Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Am Chem Soc ; 142(2): 847-856, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31825213

RESUMO

Making new van der Waals materials with electronic or magnetic functionality is a chemical design challenge for the development of two-dimensional nanoelectronic and energy conversion devices. We present the synthesis and properties of the van der Waals material Bi4O4SeCl2, which is a 1:1 superlattice of the structural units present in the van der Waals insulator BiOCl and the three-dimensionally connected semiconductor Bi2O2Se. The presence of three anions gives the new structure both the bridging selenide anion sites that connect pairs of Bi2O2 layers in Bi2O2Se and the terminal chloride sites that produce the van der Waals gap in BiOCl. This retains the electronic properties of Bi2O2Se while reducing the dimensionality of the bonding network connecting the Bi2O2Se units to allow exfoliation of Bi4O4SeCl2 to 1.4 nm height. The superlattice structure is stabilized by the configurational entropy of anion disorder across the terminal and bridging sites. The reduction in connective dimensionality with retention of electronic functionality stems from the expanded anion compositional diversity.

2.
Angew Chem Int Ed Engl ; 56(32): 9391-9395, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28580700

RESUMO

The formation of two-dimensional (2D) oriented porous organic cage crystals (consisting of imine-based tetrahedral molecules) on various substrates (such as silicon wafers and glass) by solution-processing is reported. Insight into the crystallinity, preferred orientation, and cage crystal growth was obtained by experimental and computational techniques. For the first time, structural defects in porous molecular materials were observed directly and the defect concentration could be correlated with crystal growth rate. These oriented crystals suggest potential for future applications, such as solution-processable molecular crystalline 2D membranes for molecular separations.

3.
J Am Chem Soc ; 138(18): 5837-47, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27097295

RESUMO

Recent synthesis of covalent organic assemblies at surfaces has opened the promise of producing robust nanostructures for functional interfaces. To uncover how this new chemistry works at surfaces and understand the underlying mechanisms that control bond-breaking and bond-making processes at specific positions of the participating molecules, we study here the coupling reaction of tetra(mesityl)porphyrin molecules, which creates covalently connected networks on the Cu(110) surface by utilizing the 4-methyl groups as unique connection points. Using scanning tunneling microscopy (STM), state-of-the-art density functional theory (DFT), and Nudged Elastic Band (NEB) calculations, we show that the unique directionality of the covalent bonding is found to stem from a chain of highly selective C-H activation and dehydrogenation processes, followed by specific intermolecular C-C coupling reactions that are facilitated by the surface, by steric constraints, and by anisotropic molecular diffusion. These insights provide the first steps toward developing synthetic rules for complex two-dimensional covalent organic chemistry that can be enacted directly at a surface to deliver specific macromolecular structures designed for specific functions.

4.
Angew Chem Int Ed Engl ; 54(24): 7101-5, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25924938

RESUMO

An on-surface bimolecular system is described, comprising a simple divalent bis(imidazolyl) molecule that is shown to "walk" at room temperature via an inchworm mechanism along a specific pathway terminated at each end by oligomeric "fences" constructed on a monocrystalline copper surface. Scanning tunneling microscopy shows that the motion of the walker occurs along the [110] direction of the Cu surface with remarkably high selectivity and is effectively confined by the orthogonal construction of covalent porphyrin oligomers along the [001] surface direction, which serve as barriers. Density functional theory shows that the mobile molecule walks by attaching and detaching the nitrogen atoms in its imidazolyl "legs" to and from the protruding close-packed rows of the metal surface and that it can transit between two energetically equivalent extended and contracted conformations by overcoming a small energy barrier.


Assuntos
Porfirinas/química , Cobre/química , Microscopia de Tunelamento , Nanoestruturas/química , Propriedades de Superfície
5.
ACS Appl Mater Interfaces ; 16(24): 31843-31850, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38841859

RESUMO

Liquid crystal (LC) biosensors have received significant attention for their potential applications for point-of-care devices due to their sensitivity, low cost, and easy read-out. They have been employed to detect a wide range of important biological molecules. However, detecting the function of membrane proteins has been extremely challenging due to the difficulty of integrating membrane proteins, lipid membranes, and LCs into one system. In this study, we addressed this challenge by monitoring the proton-pumping function of bacteriorhodopsin (bR) using a pH-sensitive LC thin film biosensor. To achieve this, we deposited purple membranes (PMs) containing a 2D crystal form of bRs onto an LC-aqueous interface. Under light, the PM patches changed the local pH at the LC-aqueous interface, causing a color change in the LC thin film that is observable through a polarizing microscope with crossed polarizers. These findings open up new opportunities to study the biofunctions of membrane proteins and their induced local environmental changes in a solution using LC biosensors.


Assuntos
Bacteriorodopsinas , Técnicas Biossensoriais , Cristais Líquidos , Técnicas Biossensoriais/métodos , Cristais Líquidos/química , Concentração de Íons de Hidrogênio , Bacteriorodopsinas/química , Proteínas de Membrana/química , Membrana Purpúrea/química
6.
ACS Appl Bio Mater ; 7(1): 131-143, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38079569

RESUMO

Smart materials with controlled stimuli-responsive functions are at the forefront of technological development. In this work, we present a generic strategy that combines simple components, physicochemical responses, and easy fabrication methods to achieve a dual stimuli-responsive system capable of location-specific antimicrobial cargo delivery. The encapsulated system is fabricated by combining a biocompatible inert polymeric matrix of poly(dimethylsiloxane) (PDMS) and a bioactive cargo of saturated fatty acids. We demonstrate the effectiveness of our approach to deliver antimicrobial activity for the model bacteria Escherichia coli. The system responds to two control variables, temperature and pH, delivering two levels of antimicrobial response under distinct combinations of stimuli: one response toward the planktonic media and another response directly at the surface for sessile bacteria. Spatially resolved Raman spectroscopy alongside thermal and structural material analysis reveals that the system not only exhibits ON/OFF states but can also control relocation and targeting of the active cargo toward either the surface or the liquid media, leading to different ON/OFF states for the planktonic and sessile bacteria. The approach proposed herein is technologically simple and scalable, facing low regulatory barriers within the food and healthcare sectors by using approved components and relying on fundamental chemical processes. Our results also provide a proof-of-concept platform for the design and easy fabrication of delivery systems capable of operating as Boolean logic gates, delivering different responses under different environmental conditions.


Assuntos
Produtos Biológicos , Temperatura , Polímeros/química , Escherichia coli , Concentração de Íons de Hidrogênio
11.
NPJ Biofilms Microbiomes ; 8(1): 42, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618743

RESUMO

The increasing awareness of the significance of microbial biofilms across different sectors is continuously revealing new areas of opportunity in the development of innovative technologies in translational research, which can address their detrimental effects, as well as exploit their benefits. Due to the extent of sectors affected by microbial biofilms, capturing their real financial impact has been difficult. This perspective highlights this impact globally, based on figures identified in a recent in-depth market analysis commissioned by the UK's National Biofilms Innovation Centre (NBIC). The outputs from this analysis and the workshops organised by NBIC on its research strategic themes have revealed the breath of opportunities for translational research in microbial biofilms. However, there are still many outstanding scientific and technological challenges which must be addressed in order to catalyse these opportunities. This perspective discusses some of these challenges.


Assuntos
Biofilmes
12.
Nanomaterials (Basel) ; 12(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215010

RESUMO

Surface engineering is a promising strategy to limit or prevent the formation of biofilms. The use of topographic cues to influence early stages of biofilm formationn has been explored, yet many fundamental questions remain unanswered. In this work, we develop a topological model supported by direct experimental evidence, which is able to explain the effect of local topography on the fate of bacterial micro-colonies of Staphylococcus spp. We demonstrate how topological memory at the single-cell level, characteristic of this genus of Gram-positive bacteria, can be exploited to influence the architecture of micro-colonies and the average number of surface anchoring points over nano-patterned surfaces, formed by vertically aligned silicon nanowire arrays that can be reliably produced on a commercial scale, providing an excellent platform to investigate the effect of topography on the early stages of Staphylococcus spp. colonisation. The surfaces are not intrinsically antimicrobial, yet they delivered a topography-based bacteriostatic effect and a significant disruption of the local morphology of micro-colonies at the surface. The insights from this work could open new avenues towards designed technologies for biofilm engineering and prevention, based on surface topography.

13.
J Am Chem Soc ; 133(40): 15992-6000, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21882841

RESUMO

Chirality can be bestowed upon a surface by the adsorption of molecules and is usually discussed in terms of the molecular handedness. However, the adsorption process often leads to a new manifestation of chirality in the form of the adsorption footprint, which can also be chiral and generate mirror-images in 2-D. Therefore, in describing the chirality of the interface, one must consider both the handedness and the adsorption 'footedness' of the system. Specifically, the creation of a truly homochiral surface must ensure that a single chirality is expressed for each aspect, and requires not only the control of molecule handedness but also direct control over footedness. Here, we demonstrate the ability to engineer homochiral footedness by a structural modification of enantiopure (S)-proline, which normally creates a (4 × 2) organization on a Cu(110) surface with heterochiral footedness. This modification of proline via the addition of a double bond within the pyrrolidine ring, yielding 3-pyrroline-2-carboxylic acid (PCA), is sufficient to drive the footprints of the entire (4 × 2) assembly from heterochiral to homochiral, leading to the creation of a truly homochiral interface The effects of modifications upon the footprint arrangements were characterized at the single-molecule level by scanning tunnelling microscopy, reflection absorption infrared spectroscopy and periodic density functional theory calculations. The control of adsorption footprints is not only pivotal to tailoring chirality at surfaces but also plays a key role in dictating the organization, the outward facing functionalities and the response of the organic-inorganic interface.

14.
J Am Chem Soc ; 133(31): 12031-9, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21707113

RESUMO

The direct coupling of complex, functional organic molecules at a surface is one of the outstanding challenges in the road map to future molecular devices. Equally demanding is to meet this challenge without recourse to additional functionalization of the molecular building blocks and via clean surface reactions that leave no surface contamination. Here, we demonstrate the directional coupling of unfunctionalized porphyrin molecules--large aromatic multifunctional building blocks--on a single crystal copper surface, which generates highly oriented one-dimensional organometallic macromolecular nanostructures (wires) in a reaction which generates gaseous hydrogen as the only byproduct. In situ scanning tunneling microscopy and temperature programmed desorption, supported by theoretical modeling, reveal that the process is driven by C-H bond scission and the incorporation of copper atoms in between the organic components to form a very stable organocopper oligomer comprising organometallic edge-to-edge porphyrin-Cu-porphyrin connections on the surface that are unprecedented in solution chemistry. The hydrogen generated during the reaction leaves the surface and, therefore, produces no surface contamination. A remarkable feature of the wires is their stability at high temperatures (up to 670 K) and their preference for 1D growth along a prescribed crystallographic direction of the surface. The on-surface formation of directional organometallic wires that link highly functional porphyrin cores via direct C-Cu-C bonds in a single-step synthesis is a new development in surface-based molecular systems and provides a versatile approach to create functional organic nanostructures at surfaces.

15.
Phys Rev Lett ; 106(4): 046103, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21405340

RESUMO

Understanding the composition and stability of mixed water-hydroxyl layers is a key step in describing wetting and how surfaces respond to redox processes. Here we show that, instead of forming a complete hydrogen bonding network, structures containing an excess of water over hydroxyl are stabilized on Cu(110) by forming a distorted hexagonal network of water-hydroxyl trimers containing Bjerrum defects. This arrangement maximizes the number of strong bonds formed by water donation to OH and provides uncoordinated OH groups able to hydrogen bond multilayer water and nucleate growth.

16.
Chemphyschem ; 12(8): 1474-80, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21523877

RESUMO

The expression of chirality at surfaces, arising from the adsorption of chiral molecules, is usually discussed in terms of the molecular handedness. However, the adsorption process often leads to a new manifestation of chirality in the form of the adsorption footprint. Therefore, in order to fully define the chirality of the interface we propose that both the handedness and the footedness of the system must be considered. To illustrate this point, we describe the ordering behavior of the molecules tartaric acid, succinic acid, proline, and 3-pyrroline-2-carboxylic (PCA) on a Cu(110) surface using deconvolution maps separating the arrangement of enantiomers, conformers, adsorption footprints and rotamers within an organized assembly. Tartaric and succinic acid mimic the behavior of a conventional 3D conglomerate and racemic compound in terms of both the handedness and footedness, respectively. However, racemic PCA and proline, while expressing a random solid solution of enantiomers and conformers, both display unexpected degrees of order when adsorbate footprint and orientation are considered.


Assuntos
Prolina/análogos & derivados , Prolina/química , Adsorção , Cobre/química , Estereoisomerismo , Ácido Succínico/química , Propriedades de Superfície , Tartaratos/química
17.
Nanomaterials (Basel) ; 11(6)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208469

RESUMO

The generation of hydrogen from water using light is currently one of the most promising alternative energy sources for humankind but faces significant barriers for large-scale applications due to the low efficiency of existing photo-catalysts. In this work we propose a new route to fabricate nano-hybrid materials able to deliver enhanced photo-catalytic hydrogen evolution, combining within the same nanostructure, a plasmonic antenna nanoparticle and semiconductor quantum dots (QDs). For each stage of our fabrication process we probed the chemical composition of the materials with nanometric spatial resolution, allowing us to demonstrate that the final product is composed of a silver nanoparticle (AgNP) plasmonic core, surrounded by satellite Pt decorated CdS QDs (CdS@Pt), separated by a spacer layer of SiO2 with well-controlled thickness. This new type of photoactive nanomaterial is capable of generating hydrogen when irradiated with visible light, displaying efficiencies 300% higher than the constituting photo-active components. This work may open new avenues for the development of cleaner and more efficient energy sources based on photo-activated hydrogen generation.

18.
NPJ Biofilms Microbiomes ; 7(1): 51, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155220

RESUMO

In this work, we introduce a one-step strategy that is suitable for continuous flow manufacturing of antimicrobial PDMS materials. The process is based on the intrinsic capacity of PDMS to react to certain organic solvents, which enables the incorporation of antimicrobial actives such as salicylic acid (SA), which has been approved for use in humans within pharmaceutical products. By combining different spectroscopic and imaging techniques, we show that the surface properties of PDMS remain unaffected while high doses of the SA are loaded inside the PDMS matrix. The SA can be subsequently released under physiological conditions, delivering a strong antibacterial activity. Furthermore, encapsulation of SA inside the PDMS matrix ensured a diffusion-controlled release that was tracked by spatially resolved Raman spectroscopy, Attenuated Total Reflectance IR (ATR-IR), and UV-Vis spectroscopy. The biological activity of the new material was evaluated directly at the surface and in the planktonic state against model pathogenic bacteria, combining confocal laser scanning microscopy, electron microscopy, and cell viability assays. The results showed complete planktonic inhibition for clinically relevant strains of Staphylococcus aureus and Escherichia coli, and a reduction of up to 4 orders of magnitude for viable sessile cells, demonstrating the efficacy of these surfaces in preventing the initial stages of biofilm formation. Our approach adds a new option to existing strategies for the antimicrobial functionalisation of a wide range of products such as catheters, wound dressings and in-dwelling medical devices based on PDMS.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Dimetilpolisiloxanos , Nylons , Ácido Salicílico , Silicones , Antibacterianos/síntese química , Técnicas de Química Sintética , Dimetilpolisiloxanos/química , Liberação Controlada de Fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nylons/química , Ácido Salicílico/química , Silicones/química , Análise Espectral , Propriedades de Superfície
19.
Nanoscale Adv ; 3(11): 3136-3144, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-34124578

RESUMO

Selective unidirectional transport of barium ions between droplets in a water-in-chloroform emulsion is demonstrated. Gold nanoparticles (GNPs) modified with a thiolated crown ether act as barium ion complexing shuttles that carry the ions from one population of droplets (source) to another (target). This process is driven by a steep barium ion concentration gradient between source and target droplets. The concentration of barium ions in the target droplets is kept low at all times by the precipitation of insoluble barium sulfate. A potential role of electrostatically coupled secondary processes that maintain the electroneutrality of the emulsion droplets is discussed. Charging of the GNP metal cores by electron transfer in the presence of the Fe(ii)/Fe(iii) redox couple appears to affect the partitioning of the GNPs between the water droplets and the chloroform phase. Processes have been monitored and studied by optical microscopy, Raman spectroscopy, cryogenic scanning electron microscopy (cryo-SEM) and zeta potential. The shuttle action of the GNPs has further been demonstrated electrochemically in a model system.

20.
Nat Mater ; 8(5): 427-31, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19270685

RESUMO

Heterogeneous ice nucleation has a key role in fields as diverse as atmospheric chemistry and biology. Ice nucleation on metal surfaces affords an opportunity to watch this process unfold at the molecular scale on a well-defined, planar interface. A common feature of structural models for such films is that they are built from hexagonal arrangements of molecules. Here we show, through a combination of scanning tunnelling microscopy, infrared spectroscopy and density-functional theory, that about 1-nm-wide ice chains that nucleate on Cu(110) are not built from hexagons, but instead are built from a face-sharing arrangement of water pentagons. The pentagon structure is favoured over others because it maximizes the water-metal bonding while maintaining a strong hydrogen-bonding network. It reveals an unanticipated structural adaptability of water-ice films, demonstrating that the presence of the substrate can be sufficient to favour non-hexagonal structural units.


Assuntos
Cobre/química , Gelo , Microscopia de Tunelamento , Estrutura Molecular , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA