Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Small ; 18(2): e2105076, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34799991

RESUMO

Effects of electronic and atomic structures of V-doped 2D layered SnS2 are studied using X-ray spectroscopy for the development of photocatalytic/photovoltaic applications. Extended X-ray absorption fine structure measurements at V K-edge reveal the presence of VO and VS bonds which form the intercalation of tetrahedral OVS sites in the van der Waals (vdW) gap of SnS2 layers. X-ray absorption near-edge structure (XANES) reveals not only valence state of V dopant in SnS2 is ≈4+ but also the charge transfer (CT) from V to ligands, supported by V Lα,ß resonant inelastic X-ray scattering. These results suggest V doping produces extra interlayer covalent interactions and additional conducting channels, which increase the electronic conductivity and CT. This gives rapid transport of photo-excited electrons and effective carrier separation in layered SnS2 . Additionally, valence-band photoemission spectra and S K-edge XANES indicate that the density of states near/at valence-band maximum is shifted to lower binding energy in V-doped SnS2 compare to pristine SnS2 and exhibits band gap shrinkage. These findings support first-principles density functional theory calculations of the interstitially tetrahedral OVS site intercalated in the vdW gap, highlighting the CT from V to ligands in V-doped SnS2 .

2.
Biomed Microdevices ; 22(1): 6, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844990

RESUMO

Advancements in health care monitoring demand a rapid, accurate and reliable early diagnosis of "Heart Attack" (acute myocardial infarction) with an objective to develop a cost-effective, rapid and label-free point of care diagnostic test kit for the detection of cardiac troponin I (cTnI) on paper-based multi-frequency impedimetric transducers. Paper based sensing platforms were developed by integrating carboxyl group functionalized multi-walled carbon nanotubes (MWCNT) with antibodies of cardiac troponin I (anti-cTnI) biomarker and was characterized using Electrochemical Impedance Spectroscopy (EIS). Various concentrations of cTnI with anti cTnI were studied as a function of impedance change. The suitability of the proposed immunosensor is demonstrated by spiking cTnI in blood serum samples. The limit of detection (LoD) and sensitivity of the proposed sensor was determined to be 0.05 ng/mL and 1.85 mΩ/ng/mL respectively, with a response time of ~1 min. The shelf life of the fabricated sensor was nearly 30 days. The rapid response, very low detection limit, and cost effectiveness offer a portable platform to detect cTnI in blood serum samples. The proposed immunosensor, therefore, offers an affordable healthcare diagnostic platform in resource limited areas.


Assuntos
Imunoensaio/métodos , Miocárdio/metabolismo , Papel , Sistemas Automatizados de Assistência Junto ao Leito , Troponina I/análise , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Biomarcadores/análise , Biomarcadores/sangue , Impedância Elétrica , Eletroquímica , Eletrodos , Humanos , Limite de Detecção , Nanotubos de Carbono/química , Troponina I/sangue , Troponina I/metabolismo
3.
J Environ Manage ; 236: 481-489, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771668

RESUMO

Bimetallic nanoparticles are effective for the removal of organic pollutants from environmental water samples through catalytic degradation reactions. Hence, this work reports on the preparation of Fe/Ag bimetallic nanoparticles immobilized on electrospun polyacrylonitrile nanofibers (PAN NFs) pre-functionalized with EDTA and ethylenediamine (EDA) chelating agents. Characterization techniques included attenuated total reflectance coupled to Fourier transform infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The liquid chromatography coupled to a mass spectrometer (HPLC-MS) was used to investigate the degradation by-products. The impregnation of EDTA-EDA chelating agents imparted changes on the pristine PAN NFs as evidenced by increased nanofiber's average diameter and surface chemistry. The zero valent Fe and Ag NPs were successfully immobilized on PAN NFs and their catalytic activity was tested for the degradation of azo dyes. Results showed efficient decolourization of methyl orange dye molecules from synthetic water samples after four (4) cycles of reuse (e.g. >96% removal efficiency). The hydrogenation of methyl orange was found to be the removal mechanism due to the presence of hydrogenated methyl orange by-products in the treated water samples. Therefore, the fabricated nanocomposites exhibit potential application for the remediation of textile wastewater.


Assuntos
Nanopartículas Metálicas , Nanofibras , Resinas Acrílicas , Compostos Azo , Quelantes , Ácido Edético , Prata
4.
J Nanosci Nanotechnol ; 18(8): 5470-5484, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29458600

RESUMO

Nitrogen-doped graphene oxide (NGO) nanosheets were prepared via a facile one-pot modified Hummer's approach at low temperatures using graphite powder and flakes as starting materials in the presence of a nitrogen precursor. It was found that the morphology, structure, composition and surface chemistry of the NGO nanosheets depended on the nature of the graphite precursor used. GO nanosheets doped with nitrogen atoms exhibited a unique structure with few thin layers and wrinkled sheets, high porosity and structural defects. NGO sheets made from graphite powder (NGOp) exhibited excellent thermal stability and remarkably high surface area (up to 240.53 m2 ·g-1) compared to NGO sheets made from graphite flakes (NGOf) which degraded at low temperatures and had an average surface area of 24.70 m2 ·g-1. NGOf sheets had a size range of 850 to 2200 nm while NGOp sheets demonstrated obviously small sizes (460-1600 nm) even when exposed to different pH conditions. The NGO nanosheets exhibited negatively charged surfaces in a wide pH range (1 to 12) and were found to be stable above pH 6. In addition, graphite flakes were found to be more suitable for the production of NGO as they produced high N-doping levels (0.65 to 1.29 at.%) compared to graphite powders (0.30 to 0.35 at.%). This study further demonstrates that by adjusting the amount of N source in the host GO, one can tailor its thermal stability, surface morphology, surface chemistry and surface area.

5.
Chemistry ; 19(3): 943-9, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23169542

RESUMO

Fluorescent gold clusters (FGCs) with tunable emission from blue to red and quantum yields in the range of 6-17% have been synthesized by simple modification of the conditions used for the synthesis of gold nanoparticles, namely by replacing the stronger reducing agent with a controlled amount of thiol. Various functional FGCs with hydrodynamic diameters of 5-12 nm have been successfully synthesized and used as cell labels. The results of our investigations strongly indicate that FGCs composed of Au(0) are more stable imaging probes than commonly reported red/NIR-emitting FGCs with a composition of Au(0)/Au(I), as this combination rapidly transforms into nonfluorescent large clusters on exposure to light. The FGC-based nanoprobes reported herein exhibit stable fluorescence upon continuous light exposure and can be used as imaging probes with low cytotoxicity.


Assuntos
Fluorescência , Ouro/química , Nanopartículas Metálicas/química , Sondas Moleculares/química , Compostos de Sulfidrila/química , Ouro/farmacocinética , Células HEK293 , Células HeLa , Humanos , Sondas Moleculares/síntese química , Sondas Moleculares/farmacocinética
6.
MethodsX ; 7: 100963, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637335

RESUMO

Graphene quantum dots (GQDs) possess excellent optical and electrical properties that can be used in a wide variety of application. Synthesis of hybrid nanoparticles with GQDs have been known to improve the properties further. Therefore, in this method, graphene quantum dots -gold (GQD-Au) hybrid nanoparticles were synthesized using GQDs which reduces HAuCl4.3H2O to Au nanoparticles on its surface at room temperature. The GQDs with self-passivated layers were synthesized by microwave assisted hydrothermal method using glucose as a single precursor. The synthesis process does not involve the use of harmful chemicals. The whole synthesis process of GQD and GQD-Au hybrid nanoparticles takes only five minutes. The synthesized GQDs have been extracted using citrate in order to increase the stability of the hybrid nanoparticles for up to four weeks. The size of the synthesized GQD-Au hybrid nanoparticles is in the range of 5-100 nm and were found to be luminescent under UV-A illumination. The merit of the following method over other synthesis techniques include its rapidity, ease of preparation, and no requirement of elaborate synthesis procedures and/or harmful chemicals. The GQD-Au hybrid nanoparticles can be used in several applications such as luminescent coatings for glass and windowpanes for automobiles, etc. The reducing property of GQDs can further be utilized for the reduction of various metal salts (AgNO3) and organic dyes (methylene blue and methyl orange). . It presents a method/protocol-development of the luminescent GQD-Au hybrid particles of size ~ 5-100 nm. . The GQD-Au hybrid particles find potential applications in luminescent coating applications.

7.
Nanomaterials (Basel) ; 9(12)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835790

RESUMO

In this work, porous carbon-vanadium oxynitride (C-V2NO) nanostructures were obtained at different nitridation temperature of 700, 800 and 900 °C using a thermal decomposition process. The X-ray diffraction (XRD) pattern of all the nanomaterials showed a C-V2NO single-phase cubic structure. The C-V2NO obtained at 700 °C had a low surface area (91.6 m2 g-1), a moderate degree of graphitization, and a broader pore size distribution. The C-V2NO obtained at 800 °C displayed an interconnected network with higher surface area (121.6 m2 g-1) and a narrower pore size distribution. In contrast, at 900 °C, the C-V2NO displayed a disintegrated network and a decrease in the surface area (113 m2 g-1). All the synthesized C-V2NO yielded mesoporous oxynitride nanostructures which were evaluated in three-electrode configuration using 6 M KOH aqueous electrolyte as a function of temperature. The C-V2NO@800 °C electrode gave the highest electrochemical performance as compared to its counterparts due to its superior properties. These results indicate that the nitridation temperature not only influences the morphology, structure and surface area of the C-V2NO but also their electrochemical performance. Additionally, a symmetric device fabricated from the C-V2NO@800 °C displayed specific energy and power of 38 W h kg-1 and 764 W kg-1, respectively, at 1 A g-1 in a wide operating voltage of 1.8 V. In terms of stability, it achieved 84.7% as capacity retention up to 10,000 cycles which was confirmed through the floating/aging measurement for up to 100 h at 10 A g-1. This symmetric capacitor is promising for practical applications due to the rapid and easy preparation of the carbon-vanadium oxynitride materials.

8.
J Phys Condens Matter ; 31(13): 135501, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609419

RESUMO

The correlation of electronic structure and magnetic behaviors of layered molybdenum disulfide (MoS2) nanosheets, mechanically exfoliated from pristine hexagonal crystal (2H-MoS2) have been studied. Raman spectra show the energy difference (ΔE) between two Raman peaks A 1g and [Formula: see text] was about 20.2 cm-1, indicating the formation of mono-/bi-layered MoS 2 nanosheets as obtained after mechanical exfoliation from pristine 2H-MoS 2 . The absence of the reflection peak (0 0 2) in x-ray diffraction patterns confirms the formation of few-layered and mono-/bi-layered MoS 2 nanosheets with reduced thickness. Mo 3d and S 2p  XPS core level peaks shifted to higher energy with the reduction of the number of layers in exfoliated MoS2. As the number of layers decreased, valence band maximum position increased from 1.11 eV (pristine MoS2) to 1.57 eV (mono-/bi-layered MoS 2 nanosheets), whereas the surface work function (Ф) reduced from 4.85 eV (pristine MoS2) to 4.47 eV (mono-/bi-layered MoS2 nanosheets), as observed from UPS (He-I) measurements. UPS (He-II) spectra, as well as VB-PES spectra of mono-/bi-layered MoS 2 nanosheets, exhibits an enhanced valence band density of states (DOS) of S 3p -derived states near Fermi level (E f). Mo L II-edge and S K-edge x-ray absorption near edge structure spectra of mono-/bi-layered MoS 2 nanosheets show the splitting of different peaks that cause a noticeable change in their band structure. Magnetic M-H hysteresis loops measurement clearly demonstrates the increase of room temperature ferromagnetism from pristine to mono-/bi-layer MoS2, due to the existence of defects ('S'-vacancies or defects at the grain boundaries region) and the increase of DOS.

9.
ACS Omega ; 4(11): 14589-14598, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31528813

RESUMO

Silicon-oxide-nanoparticle (SiO2-NP) heteroatoms were decorated/deposited onto multiwall carbon nanotube (MWCNT) surface to tune the properties of MWCNTs for electronic and magnetic applications. To achieve this objective, SiO2-NPs and MWCNTs were prepared and suspended together into toluene and heated at <100 °C for the formation of MWCNTs/SiO2-NP nanocomposites. A change in the microstructure, electronic, electrical, and magnetic behaviors of MWCNT nanocomposites decorated/deposited with silicon content was investigated using different techniques, viz., scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy for structural, compositional, and electronic structure, while current-voltage was used for electrical properties and field-dependent magnetization and electron spin resonance techniques were used for magnetic properties. The results indicated that SiO2-NPs adhered onto MWCNTs, resulting in variation in the material conductivity with the Si-NP content. The coercivity of MWCNT nanocomposites adhered with 1.5 atom % Si-NPs (H C@40 K = 689 Oe) is higher than that of those adhered with 5.75 atom % Si-NPs (H C@40 K = 357 Oe). In general, the results provide information about the possibilities of tuning the electronic, electrical, and magnetic properties of MWCNTs by adherence of SiO2-NPs onto them. This tuning of material properties could be useful for different electronic and magnetic device applications.

10.
Chem Sci ; 10(41): 9530-9541, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-32055324

RESUMO

In spite of achieving high power conversion efficiency (PCE), organo-halide perovskites suffer from long term stability issues. Especially the grain boundaries of polycrystalline perovskite films are considered as giant trapping sites for photo-generated carriers and therefore play an important role in charge transportation dynamics. Surface engineering via grain boundary modification is the most promising way to resolve this issue. A unique antisolvent-cum-quantum dot (QD) assisted grain boundary modification approach has been employed for creating monolithically grained, pin-hole free perovskite films, wherein the choice of all-inorganic CsPbBr x I3-x (x = 1-2) QDs is significant. The grain boundary filling by QDs facilitates the formation of compact films with 1-2 µm perovskite grains as compared to 300-500 nm grains in the unmodified films. The solar cells fabricated by CsPbBr1.5I1.5 QD modification yield a PCE of ∼16.5% as compared to ∼13% for the unmodified devices. X-ray photoelectron spectral analyses reveal that the sharing of electrons between the PbI6 - framework in the bulk perovskite and Br- ions in CsPbBr1.5I1.5 QDs facilitates the charge transfer process while femtosecond transient absorption spectroscopy (fs-TAS) suggests quicker trap filling and enhanced charge carrier recombination lifetime. Considerable ambient stability up to ∼720 h with <20% PCE degradation firmly establishes the strategic QD modification of bulk perovskite films.

12.
Sci Rep ; 8(1): 15779, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30361523

RESUMO

This investigation reports on anisotropy in the magnetic interaction, lattice-orbital coupling and degree of phonon softening in single crystal Ni3TeO6 (NTO) using temperature- and polarization-dependent X-ray absorption spectroscopic techniques. The magnetic field-cooled and zero-field-cooled measurements and temperature-dependent Ni L3,2-edge X-ray magnetic circular dichroism spectra of NTO reveal a weak Ni-Ni ferromagnetic interaction close to ~60 K (TSO: temperature of the onset of spin ordering) with a net alignment of Ni spins (the uncompensated components of the Ni moments) along the crystallographic c-axis, which is absent from the ab-plane. Below the Néel temperature, TN~ 52 K, NTO is stable in the antiferromagnetic state with its spin axis parallel to the c-axis. The Ni L3,2-edge X-ray linear dichroism results indicate that above TSO, the Ni 3d eg electrons preferentially occupy the out-of-plane 3d3z2-r2 orbitals and switch to the in-plane 3dx2-y2 orbitals below TSO. The inherent distortion of the NiO6 octahedra and anisotropic nearest-neighbor Ni-O bond lengths between the c-axis and the ab-plane of NTO, followed by anomalous Debye-Waller factors and orbital-lattice in conjunction with spin-phonon couplings, stabilize the occupied out-of-plane (3d3z2-r2) and in-plane (3dx2-y2) Ni eg orbitals above and below TSO, respectively.

13.
Sci Rep ; 7: 42235, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186190

RESUMO

Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

14.
Sci Rep ; 5: 15439, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26481557

RESUMO

This investigation studies the various magnetic behaviors of graphene oxide (GO) and reduced graphene oxides (rGOs) and elucidates the relationship between the chemical states that involve defects therein and their magnetic behaviors in GO sheets. Magnetic hysteresis loop reveals that the GO is ferromagnetic whereas photo-thermal moderately reduced graphene oxide (M-rGO) and heavily reduced graphene oxide (H-rGO) gradually become paramagnetic behavior at room temperature. Scanning transmission X-ray microscopy and corresponding X-ray absorption near-edge structure spectroscopy were utilized to investigate thoroughly the variation of the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups, as well as the C 2p(σ*)-derived states in flat and wrinkle regions to clarify the relationship between the spatially-resolved chemical states and the magnetism of GO, M-rGO and H-rGO. The results of X-ray magnetic circular dichroism further support the finding that C 2p(σ*)-derived states are the main origin of the magnetism of GO. Based on experimental results and first-principles calculations, the variation in magnetic behavior from GO to M-rGO and to H-rGO is interpreted, and the origin of ferromagnetism is identified as the C 2p(σ*)-derived states that involve defects/vacancies rather than the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups on GO sheets.


Assuntos
Grafite/química , Microscopia , Óxidos/química , Espectroscopia por Absorção de Raios X , Microscopia/métodos , Modelos Teóricos , Espectroscopia por Absorção de Raios X/métodos
15.
Sci Rep ; 4: 3862, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24457465

RESUMO

We report an investigation into the magnetic and electronic properties of partially hydrogenated vertically aligned few layers graphene (FLG) synthesized by microwave plasma enhanced chemical vapor deposition. The FLG samples are hydrogenated at different substrate temperatures to alter the degree of hydrogenation and their depth profile. The unique morphology of the structure gives rise to a unique geometry in which graphane/graphone is supported by graphene layers in the bulk, which is very different from other widely studied structures such as one-dimensional nanoribbons. Synchrotron based x-ray absorption fine structure spectroscopy measurements have been used to investigate the electronic structure and the underlying hydrogenation mechanism responsible for the magnetic properties. While ferromagnetic interactions seem to be predominant, the presence of antiferromagnetic interaction was also observed. Free spins available via the conversion of sp(2) to sp(3) hybridized structures, and the possibility of unpaired electrons from defects induced upon hydrogenation are thought to be likely mechanisms for the observed ferromagnetic orders.

16.
Sci Rep ; 4: 4525, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24717290

RESUMO

Electronic structures of graphene oxide (GO) and hydro-thermally reduced graphene oxides (rGOs) processed at low temperatures (120-180°C) were studied using X-ray absorption near-edge structure (XANES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). C K-edge XANES spectra of rGOs reveal that thermal reduction restores C = C sp(2) bonds and removes some of the oxygen and hydroxyl groups of GO, which initiates the evolution of carbonaceous species. The combination of C K-edge XANES and Kα XES spectra shows that the overlapping π and π* orbitals in rGOs and GO are similar to that of highly ordered pyrolytic graphite (HOPG), which has no band-gap. C Kα RIXS spectra provide evidence that thermal reduction changes the density of states (DOSs) that is generated in the π-region and/or in the gap between the π and π* levels of the GO and rGOs. Two-dimensional C Kα RIXS mapping of the heavy reduction of rGOs further confirms that the residual oxygen and/or oxygen-containing functional groups modify the π and σ features, which are dispersed by the photon excitation energy. The dispersion behavior near the K point is approximately linear and differs from the parabolic-like dispersion observed in HOPG.

17.
Sci Rep ; 3: 1473, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23502324

RESUMO

Fluorescent nanoparticle-based imaging probes have advanced current labelling technology and are expected to generate new medical diagnostic tools based on their superior brightness and photostability compared with conventional molecular probes. Although significant progress has been made in fluorescent semiconductor nanocrystal-based biological labelling and imaging, the presence of heavy metals and the toxicity issues associated with heavy metals have severely limited the application potential of these nanocrystals. Here, we report a fluorescent carbon nanoparticle-based, alternative, nontoxic imaging probe that is suitable for biological staining and diagnostics. We have developed a chemical method to synthesise highly fluorescent carbon nanoparticles 1-10 nm in size; these particles exhibit size-dependent, tunable visible emission. These carbon nanoparticles have been transformed into various functionalised nanoprobes with hydrodynamic diameters of 5-15 nm and have been used as cell imaging probes.


Assuntos
Carbono/química , Corantes Fluorescentes , Nanopartículas , Microscopia Eletrônica de Transmissão , Análise Espectral/métodos
18.
Nanoscale ; 5(13): 5732-7, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23715596

RESUMO

A simple low temperature colloid-chemical synthetic method is reported for size controlled synthesis of hydrophobic silicon nanoparticles in the 1-10 nm range. These silicon nanoparticles show size dependent tunable visible emission from blue to red with fluorescence quantum yield in the range of 6-13%. These silicon nanoparticles can be subjected to extensive surface chemistry without significant loss of their fluorescence properties. The as-synthesized red emitting nanoparticles have been transformed into water soluble functional nanoprobes of 18 nm hydrodynamic diameter and 5% fluorescence quantum yield and used as fluorescent biological labels.


Assuntos
Corantes Fluorescentes/química , Hidrocarbonetos Clorados/química , Nanopartículas/química , Silício/química , Fluorescência , Nanopartículas/ultraestrutura , Tamanho da Partícula
19.
Nanoscale ; 5(15): 6812-8, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23765234

RESUMO

The atomistic nucleation sites of Pt nanoparticles (Pt NPs) on N-doped carbon nanotubes (N-CNTs) were investigated using C and N K-edge and Pt L3-edge X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) spectroscopy. Transmission electron microscopy and XANES/EXAFS results revealed that the self-organized Pt NPs on N-CNTs are uniformly distributed because of the relatively high binding energies of the adsorbed Pt atoms at the imperfect sites. During the atomistic nucleation process of Pt NPs on N-CNTs, stable Pt-C and Pt-N bonds are presumably formed, and charge transfer occurs at the surface/interface of the N-CNTs. The findings in this study were consistent with density functional theory calculations performed using cluster models for the undoped, substitutional-N-doped and pyridine-like-N-doped CNTs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA