Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Environ Res ; 197: 111073, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33774013

RESUMO

Waste water remediation is the ongoing hot research topic that can reduce the water scarcity all over the world. By reducing the pollutants in the waste water drawn from industries and other sources will be more useful for domestic purposes. To reduce the rate of pollutants in water may also help in improving the aquatic environment and decreases other side effects. Efficient and cost effective catalysts were in search for both dye degradation and water remediation treatment applications. NiMoO4 nanorods were prepared by employing co-precipitation method with different stirrer time (2 h, 4 h and 6 h). The formation of NiMoO4 was substantiated employing X-ray diffractometer analysis (XRD). Vibrational and rotational property of the samples was analyzed by FT-IR spectra and Raman spectra. The optical property was further confirmed by UV-vis spectral studies. Morphological analysis studies revealed growth of nanorods with 6 h stirrer time. The photocatalytic behavior of the obtained product was carried out under both UV light (364 nm) and visible light irradiation. The samples subjected to visible light environment showed better efficiency on degrading the methylene blue (MB) dye. The efficiency obtained under UV irradiation were 20%, 31%, 33%, 41% and efficiency obtained in visible light irradiation were 27%, 42%, 46%, 55% with respect to bare methylene blue (MB), MB with NiMoO4 (2 h), MB with NiMoO4 (4 h), MB with NiMoO4 (6 h) catalyst added. NiMoO4 sample with 6 h stirrer time and fine nanorods growth will be the good candidate for future use.


Assuntos
Nanotubos , Raios Ultravioleta , Catálise , Luz , Azul de Metileno , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Phys Chem Chem Phys ; 19(6): 4396-4404, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28119965

RESUMO

The synthesis of nanoparticles has great control over the structural and functional characteristics of materials. In this study, CeO2 and Ni-CeO2 spherical nanoparticles were prepared using a microwave-assisted method. The prepared nanoparticles were characterized via thermogravimetry, X-ray diffraction (XRD), Raman, FTIR, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometry (VSM) and cyclic voltammetry (CV). The pure CeO2 sample exhibited a flake-like morphology, whereas Ni-doped CeO2 showed spherical morphology with uniform shapes. Spherical morphologies for the Ni-doped samples were further confirmed via TEM micrographs. Thermogravimetric analyses revealed that decomposition varies with Ni-doping in CeO2. XRD revealed that the peak shifts towards lower angles for the Ni-doped samples. Furthermore, a diamagnetic to ferromagnetic transition was observed in Ni-doped CeO2. The ferromagnetic property was attributed to the introduction of oxygen vacancies in the CeO2 lattice upon doping with Ni, which were confirmed by Raman and XPS. The pseudo-capacitive properties of pure and Ni-doped CeO2 samples were evaluated via cyclic voltammetry and galvanostatic charge-discharge studies, wherein 1 M KOH was used as the electrolyte. The specific capacitances were 235, 351, 382, 577 and 417 F g-1 corresponding to the pure 1%, 3%, 5% and 7% of Ni doped samples at the current density of 2 A g-1, respectively. The 5% Ni-doped sample showed an excellent cyclic stability and maintained 94% of its maximum specific capacitance after 1000 cycles.

3.
Nanomaterials (Basel) ; 14(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334551

RESUMO

In this study, the pristine MgO, MgO/CNT and Ni-MgO/CNT nanocomposites were processed using the impregnation and chemical vapor deposition methods and analyzed for hydrogen evolution reaction (HER) using the electrochemical water splitting process. Furthermore, the effect of nickel on the deposited carbon was systematically elaborated in this study. The highly conductive carbon nanotubes (CNTs) deposited on the metal surface of the Ni-MgO nanocomposite heterostructure provides a robust stability and superior electrocatalytic activity. The optimized Ni-MgO/CNT nanocomposite exhibited hierarchical, helical-shaped carbon nanotubes adorned on the surface of the Ni-MgO flakes, forming a hybrid metal-carbon network structure. The catalytic HER was carried out in a 1M alkaline KOH electrolyte, and the optimized Ni-MgO/CNT nanocomposite achieved a low (117 mV) overpotential value (ɳ) at 10 mA cm-2 and needed a low (116 mV/dec) Tafel value, denotes the Volmer-Heyrovsky pathway. Also, the high electrochemical active surface area (ECSA) value of the Ni-MgO/CNT nanocomposite attained 515 cm2, which is favorable for the generation of abundant electroactive species, and the prepared electrocatalyst durability was also performed using a chronoamperometry test for the prolonged duration of 20 h at 10 mA cm-2 and exhibited good stability, with a 72% retention. Hence, the obtained results demonstrate that the optimized Ni-MgO/CNT nanocomposite is a highly active and cost-effective electrocatalyst for hydrogen energy production.

