Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Parkinsonism Relat Disord ; 116: 105847, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37844348

RESUMO

INTRODUCTION: Progressive Supranuclear Palsy (PSP) is a neurodegenerative tauopathy and, to date, the pathophysiological mechanisms in PSP that lead to Tau hyperphosphorylation and neurodegeneration are not clear. In some brain areas, Tau pathology in glial cells appears to precede Tau aggregation in neurons. The development of a model using astrocyte cell lines derived from patients has the potential to identify molecules and pathways that contribute to early events of neurodegeneration. We developed a model of induced pluripotent stem cells (iPSC)-derived astrocytes to investigate the pathophysiology of PSP, particularly early events that might contribute to Tau hyperphosphorylation, applying omics approach to detect differentially expressed genes, metabolites, and proteins, including those from the secretome. METHODS: Skin fibroblasts from PSP patients (without MAPT mutations) and controls were reprogrammed to iPSCs, further differentiated into neuroprogenitor cells (NPCs) and astrocytes. In the 5th passage, astrocytes were harvested for total RNA sequencing. Intracellular and secreted proteins were processed for proteomics experiments. Metabolomics profiling was obtained from supernatants only. RESULTS: We identified hundreds of differentially expressed genes. The main networks were related to cell cycle re-activation in PSP. Several proteins were found exclusively secreted by the PSP group. The cellular processes related to the cell cycle and mitotic proteins, TriC/CCT pathway, and redox signaling were enriched in the secretome of PSP. Moreover, we found distinct sets of metabolites between PSP and controls. CONCLUSION: Our iPSC-derived astrocyte model can provide distinct molecular signatures for PSP patients and it is useful to elucidate the initial stages of PSP pathogenesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Paralisia Supranuclear Progressiva/diagnóstico , Astrócitos/metabolismo , Proteínas tau/genética , Tauopatias/patologia , Neurônios/metabolismo
2.
Photochem Photobiol ; 96(3): 658-667, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31742700

RESUMO

Photodynamic therapy (PDT) appears as a promising alternative in the treatment of breast cancer since it can be highly effective in curing cancer while preserving normal tissue. However, predicting outcomes in PDT still constitutes a great challenge. One of the parameters that are usually empirically determined is the rate of photon flux delivered to the tissue (light fluence rate). In the present study, we intended to understand why monolayers of human cells derived from mammary adenocarcinomas (MDA-MB-231 and MCF-7) respond quite differently to fluence rates (cells were irradiated either for 6 or for 16 min) at a fixed light dose (4.5 J cm-2 ) delivered with an array of LEDs in a typical methylene blue PDT protocol. While death rates of MDA-MB-231 cells were insensitive to the fluence rate, MCF-7 cells showed a quite impressive (three times) decrease in cell death levels in the shorter irradiation protocol. Independent on cell type cell death was invariably correlated with the depletion of reduced glutathione intracellular levels and consequently with widespread redox misbalance. Our data show the potential to optimize fluence rates to provide exhaustion of the cell antioxidant responses in order to circumvent therapy resistance of breast tumors.


Assuntos
Neoplasias da Mama/patologia , Glutationa/metabolismo , Azul de Metileno/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Estresse Oxidativo
3.
Int Immunopharmacol ; 39: 57-62, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27424079

RESUMO

OBJECTIVE: The interaction between nitric oxide (NO) and hydrogen sulfide (H2S) in the airways could have significant implications for the pathogenesis and therapeutic effects of both on lung diseases. In this study we investigated whether the beneficial effects of H2S on asthma could be comparable to that inhibition of inducible NO synthase (iNOS). METHODS: Female BALB/C mice sensitized with ovalbumin (OVA) received either the H2S donor sodium hydrosulfide (NaHS, 14µmol/kg) or the iNOS inhibitor 1400W (1mg/kg), 30min before each OVA challenge during six days. On the first, second and sixth days, the leucocyte infiltration in lung parenchyma and bronchoalveolar lavage was evaluated. The aconitase activity (a sensor of O2 formation) and lipid peroxidation, as well as levels of reduced glutathione (GSH) and oxidized glutathione (GSSG) were determined in the lung tissues. RESULTS: OVA-challenge caused a significant and time-dependent increase in the eosinophil number in the airways, which was accompanied by a significant decrease of aconitase activity and GSH/GSSG ratio along with enhanced lipid peroxidation in the lungs. Treatment with NaHS or 1400W significantly attenuated the airways eosinophilia that was paralleled by an increase in aconitase activity and decrease of lipid peroxidation. NaHS or 1400W treatments also reversed the decreased GSH/GSSG ratio seen after OVA-challenge. CONCLUSIONS: The present study shows for the first time that the increased GSH/GSSG ratio caused by either H2S supplementation or iNOS-inhibition is a potential mechanism protecting airways against oxidative stress and inflammatory lung diseases.


Assuntos
Asma/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Glutationa/metabolismo , Sulfeto de Hidrogênio/uso terapêutico , Pulmão/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Pneumonia/tratamento farmacológico , Aconitato Hidratase/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/imunologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos
4.
Oxid Med Cell Longev ; 2015: 940627, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26583063

RESUMO

In addition to be the cell's powerhouse, mitochondria also contain a cell death machinery that includes highly regulated processes such as the membrane permeability transition pore (PTP) and reactive oxygen species (ROS) production. In this context, the results presented here provide evidence that liver mitochondria isolated from Gracilinanus microtarsus, a small and short life span (one year) marsupial, when compared to mice, are much more susceptible to PTP opening in association with a poor NADPH dependent antioxidant capacity. Liver mitochondria isolated from the marsupial are well coupled and take up Ca(2+) but exhibited a much lower Ca(2+) retention capacity than mouse mitochondria. Although the known PTP inhibitors cyclosporin A, ADP, and ATP significantly increased the marsupial mitochondria capacity to retain Ca(2+), their effects were much larger in mice than in marsupial mitochondria. Both fluorescence and HPLC analysis of mitochondrial nicotinamide nucleotides showed that both content and state of reduction (mainly of NADPH) were lower in the marsupial mitochondria than in mice mitochondria despite the similarity in the activity of the glutathione peroxidase/reductase system. Overall, these data suggest that PTP opening is an important event in processes of Ca(2+) signalling to cell death mediated by mitochondrial redox imbalance in G. microtarsus.


Assuntos
Cálcio/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , NAD/química , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Ciclosporina/farmacologia , Glutationa Peroxidase/metabolismo , Íons/química , Longevidade , Marsupiais/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias Hepáticas/enzimologia , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Poro de Transição de Permeabilidade Mitocondrial , NAD/análise , NADP Trans-Hidrogenases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Free Radic Biol Med ; 63: 446-56, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23747984

RESUMO

NADPH is the reducing agent for mitochondrial H2O2 detoxification systems. Nicotinamide nucleotide transhydrogenase (NNT), an integral protein located in the inner mitochondrial membrane, contributes to an elevated mitochondrial NADPH/NADP(+) ratio. This enzyme catalyzes the reduction of NADP(+) at the expense of NADH oxidation and H(+) reentry to the mitochondrial matrix. A spontaneous Nnt mutation in C57BL/6J (B6J-Nnt(MUT)) mice arose nearly 3 decades ago but was only discovered in 2005. Here, we characterize the consequences of the Nnt mutation on the mitochondrial redox functions of B6J-Nnt(MUT) mice. Liver mitochondria were isolated both from an Nnt wild-type C57BL/6 substrain (B6JUnib-Nnt(W)) and from B6J-Nnt(MUT) mice. The functional evaluation of respiring mitochondria revealed major redox alterations in B6J-Nnt(MUT) mice, including an absence of transhydrogenation between NAD and NADP, higher rates of H2O2 release, the spontaneous oxidation of NADPH, the poor ability to metabolize organic peroxide, and a higher susceptibility to undergo Ca(2+)-induced mitochondrial permeability transition. In addition, the mitochondria of B6J-Nnt(MUT) mice exhibited increased oxidized/reduced glutathione ratios as compared to B6JUnib-Nnt(W) mice. Nonetheless, the maximal activity of NADP-dependent isocitrate dehydrogenase, which is a coexisting source of mitochondrial NADPH, was similar between both groups. Altogether, our data suggest that NNT functions as a high-capacity source of mitochondrial NADPH and that its functional loss due to the Nnt mutation results in mitochondrial redox abnormalities, most notably a poor ability to sustain NADP and glutathione in their reduced states. In light of these alterations, the potential drawbacks of using B6J-Nnt(MUT) mice in biomedical research should not be overlooked.


Assuntos
Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/metabolismo , NADP Trans-Hidrogenases/metabolismo , NADP/metabolismo , Animais , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Camundongos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/patologia , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/enzimologia , Mutação , NADP Trans-Hidrogenases/genética , Oxirredução/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA