisposition to become colonized have remained largely unknown. Human nasal secretions were analyzed by metabolomics and found to contain potential nutrients in rather low amounts. No significant differences were found between S. aureus carriers and non-carriers, indicating that carriage is not associated with individual differences in nutrient supply. A synthetic nasal medium (SNM3) was composed based on the metabolomics data that permits consistent growth of S. aureus isolates. Key genes were expressed in SNM3 in a similar way as in the human nose, indicating that SNM3 represents a suitable surrogate environment for in vitro simulation studies. While the majority of S. aureus strains grew well in SNM3, most of the tested coagulase-negative staphylococci (CoNS) had major problems to multiply in SNM3 supporting the notion that CoNS are less well adapted to the nose and colonize preferentially the human skin. Global gene expression analysis revealed that, during growth in SNM3, S. aureus depends heavily on de novo synthesis of methionine. Accordingly, the methionine-biosynthesis enzyme cysteine-γ-synthase (MetI) was indispensable for growth in SNM3, and the MetI inhibitor DL-propargylglycine inhibited S. aureus growth in SNM3 but not in the presence of methionine. Of note, metI was strongly up-regulated by S. aureus in human noses, and metI mutants were strongly abrogated in their capacity to colonize the noses of cotton rats. These findings indicate that the methionine biosynthetic pathway may include promising antimicrobial targets that have previously remained unrecognized. Hence, exploring the environmental conditions facultative pathogens are exposed to during colonization can be useful for understanding niche adaptation and identifying targets for new antimicrobial strategies.
Assuntos
Adaptação Fisiológica , Proteínas de Bactérias/biossíntese , Regulação Bacteriana da Expressão Gênica/fisiologia , Cavidade Nasal/microbiologia , Staphylococcus aureus/metabolismo , Adulto , Animais , Feminino , Humanos , Masculino , Metabolômica/métodos , Ratos , Sigmodontinae , Staphylococcus aureus/isolamento & purificaçãoRESUMO
Annexin A1 is an intracellular calcium/phospholipid-binding protein that is involved in membrane organization and the regulation of the immune system. It has been attributed an anti-inflammatory role at various control levels, and recently we could show that annexin A1 externalization during secondary necrosis provides an important fail-safe mechanism counteracting inflammatory responses when the timely clearance of apoptotic cells has failed. As such, annexin A1 promotes the engulfment of dying cells and dampens the postphagocytic production of proinflammatory cytokines. In our current follow-up study, we report that exposure of annexin A1 during secondary necrosis coincided with proteolytic processing within its unique N-terminal domain by ADAM10. Most importantly, we demonstrate that the released peptide and culture supernatants of secondary necrotic, annexin A1-externalizing cells induced chemoattraction of monocytes, which was clearly reduced in annexin A1- or ADAM10-knockdown cells. Thus, altogether our findings indicate that annexin A1 externalization and its proteolytic processing into a chemotactic peptide represent final events during apoptosis, which after the transition to secondary necrosis contribute to the recruitment of monocytes and the prevention of inflammation.
Assuntos
Proteínas ADAM/imunologia , Secretases da Proteína Precursora do Amiloide/imunologia , Anexina A1/imunologia , Fatores Quimiotáticos/imunologia , Quimiotaxia/imunologia , Proteínas de Membrana/imunologia , Monócitos/imunologia , Proteólise , Transdução de Sinais/imunologia , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Anexina A1/genética , Anexina A1/metabolismo , Fatores Quimiotáticos/genética , Fatores Quimiotáticos/metabolismo , Quimiotaxia/genética , Técnicas de Silenciamento de Genes , Células HL-60 , Humanos , Células Jurkat , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Monócitos/metabolismo , Monócitos/patologia , Necrose/genética , Necrose/imunologia , Necrose/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais/genética , Células U937RESUMO
The bifunctional major autolysin Atl plays a key role in staphylococcal cell separation. Processing of Atl yields catalytically active amidase (AM) and glucosaminidase (GL) domains that are each fused to repeating units. The two repeats of AM (R1 and R2) target the enzyme to the septum, where it cleaves murein between dividing cells. We have determined the crystal structure of R2, which reveals that each repeat folds into two half-open ß-barrel subunits. We further demonstrate that lipoteichoic acid serves as a receptor for the repeats and that this interaction depends on conserved surfaces in each subunit. Small-angle X-ray scattering of the mature amidase reveals the presence of flexible linkers separating the AM, R1, and R2 units. Different levels of flexibility for each linker provide mechanistic insights into the conformational dynamics of the full-length protein and the roles of its components in cell wall association and catalysis. Our analysis supports a model in which the repeats direct the catalytic AM domain to the septum, where it can optimally perform the final step of cell division.
Assuntos
Parede Celular/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Staphylococcus aureus/enzimologia , Amidoidrolases/química , Amidoidrolases/metabolismo , Cristalografia por Raios X , Lipopolissacarídeos/metabolismo , Peptidoglicano/metabolismo , Ligação Proteica , Conformação Proteica , Espalhamento a Baixo Ângulo , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/metabolismoRESUMO
The mechanisms used by the immune system to discriminate between pathogenic and commensal bacteria have remained largely unclear. Recently, we have shown that virulence of Staphylococcus aureus depends on secretion of phenol-soluble modulin (PSM) peptides that disrupt neutrophils at micromolar concentrations. Moreover, all S. aureus PSMs stimulate and attract neutrophils at nanomolar concentrations via interaction with the formyl-peptide receptor 2 (FPR2). Here, we demonstrate that FPR2 allows neutrophils to adjust their responses in relation to the aggressiveness of staphylococcal species, which differ largely in their capacity to infect or colonize humans and animals. PSM-related peptides were detected in all human and animal pathogenic staphylococci, but were absent from most commensal species. Three PSMß-like peptides produced by the serious human pathogen Staphylococcus lugdunensis were identified as the previously described S. lugdunensis-synergistic hemolysins (SLUSHs). SLUSHs attracted and stimulated human leukocytes in a FPR2-dependent manner, indicating that FPR2 is a general receptor for all PSM-like peptide toxins. Remarkably, the release of PSMs correlated closely with the apparent capacity of staphylococcal species to cause invasive infections and with their ability to activate FPR2. These findings suggest that the innate immune system may be able to respond in different ways to pathogenic or innocuous staphylococci by monitoring the presence of PSMs via FPR2.
Assuntos
Toxinas Bacterianas/metabolismo , Receptores de Formil Peptídeo/fisiologia , Receptores de Lipoxinas/fisiologia , Staphylococcus/patogenicidade , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/farmacologia , Quimiotaxia de Leucócito , Células HL-60 , Proteínas Hemolisinas/farmacologia , Humanos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Staphylococcus aureus/patogenicidade , Staphylococcus lugdunensis/metabolismo , Staphylococcus lugdunensis/patogenicidade , VirulênciaRESUMO
BACKGROUND AND OBJECTIVES: Our objective was to improve rare variant interpretation using statistical measures as well as publicly accessible annotation of expression levels and tissue specificity of different splice isoforms. We describe rare VPS16 variants observed in patients with dystonia and patients without dystonia, elaborate on our interpretation of VPS16 variants affecting different transcripts, and provide detailed clinical description of the movement disorder caused by VPS16 variants. METHODS: In-house exome and genome data sets (n = 11,539) were screened for rare heterozygous missense and putative loss-of-function (pLoF) variants in VPS16. Using pext (proportion expressed across transcripts) values from the Genome Aggregation Database (gnomAD), we differentiated variants affecting weakly and highly expressed exons/transcripts and applied statistical measures to systematically identify disease-associated genetic variation among patients with dystonia (n = 280). RESULTS: Six different heterozygous pLoFs in VPS16 transcripts were identified in 13 individuals. Three of these pLoFs occurred in 9 individuals with different phenotypes, and 3 pLoFs were identified in 4 unrelated individuals with early-onset dystonia. Although pLoFs were enriched in the dystonia cohort (n = 280; p = 2.04 × 10-4; 4/280 cases vs 9/11,259 controls; Fisher exact test), it was not exome-wide significant. According to the pext values in gnomAD, all 3 pLoFs observed in the patients with dystonia were located in the highly expressed canonical transcript ENST00000380445.3, whereas 2 of 3 pLoFs detected in 8 individuals without dystonia were located in the first exon of the noncanonical transcript ENST00000380443.3 that is weakly expressed across all tissues. Taking these biological implications into account, pLoFs involving the canonical transcript were exome-wide significantly enriched in patients with dystonia (p = 1.67 × 10-6; 4/280 cases vs 1/11,259 controls; Fisher exact test). All VPS16 patients showed mild progressive dystonia with writer's cramp as the presenting symptom between age 7 and 34 years (mean 20 years) that often progressed to generalized dystonia and was even accompanied by hyperkinetic movements and myoclonus in 1 patient. DISCUSSION: Our data provide strong evidence for VPS16 pLoFs to be implicated in dystonia and knowledge on exon resolution expression levels as well as statistical measures proved to be useful for variant interpretation.
RESUMO
The human pathogen Staphylococcus aureus successfully colonizes its primary reservoir, the nasal cavity, most likely by regulatory adaptation to the nose environment. Cotton rats represent an excellent model for the study of bacterial gene expression in the initial phases of colonization. To gain insight into the expression profile necessary for the establishment of colonization, we performed direct transcript analysis by quantitative real-time reverse-transcription polymerase chain reaction on cotton rat noses removed from euthanized animals on days 1, 4, or 10 after instillation of 2 human S. aureus nose isolates. Global virulence regulators (agr, sae) were not active in this early phase, but the essential 2-component regulatory system WalKR seems to play an important role. Accordingly, an elevated expression of walKR target genes (sak, sceD) could be detected. In agreement with previous studies that demonstrated the essential role played by wall teichoic acid (WTA) polymers in nasal colonization, we detected a strongly increased expression of WTA-biosynthetic genes. The expression profile switched to production of the adhesive proteins ClfB and IsdA at later stages of the colonization process. These data underscore the temporal differences in the roles of WTA and surface proteins in nasal colonization, and they provide the first evidence for a regulation of WTA biosynthesis in vivo.
Assuntos
Adesinas Bacterianas/biossíntese , Mucosa Nasal/microbiologia , Infecções Estafilocócicas/microbiologia , Adesinas Bacterianas/fisiologia , Animais , Antígenos de Bactérias/biossíntese , Antígenos de Bactérias/fisiologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/fisiologia , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica/fisiologia , Genes Bacterianos/fisiologia , Humanos , RNA Bacteriano/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sigmodontinae , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiologia , Transativadores/fisiologiaRESUMO
X-linked Adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene resulting in the accumulation of very long chain fatty acids (VLCFA). X-ALD is the most common peroxisomal disorder with adult patients (male and female) presenting with progressive spastic paraparesis with bladder disturbance, sensory ataxia with impaired vibration sense, and leg pain. 80% of male X-ALD patients have an adrenal failure, while adrenal dysfunction is rare in women with X-ALD. The objective of this study was to define optimal serum VLCFA cutoff values in patients with X-ALD-like phenotypes for the differentiation of genetically confirmed X-ALD and Non-X-ALD individuals. Three groups were included into this study: a) X-ALD cases with confirmed ABCD1 mutations (n = 34) and two Non-X-ALD cohorts: b) Patients with abnormal serum VCLFA levels despite negative testing for ABCD1 mutations (n = 15) resulting from a total of 1,953 VLCFA tests c) Phenotypically matching patients as Non-X-ALD controls (n = 104). Receiver operating curve analysis was used to optimize VLCFA cutoff values, which differentiate patients with genetically confirmed X-ALD and Non-X-ALD individuals. The serum concentration of C26:0 was superior to C24:0 for the detection of X-ALD. The best differentiation of Non-X-ALD and X-ALD individuals was obtained with a cutoff value of < 1.0 for the C24:0/C22:0 ratio resulting in a sensitivity of 97%, a specificity of 94.1% and a positive predictive value (PPV) of 83.8% for true X-ALD. Our findings further suggested a cutoff of < 0.02 for the ratio C26:0/C22:0 leading to a sensitivity of 90.9%, a specificity of 95.0%, and a PPV of 80.6%. Pearson correlation indicated a significant positive association between total blood cholesterol and VLCFA values. Usage of serum VLCFA are economical and established biomarkers suitable for the guidance of genetic testing matching the X-ALD phenotype. We suggest using our new optimized cutoff values, especially the two ratios (C24:0/C22:0 and C26:0/C22:0), in combination with standard lipid profiles.
Assuntos
Adrenoleucodistrofia/sangue , Adrenoleucodistrofia/diagnóstico , Ácidos Graxos/sangue , Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Idoso , Astrócitos/patologia , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Sensibilidade e EspecificidadeRESUMO
Most staphylococci produce short α-type PSMs and about twice as long ß-type PSMs that are potent leukocyte attractants and toxins. PSMs are usually secreted with the N-terminal formyl group but are only weak agonists for the leukocyte FPR1. Instead, the FPR1-related FPR2 senses PSMs efficiently and is crucial for leukocyte recruitment in infection. Which structural features distinguish FPR1 from FPR2 ligands has remained elusive. To analyze which peptide properties may govern the capacities of ß-type PSMs to activate FPRs, full-length and truncated variants of such peptides from Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus lugdunensis were synthesized. FPR2 activation was observed even for short N- or C-terminal ß-type PSM variants once they were longer than 18 aa, and this activity increased with length. In contrast, the shortest tested peptides were potent FPR1 agonists, and this property declined with increasing peptide length. Whereas full-length ß-type PSMs formed α-helices and exhibited no FPR1-specific activity, the truncated peptides had less-stable secondary structures, were weak agonists for FPR1, and required N-terminal formyl-methionine residues to be FPR2 agonists. Together, these data suggest that FPR1 and FPR2 have opposed ligand preferences. Short, flexible PSM structures may favor FPR1 but not FPR2 activation, whereas longer peptides with α-helical, amphipathic properties are strong FPR2 but only weak FPR1 agonists. These findings should help to unravel the ligand specificities of 2 critical human PRRs, and they may be important for new, anti-infective and anti-inflammatory strategies.
Assuntos
Proteínas de Bactérias/química , Toxinas Bacterianas/química , Proteínas Hemolisinas/química , Neutrófilos/efeitos dos fármacos , Receptores de Formil Peptídeo/efeitos dos fármacos , Receptores de Lipoxinas/efeitos dos fármacos , Sequência de Aminoácidos , Proteínas de Bactérias/síntese química , Proteínas de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Antígeno CD11b/biossíntese , Antígeno CD11b/genética , Sinalização do Cálcio/efeitos dos fármacos , Quimiotaxia de Leucócito/efeitos dos fármacos , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Células HL-60 , Proteínas Hemolisinas/síntese química , Proteínas Hemolisinas/farmacologia , Humanos , Interleucina-8/biossíntese , Interleucina-8/genética , Dados de Sequência Molecular , N-Formilmetionina/química , Neutrófilos/metabolismo , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Staphylococcus aureus/química , Staphylococcus epidermidis/química , Staphylococcus lugdunensis/química , Relação Estrutura-AtividadeRESUMO
Virulence of emerging community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) and other highly pathogenic S. aureus strains depends on their production of phenol-soluble modulin (PSM) peptide toxins, which combine the capacities to attract and lyse neutrophils. The molecular basis of PSM-stimulated neutrophil recruitment has remained unclear. Here, we demonstrate that the human formyl peptide receptor 2 (FPR2/ALX), which has previously been implicated in control of endogenous inflammatory processes, senses PSMs at nanomolar concentrations and initiates proinflammatory neutrophil responses to CA-MRSA. Specific blocking of FPR2/ALX or deletion of PSM genes in CA-MRSA severely diminished neutrophil detection of CA-MRSA. Furthermore, a specific inhibitor of FPR2/ALX and of its functional mouse counterpart blocked PSM-mediated leukocyte infiltration in vivo in a mouse model. Thus, the innate immune system uses a distinct FPR2/ALX-dependent mechanism to specifically sense bacterial peptide toxins and detect highly virulent bacterial pathogens. FPR2/ALX represents an attractive target for new anti-infective or anti-inflammatory strategies.