4.
Environ Sci Pollut Res Int ; 30(28): 71628-71636, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34156624

RESUMO

Bi2S3, 5 ml EG-Bi2S3, and 10 ml EG-Bi2S3 were synthesized by employing solvothermal route. X-ray diffraction, UV-vis absorption, photoluminescence, Raman, scanning electron microscopic studies confirmed the structural, optical, morphological behaviors. The XRD pattern of Bi2S3, 5 ml EG-Bi2S3, and 10 ml EG-Bi2S3 was correlated well with JCPDS # 65-2435. The crystallite size was found to be 57, 49, and 40 nm. The photoluminescence spectra showed semiconducting property of prepared Bi2S3, 5 ml EG-Bi2S3, and 10 ml EG-Bi2S3. The absorption spectra of Bi2S3, 5 ml EG-Bi2S3, and 10 ml EG-Bi2S3 nanorods were well matched with the spectra of a previous report. The bandgap values of Bi2S3, 5 ml EG-Bi2S3, and 10 ml EG-Bi2S3 were calculated to be 1.56, 1.45, and 1.3 eV in reducing order. The morphology of Bi2S3, 5 ml EG-Bi2S3, and 10 ml EG-Bi2S3 samples showed the development of nanorods. The 10 ml EG-Bi2S3 sample showed better development of nanorods with the addition of ethylene glycol. The agglomeration was considerably reduced with the mixing of solvent. Bi2S3, 5 ml EG-Bi2S3, and 10 ml EG-Bi2S3 catalysts were added to the methylene blue dye solution and its photocatalytic properties were investigated by reducing toxic pollutants under light. The 10 ml EG-Bi2S3 sample with neutral pH and 0.1 g of catalyst was added and investigated which showed 86% of efficiency towards dye degradation. The narrow bandgap, defined morphology of 10 ml EG-Bi2S3, made a positive result towards efficient photocatalytic activity.


Assuntos
Luz , Nanotubos , Nanotubos/química , Catálise , Concentração de Íons de Hidrogênio , Difração de Raios X
5.
ACS Omega ; 6(14): 9471-9481, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33869927

RESUMO

Electrochemical energy storage is a current research area to address energy challenges of the modern world. The Cu2FeSnS4/PVP/rGO-decorated nanocomposite using PVP as the surface ligand was explored in a simple one-step solvothermal route, for studying their electrochemical behavior by designing asymmetric hybrid supercapacitor devices. The full cell three-electrode arrangements delivered 748 C/g (62.36 mA h/g) at 5 mV/s employing CV and 328 F/g (45.55 mA h/g) at 0.5 A/g employing GCD for the Cu2FeSnS4/PVP/rGO electrode. The half-cell two-electrode device can endow with 73 W h/kg and 749 W/kg at 1 A/g energy and power density. Furthermore, two Cu2FeSnS4/PVP/rGO//AC asymmetric devices connected in series for illuminating a commercial red LED more than 1 min were explored. This work focuses the potential use of transition-metal chalcogenide composite and introduces a new material for designing high-performance supercapacitor applications.

6.
ACS Omega ; 5(24): 14702-14710, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32596607

RESUMO

Comparative investigation of the electrochemical oxygen evolution reaction (OER) activity for clean energy production was performed by fabricating three different electrodes, namely, NiSe2, CoSe2, and CoNiSe2, synthesized by hydrothermal treatment. Cubic, orthorhombic, and hexagonal structures of NiSe2, CoSe2, and CoNiSe2 were confirmed by X-ray diffraction (XRD) and also by other characterization studies. Perfect nanospheres, combination of distorted nanospheres and tiny nanoparticles, and sharp-edge nanostructures of NiSe2, CoSe2, and CoNiSe2 were explored by surface morphological images. Higher OER activity of the binary CoNiSe2 electrode was achieved as 188 mA/g current density with a comparatively low overpotential of 234 mV along with higher conductivity and low charge transfer resistance when compared to its unary NiSe2 and CoSe2 electrodes. A low Tafel slope value of 82 mV/dec was also achieved for the same binary CoNiSe2 electrode in a half-cell configuration. The overall 100% retention achieved for all of the fabricated electrodes in a stability test of OER activity suggested that the excellent optimum condition was obtained during the synthesis. This could definitely be a revelation in the synthesis of novel binary combinations of affordable metal selenides for clean energy production.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 211: 373-382, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30593947

RESUMO

Magnesium doped Zinc oxide nanoparticles (Mg:ZnO NPs) were synthesized by co-precipitation method. The synthesized Mg:ZnO NPs exhibited hexagonal wurtzite structure, which was confirmed by X-ray diffraction results. After structural confirmation of Mg doped ZnO NPs, base amino acids like l-Arginine and l-Histidine were separately incorporated with the Mg: ZnO NPs. l-Arginine added Mg:ZnO (Mg:ZnO:LA) and l-Histidine added Mg:ZnO (Mg:ZnO: LH) NPs retained the same wurtzite hexagonal structure and average crystallite sizes of Mg: ZnO:LA and Mg: ZnO:LH NPs were found to be 25 nm and 20 nm respectively. The sizes of Mg:ZnO:LH and Mg: ZnO: LA NPs decreased as compared to that of the Mg doped ZnO NPs. From the FT-IR spectra, the ZnO stretching frequencies were observed at 516, 517 and 518 cm-1 for Mg:ZnO, Mg:ZnO: LA and Mg: ZnO:LH NPs respectively. From the FESEM images, the morphologies of ZnO:Mg and ZnO:Mg:LA NPs were spherical and the Mg: ZnO: LH NPs formed nano-flakes structure. From the EDAX study, the amount of elements incorporated in the samples was determined. The photoluminescence measurements revealed the existence of zinc vacancies, oxygen vacancies and surface defects of the samples. Antibacterial activity of the amino acid added Mg doped ZnO NPs was studied against extended-spectrum beta-lactamases (ESBLs) producing Escherichia coli (E. coli).The Minimal Inhibitory Concentration (MIC) of the LH added ZnO:Mg NPs was found to be 1000 µg/ml for which the growth of E. coli completely inhibited. l-Histidine added Mg doped ZnO NPs showed the highest antibacterial activity as compared to that of the Mg:ZnO NPs and ZnO:Mg:LA NPs.


Assuntos
Antibacterianos/farmacologia , Arginina/química , Escherichia coli/efeitos dos fármacos , Histidina/química , Nanopartículas Metálicas/química , Antibacterianos/química , Precipitação Química , Escherichia coli/metabolismo , Medições Luminescentes , Magnésio/química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Óxido de Zinco/química , beta-Lactamases/metabolismo
8.
ACS Omega ; 4(3): 5241-5253, 2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459696

RESUMO

Polyvinylpyrrolidone (PVP)-assisted nanocatalyst preparation was succeeded by employing a controlled solvothermal route to produce efficient electrodes for electrochemical water-splitting applications. Bi2WO6 and FeWO4 nanocatalysts have been confirmed through the strong signature of (113) and (111) crystal planes, respectively. The binding natures of Bi-W-O and Fe-W-O have been thoroughly discussed by employing X-ray photoelectron spectroscopy which confirmed the formation of Bi2WO6 and FeWO4. The freestanding nanoplate array morphology of Bi2WO6 and the fine nanosphere particle morphology of FeWO4 nanocatalysts were revealed by scanning electron microscopy images. With these confirmations, the fabrication of durable, long-term electrodes for electrochemical water splitting has been subjected to efficient oxidation of water, confirmed by obtaining 2.79 and 1.96 mA/g for 0.5 g PVP-assisted Bi2WO6 and FeWO4 nanocatalysts, respectively. The water oxidation mechanism of both nanocatalysts has been revealed with the support of 24 h stability test over continuous water oxidation and faster charge transfer achieved by the smaller Tafel slope values of 75 and 78 mV/dec, respectively. Generally, these nanocatalysts are utilized for photocatalytic applications. The present study revealed the PVP-assisted synthesis to produce electrocatalytically active nanocatalysts and their electrochemical water-splitting mechanism which will offer a pathway for research interests with regard to the production of multifunctional nanocatalysts for both electro- and photocatalytic applications in the near future.

9.
ACS Omega ; 4(6): 10302-10310, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460123

RESUMO

Investigation on the formation mechanism of the ß-NiS@Ni(OH)2 nanocomposite electrode for electrochemical water splitting application was attempted with the use of the hydrothermal processing technique. Formation of single-phase ß-NiS, Ni(OH)2 and composite-phase ß-NiS@Ni(OH)2 has been thoroughly analyzed by X-ray diffractometer (XRD) spectra. Three different kinds of morphologies such as rock-like agglomerated nanoparticles, uniformly stacked nanogills, and uniform nanoplates for ß-NiS, Ni(OH)2, and ß-NiS@Ni(OH)2 materials, respectively, were confirmed by SEM images. The characteristic vibration modes of ß-NiS, Ni(OH)2, and ß-NiS@Ni(OH)2 nanocomposites were confirmed from Raman and Fourier transform infrared spectra. Near band edge emission and intrinsic vacancies present in the nanocomposites were retrieved by photoluminescence spectra. The optical band gaps of the synthesized nanocomposites were calculated as 2.1, 2.5, and 2.2 eV for ß-NiS, Ni(OH)2, and ß-NiS@Ni(OH)2 products, respectively. The high-performance electrochemical water splitting was achieved for the ß-NiS@Ni(OH)2 nanocomposite as 240 mA/g at 10 mV/s from a linear sweep voltammogram study. The faster charge mobile mechanism of the same electrode was confirmed by electrochemical impedance spectra and a Tafel slope value of 53 mV/dec. The 18 h of stability was achieved with 95% retention, which was also reported for the NiS@Ni(OH)2 nanocomposite for continuous electrochemical water splitting applications.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 101: 178-83, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23103458

RESUMO

New charge transfer molecular complex adducts of picric acid (C6H3N3O7) with triethylamine (C6H15N) and dimethylformamide (HCON(CH3)2) were synthesized successfully for the first time. Chemical composition and stoichiometry of the synthesized complex salts were verified by CHN elemental analysis. Solubility of the complex salts have been determined by gravimetric method and single crystals of two new salts were grown by low temperature solution growth technique. Crystal system, crystalline nature and cell parameters of the grown crystals were determined by single crystal X-ray diffraction (SXRD) and powder X-ray diffraction (PXRD) analyses. The formations of the charge-transfer complex, functional groups and the modes of vibrations have been confirmed by Fourier transform infrared (FTIR) spectroscopy. In order to know the linear and nonlinear optical suitability for device fabrication, UV-Vis (UV) spectral analysis and relative second harmonic generation (SHG) efficiency test were performed for the grown crystals.


Assuntos
Dimetilformamida/química , Etilaminas/química , Picratos/química , Sais/química , Cristalização , Cristalografia por Raios X , Dimetilformamida/síntese química , Etilaminas/síntese química , Picratos/síntese química , Sais/síntese química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
11.
J Mater Chem B ; 1(43): 5950-5962, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-32261062

RESUMO

Pure ZnO and alkaline metal ion (Mg2+, Ca2+, Sr2+ and Ba2+)-doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure, which was confirmed by X-ray diffraction studies. The micro-strain properties were analyzed through Williamson-Hall analysis. The oxidation states of the elements (C (1s), O (1s), Zn (2p), Mg (1s), Ca (2p), Sr (3d) and Ba (3d)) were confirmed by XPS studies. HRSEM studies showed a reduction in the thickness of the ZnO nanoflakes from 63 to 47 nm after doping. EDAX studies determined the amount of dopant (alkaline metals) incorporated into the doped samples. The FT-IR spectra confirmed the Zn-O stretching bands at 432, 416, 414, 426 and 422 cm-1 for the respective ZnO NPs. The photoluminescence measurements revealed that the broad emission was composed of six different bands due to zinc and oxygen vacancies. Thermal analysis revealed that the irreversible structural transition occurred from the cubic phase to the wurtzite phase in the samples. The antibacterial studies performed against a set of bacterial strains showed that the Mg-doped ZnO NPs possessed a greater antibacterial effect than the other alkaline metal ion-doped ZnO NPs.

12.
Appl Opt ; 43(31): 5778-83, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15540435

RESUMO

Lifetimes of two-color nonvolatile holograms recorded in undoped or in slightly doped near-stoichiometric lithium niobate and tantalate crystals were measured and compared by extrapolation of the high-temperature data. A proton-compensation mechanism dominated the dark decay and yielded similar activation energies, of 1.05 and 1.10 eV, for near-stoichiometric lithium niobate and tantalate crystals, respectively. The lifetime of holograms in lithium tantalate was 1 order of magnitude longer than that in lithium niobate with the same proton concentration, which was consistent with our theoretical estimation. The projected lifetime of two-color holograms in lithium tantalate without observable OH-absorption is longer than 50 years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA